当前位置:文档之家› 10立方米氮气罐设计

10立方米氮气罐设计

10立方米氮气罐设计
10立方米氮气罐设计

《化工设备机械基础》课程设计10立方米氮气罐设计

系部:

专业:

姓名:

学号:

指导教师:

时间:

目录

摘要 (2)

1 罐体壁厚的设计 (4)

(1)计算厚度 (4)

(2)校核气压试验强度 (4)

2 封头厚度设计 (5)

(1)计算封头厚度 (5)

(2)校核罐体与封头气压试验强度 (5)

3 鞍座的设计 (6)

m (6)

(1)罐体质量

1

m (6)

(2)封头质量

2

m (6)

(3)液氮质量

3

m (7)

(4)附体质量

4

4 人孔 (7)

5 人孔补强 (8)

6 接管 (9)

致谢 (12)

符号说明 (13)

参考资料 (15)

摘要

氮气,常况下是一种无色无味无嗅的气体,且通常无毒。氮气占大气总量的78.12%(体积分数),是空气的主要成份。常温下为气体,在标准大气压下,冷却至-195.8℃时,变成没有颜色的液体,冷却至-209.86℃时,液态氮变成雪状的固体。氮气的化学性质很稳定,常温下很难跟其他物质发生反应,但在高温、高能量条件下可与某些物质发生化学变化,用来制取对人类有用的新物质。

氮气罐,又称氮气瓶,是用来运输、使用氮气的储存设备,耐高压,一般可以存储高压液态氮。

103M氮气罐设计设备设计主要技术指标:

管口表:

1 罐体壁厚的设计

设备主要材质为16MnR ,根据新标准/32008GB TF -《锅炉和压力容器用钢板》。16MnR 则为345Q R ,由于温度按常温计算,则查428p 页表可得:

[]

170t

MPa σ= 345s MPa σ= 0.85?= (采用双面焊对接接头,局部无损检测)

取2 1.0C mm = 1800i D mm =

(1)计算厚度

[] 1.11800

6.8821700.85 1.1

2c i t

c

P D mm P δσ?=

=

=??-Φ-

设计厚度:2 6.88 1.07.88d C mm δδ=+=+= 根据7.88d mm δ=,查表12-9得10.25C mm = 名义厚度:1n d C δδ=++圆整量=7.880.25++圆整量 圆整后,取名义厚度9n mm δ=

复验:6%96%0.540.25n mm mm δ?=?=> 故最后取10.25C mm = 该氮气罐可用9mm 厚的345Q R 钢制作。

(2)校核气压试验强度

()0.82T i e T s e

P P G δφσδ+=

式中,[]

[]

1.25

1.25 1.11 1.375T t P MPa σσ==??=

()1299 1.257.25e n C C C mm δδ=-=-+=-= 345s Pa δ= 则()

1.37518007.75160.3727.75

T G MPa ?+=

=?

0.80.80.85345236.93s MPa φδ=??=

可见0.8T s G φδ<;所以气压试验强度足够

2 封头厚度设计

采用标准的蝶形封头 (1)计算封头厚度

[]1.2 1.2 1.11800

8.2421700.850.5 1.1

20.5c i t

c

P D mm P δσφ??=

=

=??-?-

28.24 1.09.24d C mm δδ=+=+=

根据 9.24d mm δ= 由表12-9查的10.25C mm =则

19.240.259.49d C mm δ+=+=

圆整后采用 10n mm δ=厚的钢板。复验6%9.496%0.570.25n mm δ?=?=>, 最后确定10.25C mm =。故该蝶形封头可用10mm 厚的345Q R 钢制作。

(2)校核罐体与封头气压试验强度

()0.82T i e T s e

P D G δφδδ+=≤

1.25 1.25 1.1 1.38T c P P MPa ==?= 120.251 1.25C C C mm =+=+= 10 1.258.75e n C mm δδ=-=-=

345s MPa δ= (428P )页

()

1.3818008.7514

2.6328.75

T G MPa ?+=

=? 0.80.80.85345236.925s MPa φδ=??= 因为 0.8T s G φδ< 所以气压试验强度足够

3 鞍座的设计

首先粗略计算鞍座负荷 储罐总质量

1234m m m m m =+++

1m —罐体质量

2m —封头质量 3m —液氮质量

4m —附件质量 (1)罐体质量1m

1800,9,4100N n D mm mm L mm δ===的筒节

()1 3.14180099410078501645i m D L kg πδρ==?+???=

(2)封头质量2m

1800,9N n D mm mm δ==,直边20mm = 其质量2m '

2

20.34i n m D πδρ'=??

20.34 3.141800785010272kg =????=

222m m '=2722543kg =?=

(3)液氮质量3m

3m V ρ?= 其中装置系数取1.0 贮罐容积

32122226

4

i i V V V D D L π

π

=+=?+

323.14 3.14

2180018004100264

=?

+? 3

11.8m =

液氮在常温下的密度为31.25kg m

311.8 1.25 1.014.75m kg =??=

(4)附体质量4m

人孔质量约为200kg ,其他接管质量总和按300kg 计算 于是4500m kg =

储罐总质量1234m m m m m =+++

164554314.75500=+++ 2702.75kg = 2702.759.81

6628.544

mg F kN ?=

=≈ 根据表14-18可选用

/472592JB T -,支承式支座 材料 345Q A F -?

4 人孔

当设备内径100i D mm >时,至少开设1个400mm φ=的人孔,或2个150mm φ=的手孔。

根据储罐的设计温度﹑最高工作压力﹑材质﹑介质以及使用要求等条件,选用公称压力

1.1MPa 的带颈平焊法兰人孔()2059297HG --,人孔公称直径选定为500mm 。采用密封

型RF 和石棉胶版垫片。人孔各零件名称﹑材质及尺寸见表14-22

该水平颈对平焊法兰人孔的标记为

人孔 SO RF - 500 1.1- 2059297HG -

人孔 1.6PN 500DN

5 人孔补强

(1)确定壳体和接管的计算厚度及开孔直径

由已知条件知,壳体计算厚度 6.88mm δ=。接管计算厚度为 []2c O i t

c

P D P δσφ=

+

1.1500

21700.85 1.1

?=

??+

2mm =

开孔直径为

12d d C =+

()5001522 1.25=-?+?

472.5mm =

(2)确定壳体和接管的实际厚度开孔有效补强宽度B 及外侧有效补强高度1h

已知壳体名义厚度9n mm δ=,补强部分厚度9n S mm =,

接管有效补强宽度为

d =接管内直径+2C =478.5mm 22472.5945B d mm ==?=

接管外侧有效补强高度为165.2h mm =

==

(3)计算需要补强的金属面积和可以作为补强的金属面积

需补强的金属面积为

2

472.5 6.883250.8A d mm δ==?= 可作为补强的金属面积为

()()()()2

1945472.57.55 6.88411.1e A B d mm δδ=--=--=

()()221292265.2912.8et t r A h f mm δδ=-=-??=

(4)12e A A A =+2411.1912.81324mm =+= (5)比较e A 与A e A A >,所以补强厚度不足够。

加补强面积4A =A -e A 23250.813241927mm =-=

6 接管

1 液氮进料

采用57 3.5mm mm φ?无缝钢管(强度验算略)。管的一端切成0

45,伸入储罐内少许。配用图面板是平焊法兰:

20592HG 法兰 50 1.6PL - RF 16n M Ⅲ

2 液氮出料管

采用57 3.5mm mm φ?无缝钢管(强度验算略)。管的一端切成0

45,伸入储罐内少许。配用图面板是平焊法兰:

20592HG 法兰 50 1.6PL - RF 16n M Ⅲ

3 压力表口

采用212G 英寸无缝钢管,管内螺纹,伸出长度为120mm 。 由于壳体开孔满足下述全部要求,所以不需要补强 (1)设计压力 2.5a p MP ≤

(2)两相邻开孔中心间距(对曲面间距以弧长计算)应不小于两孔直径之和的两倍; (3)接管外径89mm ≤ (4)接管最小厚度满足下表要求

接管最小厚度

配用法兰 :

20592HG 法兰 50 1.6PL - RF 16n M Ⅲ

4 备用口

公称压力为16A MP ,公称直径为50mm ,伸出长度为120mm ,采用57 3.5mm φ?无缝钢管,采用带颈平焊法兰(SO )法兰密封面形式采用突面(RF ) 配用法兰: HG 20592 法兰50 1.6SO - RF 16n M Ⅲ

5 安全阀口

公称压力为16A MP ,公称直径为25mm ,伸出长度为120mm ,采用32 3.5mm φ?无缝

钢管,采用带颈平焊法兰(SO )法兰密封面形式采用突面(RF ) 配用法兰:

HG 20592 法兰25 1.6SO - RF 16n M Ⅲ

6 排污口

在设备最下端安设一个排污管,管子规格是32 3.5mm φ?,管段装有一个与截止阀

4116J W -相配的管法兰:

HG 20592 法兰25 1.6SO - RF 16n M Ⅲ

致谢

本设计是在xx老师的悉心指导下完成的。老师渊博的专业知识,严谨的治学态度,精益求精的工作作诲人不倦的高尚师德,严以律己,宽以待人的崇高风范,朴实无华,平易近人的人格魅力对我影响深远。不仅使我树立了远大的学术目标,掌握了基本的研究方法,还使我明白了许多待人接物与为人处事的道理。本设计从选题到到完成,每一步都是在老师的指导下完成的,倾注了老师大量的心血。在此,谨向老师表示崇高的敬意和衷心的感谢。

本设计的顺利完成,离不开各位老师,同学和朋友的关心和帮助。在此致谢xx老师的指导和帮助,没有你们的帮助和指导是没有办法完成我的设计的。

符号说明

c P ——计算压力 a Mp i D ——圆筒的内径 mm O D ——圆筒的外径 mm

[]w P ——圆筒的最大容许压力 a Mp

δ——圆筒的计算厚度 mm

d δ——圆筒的设计厚度 mm 2d C δδ=+ n δ——圆筒的名义厚度 mm 1n d C δδ=+

e δ——圆筒的有效厚度 其值 e n C δδ=+

[]t

δ——圆筒材料在设计温度下的许用应力 a Mp

t σ——圆筒材料在设计温度下的计算应力 a Mp

——焊接接头系数

1C ——钢板厚度的负偏差 mm 2C ——腐蚀余量 mm

C ——厚度附加量 mm 12C C C =+

t σ——圆筒壁在试验压力下的计算应力 a Mp s σ——圆筒材料在试验温度下的屈服点 a Mp

i h ——封头内壁曲面高度 mm

T P ——实验压力 a Mp

P ——设计压力 a Mp F ——每一支座承受的压力 KN

m ——容器的总质量 kg

g ——重力加速度 重力加速取9.812

m

s

et s ——接管有效厚度 mm nt s ——补强有效厚度 mm

d ——开孔直径 mm

r f ——强度削弱系数

1A ——壳体有效厚度减去计算厚度之外的多余面积 2mm 2A ——接管有效厚度减去计算厚度之外的多余面积 2mm

3A ——焊缝金属减去计算厚度之外的多余面积 2mm t f ——接管的计算厚度 mm e A ——补强面积 2mm

4A ——有效补强范围内另加的补强面积 2mm

B ——有效宽度 mm

参考资料

1.上海化工设计院。最新压力容器规范标准汇编。1984

2.煤炭工业部供应局。实用材料手册。北京:煤炭工业出版社,1982

3余国宗。化工容器及设备。北京:北京化学工业出版社,1980

4.贺匡国。化工容器及设备简明设计手册。2版。北京:化学工业出版社,1982

5张康达,洪起超。压力容器手册。北京:劳动人事出版社,2002

6.化工设备设计全书编辑委员会。化工容器设计。上海:上海科学技术出版社,1987

7.李智诚,朱中平,薛剑峰,等。锅炉与压力容器常用金属材料手册。北京:中国物资出版社,1997

8.高忠白,邱清宇,王志文。压力容器安全管理工程。北京:中国石化出版社,19997

9.龚斌。压力容器破裂的防治。杭州:浙江科学技术出版社,1985

10吴粤桑。压力容器安全技术。北京:化学工业出版社,1993

11.闫康平。工程材料。北京:化学工业出版社,2001

12.潘家祯。压力容器材料实用手册。北京:化学工业出版社,2000

13.董大勤。化工设备机械基础。北京:中央广播电视大学出版社,1993

14.范钦姗。压力容器的应力分析与强度设计。北京:原子能出版社,1979

15. 余国宗。化工机械手册。天津:天津大学出版社,1991

16.吴泽烩。化工容器设计。北京:北京化学工业出版社,1983

液氨储罐设计

第一章绪论 1. 1设计任务 设计一液氨贮罐。工艺条件:温度为40℃,氨饱和蒸气压MPa .1,容积 55 为20m3, 使用年限15年。 设计要求及成果 1. 确定容器材质; 2. 确定罐体形状及名义厚度; 3. 确定封头形状及名义厚度; 4. 确定支座,人孔及接管,以及开孔补强情况 5. 编制设计说明书以及绘制设备装配图1张(A1)。 技术要求 (一)本设备按GBl50-1998《钢制压力容器》进行制造、试验和验收 (二)焊接材料,对接焊接接头型式及尺寸可按GB985-80中规定(设计焊接φ) 接头系数0.1 = (三)焊接采用电弧焊,焊条型号为E4303 (四)壳体焊缝应进行无损探伤检查,探伤长度为100% 第二章设计参数确定 设计温度 O 题目中给出设计温度取40C

设计压力 在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。通过查阅资料可知包头最高气温为℃,通过查表可知,在40℃ 时液氨的饱和蒸汽压(绝对压力)为,密度为580kg/m3,而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 此液氨储罐采用安全法,依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力w P 的1.105.1-倍,取设计压力w P P 05.1=(已知 MPa P w 55.1=表压)所以 MPa P P w 6.105.1==。 腐蚀余量 查《腐蚀数据手册》16MnR 耐氨腐蚀,其y mm /1.0<λ,若设计寿命为15年,则m m 5.11.0152=?==αλC 焊缝系数 该容器属中压贮存容器,技《压力容器安全技术监察规程》规定,氨属中度 毒性介质,容器筒体的纵向焊接接头和封头基本上都采用双面焊或相当于双面焊的全焊透的焊接接头,所以φ取0.1或85.0常见。φ得选取按下表选择: 表 焊接接头系数

20立方米液氨储罐设计说明书

目录 课程设计任务书 2 20m3液氨储罐设计 2 课程设计容 3 液氨物化性质及介绍 3 1. 设备的工艺计算 3 1.1 设计储存量 3 1.2 设备的选型的轮廓尺寸的确定 3 1.3 设计压力的确定 4 1.4 设计温度的确定 4 1.5 压力容器类别的确定 4 2. 设备的机械设计 5 2.1 设计条件 5 2.2 结构设计 6 2.2.1 材料选择 6 2.2.2 筒体和封头结构设计 6 2.2.3 法兰的结构设计 6 (1)公称压力确定7 (2)法兰类型、密封面形式及垫片材料选择7 (3)法兰尺寸7 2.2.4 人孔、液位计结构设计8 (1)人孔设计8 (2)液位计的选择9 2.2.5 支座结构设计10 (1)筒体和封头壁厚计算10 (2)支座结构尺寸确定12 2.2.6 焊接接头设计及焊接材料的选取14 (1)焊接接头的设计14 (2)焊接材料的选取16 2.3 强度校核16 2.3.1 计算条件16 2.3.2 压圆筒校核17 2.3.3 封头计算18 2.3.4 鞍座计算20 2.3.5 开孔补强计算21 3. 心得体会22 4. 参考文献22

课程设计任务书 20m3液氨储罐设计 一、课程设计要求: 1.按照国家最新压力容器标准、规进行设计,掌握典型过程设备设计的全过程。 2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。 3.工程图纸要求计算机绘图。 4.独立完成。 二、原始数据 设计条件表 三、课程设计主要容 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 四、学生应交出的设计文件(论文): 1.设计说明书一份; 2.总装配图一(A1图纸一)

液氨储罐课程设计分析

课程设计任务书 课程设计任务书 1. 设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据: 1

3. 工艺条件图 4. 计算及说明部分内容(设计内容): 第1章绪论: (1)液氨储罐的设计背景 (2)液氨贮罐的分类及选型; (3)主要设计参数的确定及说明。 第2章材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍座的选择确定。 第3章工艺尺寸的确定 第4章设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; (6)选择液位计; (7)选配工艺接管。 设计小结 参考文献 5.绘图部分内容: 总装配图一张(A1图纸) 2

课程设计任务书 6.设计期限:1周( 2013 年 06月 24 日~ 2013 年 07 月 05 日) 7、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 8.参考资料: (一)国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998; (二)国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999 (三)《金属化工设备·零部件》第四卷 (四)中华人民共和国化学工业部,中华人民共和国待业标准《钢制管法兰、垫片、紧固件》,1997 (五)《化工设备机械基础课程设计指导书》(图书馆借阅书号:TQ 05/51) (六)刁玉纬王立业,《化工设备机械基础》,大连理工大学出版社,2003年第五版; (七)李多民俞惠敏,《化工过程设备机械基础》,中国石化出版社,2007; (八)董大勤,《化工设备机械基础》,化学工业出版社,1994年第二版; (九)汤善甫朱思明,《化工设备机械基础》,华东理工大学出版社,2004年第二版; 发给学生(签名):指导教师: 年月日 (注:此任务书应附于所完成的课程设计说明书封面后) 3

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书

前言 本说明书为《30m3液氨储罐设计说明书》。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录 第一章绪论 (4) (一)设计任务 (4) (二)设计思想 (4) (三)设计特点 (4) 第二章材料及结构的选择与论证 (4) (一)材料选择 (4) (二)结构选择与论证 (4) 第三章设计计算 (6) (一)计算筒体的壁厚 (6) (二)计算封头的壁厚 (7) (三)水压试验及强度校核 (7) (四)选择人孔并开孔确定补强 (8) (五)核算承载能力并选择鞍座 (8) (六)选择液面计 (9) (七)选配工艺接管 (9) 第四章设计汇总 (10) 第五章结束语 (11) 第六章参考文献 (11)

第一章绪论 (一)设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 (三)设计特点: 容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 第二章材料及结构的选择与论证 (一)材料选择: 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。如果纯粹从技术角度看,建议选用20R类的低碳钢板,16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。 (二)结构选择与论证: 1.封头的选择: 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最

液氨储罐项目设计方案

液氨储罐项目设计方案1.设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据:

3. 工艺条件图 4. 计算及说明部分容(设计容): 1 绪论 1.1 液氨储罐的设计背景 1.2 液氨储罐的分类及选型 2 材料及结构的选择与论证 2.1 工艺参数的设定 2.1.1设计压力 2.1.2筒体的选材及结构 2.1.3封头的结构及选材 3 设计计算 3.1 筒体壁厚计算 3.2 封头壁厚计算 3.3 压力试验 4 附件的选择 4.1 人孔的选择 4.2 人孔补强的计算

4.3 进出料接管的选择 4.4 液面计的设计 4.5 安全阀的选择 4.6 排污管的选择 4.7 真空表选择 4.8 鞍座的选择 4.8.1 鞍座结构和材料的选取 4.8.2 容器载荷计算 4.8.3 鞍座选取标准 4.8.4 鞍座强度校核 5 容器焊缝标准 5.1 压力容器焊接结构设计要求 5.2 筒体与椭圆封头的焊接接头 5.3 管法兰与接管的焊接接头 5.4 接管与壳体的焊接接头 6 筒体和封头的校核计算 6.1 筒体轴向应力校核 6.1.1 由弯矩引起的轴向应力 6.1.2 由设计压力引起的轴向应力 6.1.3 轴向应力组合与校核 6.2 筒体和封头切向应力校核 7 总结 8 参考文献 5.绘图部分容: 总装配图一(A1图纸) 6.设计期限:1周(2013 年06月24日~ 2013年 06月30日) 7、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天

xx工程200m3氮气球罐设计计算书

xx 工程200m 3氮气球罐设计计算书 D1 设计条件 设计压力: p= 1.68 M Pa 设计温度: t= -19~80 ℃ 水压试验压力: P T = 1.25p = 1.25x1.68 M Pa =2.1 MPa 球壳内直径:D i = 7100 mm ( 200 m 3 ) 储存物料:氮气 充装系数: K = 1 地震设防烈度:7 度 10m高度处的基本风压值: q0= 350 N/m2 支柱数目: n=6 支柱选用 φ 219 x8 无缝钢管 拉杆选用 φ 32 圆钢 球罐建造场地:III 类场地土 D2 球壳计算 D2.1 计算压力 设计压力: p= 1.68 Mpa 球壳各带的物料液柱高度: (储存介质为气体,不计算物料液柱高度) 物料密度: ρ0 =1.251kg/m 3 (标准状态下) 重力加速度:=9.81m/s 2 球壳各带的计算压力:(储存介质为气体, 各带的计算压力相等) D2.2 球壳各带的厚度计算: (储存介质为气体, 各带的计算厚度相等) 球壳内直径: D i = 7100 mm 设计温度下球壳材料16MnR 的许用应力: []σt =163 Mpa 焊缝系数: ? = 1 厚度附加量: c =c 1 +c 2 = 0 + 1 = 1 mm []mm c p D p c t i d 34.19134.18168 .1116347100 68.141 1=+=+-???= +-= φσδ 取球壳名义厚度δ n = 22 mm. 有效厚度δe = δn -C = 22 - 1 = 21mm 。 设计温度下球壳的最大允许工作压力 p w =4δe[σ]t Ф/(Di+δe) =4*21*163*1/(7100+21)=1.92MPa 设计温度下球壳的计算应力 σt = p c (Di+δe)/4δe = 1.68*(7100+21)/(4*21) =142.4<[σ]t Ф=163(MPa) D3 球罐质量计算 球壳平均直径: D c p = 7122 mm 球壳材料密度: ρ 1 = 7850 kg / m 3

液氨储罐的设计

化工设备机械基础课程设计题目:液氨贮罐的机械设计 班级: 学号:0708010213 姓名:陈剑 指导教师:崔岳峰 沈阳理工大学环境与化学工程学院 2010年11月 设计任务书 课题:液氨储罐的机械设计 设计内容:根据给定的工艺参数设计一台液氨储罐。 已知工艺参数: 最高使用温度:T=50℃

公称直径:DN=3000mm 筒体长度:L=4500mm 具体内容包括: (1)筒体材料的选择 (2)储罐的结构和尺寸 (3)罐的制造施工(焊接焊缝) (4)零部件的型号、位置和接口 (5)相关校核计算 设计人:陈剑 学号:0708010213 下达时间:2010年11月19日 完成时间:2010年12月24日 目录 前言 1 1液氨储罐的设计背景 2 2液氨储罐的分类和选型 3

2.1 储罐的分类 3 2.2 储罐的选型 3 3 材料用钢的选取 4 3.1容器用钢 4 3.2附件用钢 4 4工艺尺寸的确定 5 4.1储罐的体积 5 5工艺计算 6 5.1筒体壁厚的计算 6 5.2封头壁厚的计算6 5.3水压试验7 5.4支座7 5.4.1支座的选取7 5.4.2鞍座的计算7 5.4.3安装高度9 5.5人孔的选取9 5.6人孔补强9 5.6.1人孔补强的计算9 5.6.2 不需补强的最大开孔直径11 5.7接口管12 5.7.1液氨进料管12

5.7.2液氨出料管12 5.7.3排污管12 5.7.4液面计接管12 5.7.5放空接口管13 5.7.6安装阀接口管13 6参数校核14 6.1筒体轴向应力校核14 6.1.1 筒体轴向弯矩的计算14 6.1.2筒体轴向应力的计算14 6.2 筒体和封头切向应力的校核15 6.2.1筒体切向应力的计算15 6.2.2封头切向应力的计算16 6.3筒体环向应力的计算与校核16 6.3.1环向应力的计算16 6.3.2环向应力校核17 6.4鞍座有效断面平均压力17 7总结18 8设计结果一览表19 9液氨储罐化工设计图20 参考文献21

20立方米液氨储罐设计

《过程设备设计》 课程设计说明书 设计项目: 20M3液氨储罐设计 所属院系:化学化工学院 专业班级:化学工程与工艺1304班 学号: 学生姓名: 指导教师:张铱鈖 2016年01月20日

摘要 本次课程设计任务为设计一个容积为20m3的液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管等进行设计,然后对其进行强度校核,最后形成合理的设计方案。 设计说明书的正文部分包括工艺设计和机械设计,其中机械设计包括结构设计和强度计算两部分内容,结构设计中包括设备一系列零部件的数据,强度计算包括厚度计算、水压试验、气密性试验等。

一、设计任务书 20M3液氨储罐设计 课程设计要求及原始数据(资料) 一、课程设计基本要求 1、按照国家压力容器设计标准、规范设计要求,掌握典型过程设备设计的过程。 2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。 3、工程图纸要求计算机绘图。 4、独立完成。 二、原始数据 表1 设计条件表

目录 一、设计任务书 (2) 二、课程设计内容 (5) 工艺设计 (5) 一、设计压力的确定 (5) 二、设计温度的确定 (6) 机械设计 (6) 一、结构设计 (6) ①设计条件 (6) ②结构设计 (7) 1、压力容器选择 (7) 物料的物理化学性质 压力容器的类型 压力容器的用材 2、筒体和封头的结构设计 (8) 容器的筒体和封头壁厚的设计 (8) 三·设备的设计计算 1、筒体名义厚度的初步确定 (8) 2、封头壁厚的计算 (8) 容器的水压试验 (10) 3、各个接管的位置及法兰的选择 (11) 接管的设计 法兰的设计 垫片的选择

10立方米氮气罐设计

《化工设备机械基础》课程设计10立方米氮气罐设计 系部:化学与环境工程系 专业:设备10-6班 学号:2010232247 姓名:韩向阳 指导教师:赵宝平 时间:2012年12.22-12.31

新疆工业高等专科学校 课程设计评定意见 设计题目:氮气罐设计 成员姓名: 评定意见: 评定成绩: 指导教师(签名):年月日

化学工程系课程设计任务书 教研室主任(签名)系(部)主任(签名)2012年12

月 摘要 氮气的化学性质很稳定,常温下很难跟其他物质发生反应,但在高温、高能量条件下可与某些物质发生化学变化,用来制取对人类有用的新物质。氮气罐,又称氮气瓶,是用来运输、使用氮气的储存设备,耐高压,一般可以存储高压液态氮。 氮气罐的设计主要考虑壁厚、封头、底座、人孔、接管等。其中壁厚、封头设计要考虑设计的厚度、材质和气压试验;支座设计主要包括罐体质量、封头、液氮质量、附体质量等设计;人口主要考虑开口和补强;接管设计主要包括液氮的进料管、液氮的出料管、压力表口、备用口、安全阀口、排污口的设计.

10m3氮气罐设计设备设计主要技术指标: 管口表:

目录 1 罐体壁厚的设计--------------------------------------------------------------------------------------------- 1 1.1计算厚度 ----------------------------------------------------------------------------------------------- 1 1.2校核液压试验强度 ----------------------------------------------------------------------------------- 1 2 封头厚度设计------------------------------------------------------------------------------------------------ 2 2.1计算封头厚度 ----------------------------------------------------------------------------------------- 2 2.2校核罐体与封头液压试验强度 -------------------------------------------------------------------- 2 3 支座的设计--------------------------------------------------------------------------------------------------- 3 3.1罐体质量 m ------------------------------------------------------------------------------------------- 3 1 3.2封头质量 m------------------------------------------------------------------------------------------- 3 2 3.3液氮质量 m ------------------------------------------------------------------------------------------- 4 3 3.4附体质量 m------------------------------------------------------------------------------------------- 5 4 4 人孔------------------------------------------------------------------------------------------------------------ 5 5 人孔补强------------------------------------------------------------------------------------------------------ 6 5.1确定壳体和接管的计算厚度及开孔直径 -------------------------------------------------------- 6 5.2确定壳体和接管的实际厚度开孔有效补强宽度B及外侧有效补强高度 h ------------- 7 1 5.3计算需要补强的金属面积和可以作为补强的金属面积 -------------------------------------- 7 6 接管------------------------------------------------------------------------------------------------------------ 8 6.1 液氮进料----------------------------------------------------------------------------------------------- 8 6.2 液氮出料管 ------------------------------------------------------------------------------------------ 8 6.3 压力表口----------------------------------------------------------------------------------------------- 8 6.4 备用口 ------------------------------------------------------------------------------------------------ 9 6.5 安全阀口----------------------------------------------------------------------------------------------- 9 6.6 排污口-------------------------------------------------------------------------------------------------- 9致谢 ----------------------------------------------------------------------------------------------------------- 10 符号说明 -------------------------------------------------------------------------------------------------------- 11 参考资料 -------------------------------------------------------------------------------------------------------- 13

液氨贮罐的设计及计算

液氨贮罐的设计及计算 第一章贮罐筒体与封头的设计 一、罐体DN、PN的确定 1、罐体DN 的确定 液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10 L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm 因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm 2、釜体PN 的确定 因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa 二、筒体壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p ∵ p 液< 5 % P ,∴可以忽略p 液 p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、筒体壁厚的设计 设筒体的壁厚S n ′=14 mm,[σ]t=170MPa ,c 1 =0.8 mm 由公式S d =p c Di/(2 [σ]tФ-P c)+c 可得: S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整S n =12 mm ∵S n ≠ S n ′∴假设S n = 14mm是不合理的. 故筒体壁厚取S n =12 mm 3、刚度条件设计筒体的最小壁厚 ∵ Di=1600 mm < 3800 mm ,S min =2 Di /1000且不小于3 mm 另加 C 2 , ∴ S n =5.2 mm 按强度条件设计的筒体壁厚S n =12 mm >S n =5.2 mm,满足刚度条件的要求. 三、罐体封头壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p 液 ,∵ p 液 < 5 % p , ∴可以忽略p 液 p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、封头的壁厚的设计 采用标准椭圆形封头,设封头的壁厚S n ′=14 mm,[σ]t=170 MPa ,c 1 = 0.8 mm 由公式S d =P c Di/(2 [σ]tФ-0.5P c )+c 可得: S d =1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整 S n =12 mm

液氨储罐规范要求

第一章总则 第一条为加强液氨储存、装卸环节的安全生产技术管理,进一步规范液氨储存、装卸的安全生产行为,保障人身和财产安全,防止发生事故,依据《中华人民共和国安全生产法》、《危险化学品安全管理条例》和《危险化学品从业单位安全标准化规范》等法律、法规及有关标准等,制定本规范。 第二条本规范适用于山东省境内从事液氨生产、经营、储存和使用等企业的液氨储存、装卸的安全生产技术管理。 第三条新建、改建、扩建液氨储存、装卸装置和设施,属于危险化学品建设项目安全许可范畴的,应严格遵照《危险化学品建设项目安全许可实施办法》和《山东省安全生产监督管理局关于危险化学品建设项目安全许可和试生产(使用)方案备案工作的意见》,获得安全生产行政许可后方可投入生产(使用)。 第四条涉及液氨储存、装卸的企业,应认真落实“安全第一、预防为主,综合治理”的方针,严格遵守危险化学品安全生产的法律、法规、标准和相关规范,建立、健全安全生产责任制度,积极开展安全标准化创建活动,不断改善安全生产条件,提高本质安全水平,确保安全生产。 第五条液氨的储存、装卸装置和设施,应做到安全可靠、技术先进,禁止使用国家明令禁止或淘汰的工艺和设备设施。 第二章设计管理 第一节场所选址 第六条液氨储存和装卸场所的选择,应全面考虑周边的自然环境和社会环境,使其符合安全生产有关标准规范的要求。 第七条在进行区域规划时,液氨储存和装卸场所应根据所在企业及相邻工厂或设施的特点和火灾危险性,结合地形、风向等条件,合理布置。 第八条液氨储存和装卸场所应禁止设置在学校、医院、居民区等人口稠密区附近。液氨储存数量构成重大危险源的,与下列场所、区域的距离必须符合国家标准或者国家有关规定: 1.居民区、商业中心、公园等人口密集区域; 2.学校、医院、影剧院、体育场等公共设施; 3.供水水源、水厂及水源保护区; 4.车站、码头(按照国家规定、经批准专门从事危险化学品装卸作业的除外)、机场、公路、铁路、水路交通干线、地铁风亭及出入口; 5.基本农田保护区、畜牧区、渔业水域和种子、种畜、水产苗种生产基地; 6.河流、湖泊、风景名胜区和自然保护区; 7.军事禁区、军事管理区; 8.法律、行政法规规定的予以保护的其他区域。 第九条液氨储存和装卸场所应充分考虑地震、软地基、湿陷性黄土、膨胀土等地质因素以及台风、雷暴、沙暴等气象危害因素,避免建在断层、滑坡、泥石流、地下溶洞、采矿陷落区界内、重要的供水水源卫生保护区、有开采价值的矿藏区等地段和

液氨储罐机械设计分析

课程设计任务书 广东石油化工学院 《化工机械基础》课程设计任务书 1.设计题目:液氨储罐机械设计 2. 设计数据: 技术特性 公称容积V0(m3) 16 公称直径D i(mm) 2000介质液氨筒体长度L(mm) 4000 工作压力(MPa) 2.07 工作温度(0C) ≤50 厂址茂名推荐材料16MnR 管口表 编号名称公称直径(mm) 编号名称公称直径(mm) a1-2 液位计15 e 安全阀32 b 进料管50 f 放空管25 c 出料管32 g 人孔500 d 压力表15 h 排污管50 工艺条件图

广东石油化工学院课程设计毕业书 3.计算及说明部分内容(设计内容): 第一部分绪论: (1)设计任务、设计思想、设计特点; (2)主要设计参数的确定及说明。 第二部分材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍式支座的选择确定。 第三部分设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; 第四章主要附件的选用 (1)、液面计选择 (2)、各进出口的选择 (3)、压力表选择 第五章设计小结 附设计参考资料清单 4.绘图部分内容: 总装配图一张(1#) 5.设计期限:1周(2014 年 07 月 07 日—— 2014 年 07月 11 日) 6、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 7.参考资料: [1]《化工过程设备机械基础》,李多民、俞慧敏主编,中国石化大学出版社

10立方米液氨压力容器储罐设计使用说明

目录 第一章工艺设计 1.1任务书*************************************** 1.2储量***************************************** 1.3备的选型及轮廓尺寸*************************** 第二章机械设计 2.1结构设计 2.1.1筒体及封头设计 材料的选择********************************** 筒体壁厚的设计计算************************** 封头壁厚的设计计算*************************** 2.1.2接管及接管法兰设计 接管尺寸选择********************************* 管口表及连接标准***************************** 接管法兰的选择 ***************************** 紧固件的选择 ******************************* 2.1.3人孔的结构设计 密封面的选择 ****************************** 人孔的设计******************************** 2.1.4 核算开孔补强**************************** 2.1.5支座的设计

支座的选择********************************** 支座的位置********************************** 2.1.6液面计及安全阀选择 2.1.7总体布局 2.1.8焊接接头设计 2.2强度校核 小结

液氨储罐设计

第 一章 绪论 1. 1设计任务 设计一液氨贮罐。工艺条件:温度为40℃,氨饱和蒸气压MPa 55.1,容积为20m3, 使用年限15年。 1.2设计要求及成果 1. 确定容器材质; 2. 确定罐体形状及名义厚度; 3. 确定封头形状及名义厚度; 4. 确定支座,人孔及接管,以及开孔补强情况 5. 编制设计说明书以及绘制设备装配图1张(A1)。 1.3技术要求 (一)本设备按GBl50-1998《钢制压力容器》进行制造、试验和验收 (二)焊接材料,对接焊接接头型式及尺寸可按GB985-80中规定(设计焊接接头系数0.1=φ) (三)焊接采用电弧焊,焊条型号为E4303 (四)壳体焊缝应进行无损探伤检查,探伤长度为100% 第二章 设计参数确定 2.1 设计温度 题目中给出设计温度取40C O 2.2 设计压力 在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。通过查阅资料可知包头最高气温为40.4℃,通过查表可知,在40℃ 时液氨的饱和蒸汽压(绝对压力)为1.55MPa ,密度为580kg/m3,而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 此液氨储罐采用安全法,依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力w P 的1.105.1-倍,取设计压力w P P 05.1=(已知MPa P w 55.1=表压)

所以 MPa P P w 6.105.1==。 2.3 腐蚀余量 查《腐蚀数据手册》16MnR 耐氨腐蚀,其y mm /1.0<λ,若设计寿命为15年,则 m m 5.11.0152=?==αλC 2.4焊缝系数 该容器属中压贮存容器,技《压力容器安全技术监察规程》规定,氨属中度 毒性介质,容器筒体的纵向焊接接头和封头基本上都采用双面焊或相当于双面焊的全焊透的焊接接头,所以φ取0.1或85.0常见。φ得选取按下表选择: 表2.1 焊接接头系数 序号 焊接接头结构 焊接接头系数φ 全部无损探伤 局部无损探伤 1 双面焊或相当于双面焊的全焊透对接 焊接接头 1.0 0.85 2 单面焊的对接焊接接头,在焊接过程中沿焊缝根部全长有紧贴基本金属的 垫板 0.9 0.85 此储罐采用100%无损探伤,故0.1=φ 2.5 容器直径 考虑到压制封头胎具的规格及标准件配套选用的需要,容器的筒体和封头的直径都有规定。此储罐设计的公称直径(内径)选择m m 2400=i D 。 表2.2 公称直径i D 公称直径i D 300、400、500、600、700、800、900、1000、1200、1400、1600、1800、2000、 2200、2400、2600、2800、3000、3200、3400、3600、3800、4000 2.6 许用应力 40o C 温度时,16MnR 钢材的许用应力表,知[]MPa t 0.170=σ

20立方米液氨储罐设计说明书

目录 课程设计任务书2 20m3液氨储罐设计2课程设计内容3液氨物化性质及介绍3 1. 设备的工艺计算3 1.1 设计储存量3 1.2 设备的选型的轮廓尺寸的确定3 1.3 设计压力的确定4 1.4 设计温度的确定4 1.5 压力容器类别的确定4 2. 设备的机械设计5 2.1 设计条件5 2.2 结构设计6 2.2.1 材料选择6 2.2.2 筒体和封头结构设计6 2.2.3 法兰的结构设计6 (1)公称压力确定7 (2)法兰类型、密封面形式及垫片材料选择7 (3)法兰尺寸7 2.2.4 人孔、液位计结构设计8

(1)人孔设计8 (2)液位计的选择9 2.2.5 支座结构设计10 (1)筒体和封头壁厚计算10 (2)支座结构尺寸确定12 2.2.6 焊接接头设计及焊接材料的选取14 (1)焊接接头的设计14 (2)焊接材料的选取16 2.3 强度校核16 2.3.1 计算条件16 2.3.2 内压圆筒校核17 2.3.3 封头计算18 2.3.4 鞍座计算20 2.3.5 开孔补强计算21 3. 心得体会22 4. 参考文献22 课程设计任务书 20m3液氨储罐设计 一、课程设计要求: 1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。 3.工程图纸要求计算机绘图。 4.独立完成。 二、原始数据 设计条件表 三、课程设计主要内容 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书

四、学生应交出的设计文件(论文): 1.设计说明书一份; 2.总装配图一张(A1图纸一张) 课程设计内容 液氨物化性质及介绍 液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。 液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。蒸汽与空气混合物爆炸极限为16—25%(最易引燃浓度为17%)氨在20℃水中溶解度34%;25℃时,在无水乙醇中溶解度10%;在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。水溶液呈碱性。液态氨将侵蚀某些塑料制品,橡胶和涂层。遇热、明火,难以点燃而危险性极低,但氨和空气混合物达到上述浓度范围遇火和燃烧或爆炸,如有油类或其它可燃物存在则危险性极高。

10立方米液氨压力容器储罐设计说明书

目录 第一章工艺设计 任务书*************************************** 储量***************************************** 备的选型及轮廓尺寸*************************** 第二章机械设计 结构设计 2.1.1筒体及封头设计 材料的选择********************************** 筒体壁厚的设计计算************************** 封头壁厚的设计计算*************************** 2.1.2接管及接管法兰设计 接管尺寸选择********************************* 管口表及连接标准***************************** 接管法兰的选择 ***************************** 紧固件的选择 ******************************* 2.1.3人孔的结构设计 密封面的选择 ****************************** 人孔的设计******************************** 2.1.4 核算开孔补强**************************** 2.1.5支座的设计

支座的选择********************************** 支座的位置********************************** 2.1.6液面计及安全阀选择 2.1.7总体布局 2.1.8焊接接头设计 强度校核 小结

相关主题
文本预览
相关文档 最新文档