当前位置:文档之家› 熟练绘制应力-应变曲线图

熟练绘制应力-应变曲线图

熟练绘制应力-应变曲线图
熟练绘制应力-应变曲线图

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

ABAQUS真实应力和真实应变定义塑性(最新整理)

在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: , 00l A lA = 当前面积与原始面积的关系为: 0 l A A l =将A 的定义代入到真实应力的定义式中,得到: 00 ()nom F F l l A A l l σσ===其中 也可以写为。0l l 1nom ε+ 这样就给出了真实应力和名义应力、名义应变之间的关系: (1) nom nom σσε=+真实应变和名义应变间的关系很少用到,名义应变推导如下:0001nom l l l l l ε-= =-上式各加1,然后求自然对数,就得到了二者的关系: ln(1) nom εε=+ ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: /pl t el t E εεεεσ=-=-其中是真实塑性应变,是总体真实应变,是真实弹性应变。 pl εt εel ε

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

真实应力-真实应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线 (3)求出材料常数B值和n值,根据B值作出真实应力-真实应变近似理论硬化

曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i ∑△V ︱i 2 = ka 2+b 2∑x i x i +∑y i y i +2ab ∑x i -2a ∑y i -2b ∑x i y i

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

真实应力—应变曲线拉伸实验

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力 —应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 000 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0 εσε+=+== A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。 2、修正真实应力—应变曲线 在拉伸实验中,当产生缩颈后,颈部应力状态由单向变为三向拉应力状态,产生形状硬化,使应力发生变化。为此,必须修正真实应力—应变曲线。 修正公式如下:

材料力学习题01拉压剪切

拉伸与压缩 一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。) 1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。 A .两者轴力相同应力相同 B .两者应变和仲长量不同 C .两者变形相同 D .两者强度相同 E .两者刚度不同 2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。 A .其轴力不变 B .其应力将是原来的1/4 C .其强度将是原来的4倍 D .其伸长量将是原来的1/4 E .其抗拉强度将是原来的4倍 3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。 A .εεμ1= B .εεμ1-= C .ε ε μ1= D .ε εμ1 - = E .常数时, =≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。 A .比例极限提高 B .屈服极限提高 C .弹性模量降低 D .延伸率提高 E .塑性变形能力降低 5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。 A .曲线cbao B .曲线cbf (bf ∥oa ) C .直线ce (ce ∥oa ) D .直线cd (cd ∥o σ轴)

6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。 A .弹性应变是of B .弹性应变是oe C .弹性应变是ed D .塑性应变是of E .塑性应变是oe 7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( ); (2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。 8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。 A .正方形截面最省料 B .圆形截面最省料 C .空心圆截面最省料 D .三者用料相同 9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向 D .作用线与杆轴线重合 E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。 A .轴向伸长横向缩短 B .横向伸长轴向缩短 C .轴向伸长横向伸长 D .横向线应变与轴向线应变正负号相反 E .横向线应变ε'与轴向线应变ε的关系是μεε=' 11.低碳钢(等塑性金属材料)在拉伸与压缩时力学性能指标相同的是( )。 A .比例极限 B .弹性极限 C .屈服极限 D .强度极限 E .弹性模量 12.材料安全正常地工作时容许承受的最大应力值是( )。 A .p σ B .σ C .b σ D .][σ 13.拉杆的危险截面一定是全杆中( )的横截面。 A .轴力最大 B .面积最小 C .应力σ最大 D .位移最大 E .应变ε最大 14.若正方形横截面的轴向拉杆容许应力][σ=100 MPa ,杆两端的轴向拉力N =2.5 kN ,根据强度条件,拉杆横截面的边长至少为 ( )。 A . m 2500100 B .m 1005.2 C .m 100 2500 D .mm 5 15.长度、横截面和轴向拉力相同的钢杆与铝杆的关系是两者的( )。 A .内力相同 B .应力相同 C. 容许荷载相同 D .轴向线应变相同 E .轴向伸长量相同 16.长度和轴向拉力相同的钢拉杆①和木拉杆②,如果产生相同的伸长量,那么两者 之间的关系是( )。 A .21εε= B .1σ>2σ C .1σ=2σ D .1A >2A E .1A <2A (其中1ε、1σ、1A 为钢杆的应变、应力和横截面面积,2ε、2σ、2A 为木杆的应变、应力和横截面面积。)

真应力-真应变曲线

真应力-真应变曲线(true stress-logarithmic strain curves) 表征塑性变形抗力随变形程度增加而变化的图形,又称硬化曲线。它定量地描述了塑性变形过程中加工硬化增长的趋势,是金属塑性加工中计算变形力和分析变形体应力-应变分布情况的基本力学性能数据。 硬化曲线的纵坐标为真应力,横坐标为真应变。试验时某瞬间载荷与该瞬间试件承力面积之比称真应力(或真抗力,即真实塑性变形抗力)。硬化曲线可用拉伸、扭转或压缩的方法来确定,其中应用较广的为拉伸法。根据表示变形程度的公式不同,用拉伸图计算所得硬化曲线有3种,如图1所示。第1种是S-δ曲线,表示真应力与延伸率之间的关系。第2种是S-φ曲线,是真应力与断面收缩率的关系曲线。第3种是S-ε曲线,是真应力与对数变形之间的关系曲线。由于φ与ε的变化范围为0~1,所以第2、3种硬化曲线可直观地看出变形程度的大小,使用时较为方便。 S-δ曲线的制作先作圆柱试件拉伸试验获取拉伸图(拉力P与试件绝对仲长Δl的关系图),如图2a所示。然后按下述方法计算出曲线上各点的真应力S和对应的断面收缩率φ,根据所获数据绘制S-φ曲线,如图2b所示。

按式(4)与(6)可求出试件出现细颈前的那段曲线,因为该曲线的变形沿试件长度上是均匀的,符合体积不变条件。 当拉伸力达最大时,变形迅速集中并形成细颈,细颈部位受三向拉仲应力作用而逐渐变小,最终发生破断。由于形成细颈后变形发展得极不均匀,每瞬间参加变形的体积不知,故不能用公式计算这个阶段中曲线上任意点处的应力与应变;实用中只能按细颈中断口部位面积F f及断裂时的拉伸力P f来算出断点处的真实断裂应力S K及真实断裂应变φK,然后将该点与出现细颈前所算出的点,用光滑曲线联结即可组成一条完整的曲线(图2b)。

真实应力应变与工程应力应变—区别、换算

真实应力应变与工程应力应变 工程应力和真实应力有什么区别? 首先请看这张图: 这里面的Stress和Strain就是指的工程应力和工程应变,满足这个关系:

但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信息,比如让人误认为过了M点金属材料本身的性能会下降。但其实我们可以看到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。 因而真实应力被定义了出来: 这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的吧?)前面的例子中是颈缩区截面积。 然后就可以根据某些数学方法推出真实应变:

但具体怎么推的别问我,因为我也不知道…… 但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0然后可以得到: 和 但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。 下面这张图是真实应力应变和工程应力引力应变的对照图: 其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。 3.6 真实应力-应变曲线

单向均匀拉伸或压缩实验是反映材料力学行为的基本实验。 流动应力(又称真实应力)——数值上等于试样瞬间横断面上的实际应力,它是金属塑性加工变形抗力的指标。 一.基于拉伸实验确定真实应力-应变曲线 1.标称应力-应变曲线 室温下的静力拉伸实验是在万能材料试验机上以小于的应变速率下进行的。标称应力-应变曲线不能真实地发映材料在塑性变形阶段的力学特征。 2.真实应力-应变曲线 A.真实应力-应变曲线分类 分三类: Ⅰ.Y -ε; Ⅱ.Y -ψ; Ⅲ.Y -∈; B.第三类真实应力-应变曲线的确定 方法步骤如下: Ⅰ.求出屈服点σs(一般略去弹性变形) 式中P s——材料开始屈服时的载荷,由实验机载荷刻度盘上读出; A o——试样原始横截面面积。 Ⅱ.找出均匀塑性变形阶段各瞬间的真实应力Y和对数应变Ε

应力应变曲线

应力应变曲线 stress-strain curve 在工程中,应力和应变是按下式计算的: 应力(工程应力或名义应力)ζ=P/A。,应变(工程应变或名义应变)ε=(L-L。)/L。 式中,P为载荷;A。为试样的原始截面积;L。为试样的原始标距长度;L 为试样变形后的长度。 这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。从此曲线上,可以看出低碳钢的变形过程有如下特点:当应力低于ζe 时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,ζe 为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。 当应力超过ζe 后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。ζs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。 当应力超过ζs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到ζb时试样的均匀变形阶段即告终止,此最大应力ζb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。 在ζb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到ζk时试样断裂。ζk为材料的条件断裂强度,它表示材料对塑性的极限抗力。 上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer)编的图集。这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以

3-5 应力应变曲线

第17章 材料本构关系 本章内容:本构关系constitutive relations (应 力应变关系stress-strain relations )的建立 本章重点:增量理论 单向拉伸(或压缩)→屈服应力s σ 继续变形→材料强化→流动应力(真实应力) 真实应力应变曲线true stress strain curve 可以由实验建立 17.1 拉伸试验曲线 单 向 拉 伸 uniaxial tensile : 2 323211 ,0,εεεσσσ-====存在 等效应力1σσ= 1εε=, 因此εσεσ-?-曲线一致

17.1.1 拉伸图和条件应力——应变曲线 0 0A F = σ l l ?=ε p.比例极限 e.弹性极限 c.屈服极限 b.抗拉强度(颈缩点) b s σσσ,2.0,概念与定义 拉伸失稳tensile instability 拉伸缩颈 tensile necking 17.1.2真实应力——应变曲线true stress strain curve 真实应力()εσε +===+110A F A F S , 真实应变()ε+∈=1ln 颈缩后断裂点:K K K A F S = K K A A 0ln =∈ 修正correction :ρ8/ 1S K K S S +=(颈缩处为三向

应力) 17.1.3 失稳点instability 特性(S :真实应力) () b b d dS S =∈ A A l l SA F 00 ln ln ......=∈== ∈ =∴e A A 0 因此 ∈=e A S F 0 由于失稳点 F 有极大值, dF=0( ) 00=∈-?∈ -∈ -d Se dS e A 化简得dS-Sd ∈=0 17.2 压缩试验compressive test 曲线 拉伸时∈达不到很大(一般∈≤1.0),但压缩时存在摩擦必须解决 方法:1) 直接消除摩擦的圆柱体压缩法 试样D 0=20~30mm ,D 0/H 0=1,压缩

真实应力—应变曲线拉伸实验

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力 —应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 00 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0 εσε+=+= = A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。 2、修正真实应力—应变曲线 在拉伸实验中,当产生缩颈后,颈部应力状态由单向变为三向拉应力状态,产生形状硬化,使应力发生变化。为此,必须修正真实应力—应变曲线。 修正公式如下:

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

钢筋之应力-应变曲线

二第一章绪论 (1) 1.1 前言................................................................................................... .1 1.2 研究动机.. (2) 1.3 研究目的 (3) 第二章旧桥柱试体.................................................................................4 2.1 桥梁设计规范 (4) 2.1.1 公路桥梁工程设计规范.............................................................4 2.1.2 公路桥梁耐震设计规范.............................................................5 2.2 圆形旧桥柱试体................................................................................7 2.2.1 试体设计.. (7) 2.2.2 BMCL100试验观察.................................................................9 2.2.3 BMCL50试验观察.................................................................10 2.2.4 BMC4试验观察.....................................................................11 2.2.5 圆形旧桥柱试体破坏状况比较.....................................14 2.2.6 圆形旧桥柱试体侧力-位移图比较................................15 2.2.7

如何用Origin画应力应变曲线

如何用Origin画应力应变曲线 edited by: jsphnee,2011-11-22 本文是作者从小白开始一步一步学着用excel和origin作应力应变曲线的经验分享,只适于初学者,有不对的地方还请高手多多指教。在此也一并感谢网上提供origin及excel相关技巧解答的同志们。 一、数据导出 1.用Access打开数据库,并将OriginalData导出到excel中(97-03版,否则ori打不 开); 2.打开导出的OriginalData.xls文件和试验报告文件(实验结果中另一个以日期命名的 excel文件,Tip:为方便统一打开与存放,可将试验报告文件复制到OriginalData的新工作表sheet中,可命名为report); 3.保存,并更改文件名,(Tip:每次更改后都点一下保存,以免程序卡死时丢失数 据。) 4.新建以试样编号命名的sheet,有几组试样就建几个sheet;

二、数据处理 1.筛选各个试样的拉伸数据 在OriginalData中,选中TestNo列,再点数据工具栏中的筛选。 点击列标题旁的下拉箭头,出现下面左图中的对话框。 取消全选,依次选中一个TestNo后确定,便能筛选出各次拉伸试验的数据,如上图中右边的对话框所示。(一个试样对应一个TestNo)

(虽然一组试样对应多个TestNo,但为后续处理的方便,个人认为此处还是一个一个筛选比较好。) 2、复制LoadValue及ExtendValue值 选中LoadValue及ExtendValue列,并将其复制到相应试验组的sheet中。 然后按照相同的步骤依次筛选该组的各个拉伸试样的数据拷贝到该sheet中。如下图:

材料力学性能考试题及答案要点

07 秋材料力学性能 一、填空:(每空1分,总分25分 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。 11.诱发材料脆断的三大因素分别是、和

。 二、选择:(每题1分,总分15分 (1. 下列哪项不是陶瓷材料的优点 a耐高温 b 耐腐蚀 c 耐磨损 d塑性好 (2. 对于脆性材料,其抗压强度一般比抗拉强度 a高b低c 相等d 不确定 (3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a 150HBW10/3000/30 b 150HRA3000/l0/ 30 c 150HRC30/3000/10 d 150HBSl0/3000/30 (4.对同一种材料,δ5比δ10 a 大 b 小 c 相同 d 不确定 (5.下列哪种材料用显微硬度方法测定其硬度。 a 淬火钢件 b 灰铸铁铸件 c 退货态下的软钢 d 陶瓷 (6.下列哪种材料适合作为机床床身材料

a 45钢 b 40Cr钢 c 35CrMo钢 d 灰铸铁(7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。 a 撕开型 b 张开型 c 滑开型 d 复合型(8. 下列哪副图是金属材料沿晶断裂的典型断口形貌 a b c d (9.下列哪种材料中的弹性模量最高 a 氧化铝 b 钢 c 铝 d 铜 (10.韧性材料在什么样的条件下可能变成脆性材料

材料力学性能

材料力学性能

填空 1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。 1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。 1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。 1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。 1-5、滑移面和滑移方向的组合称为“滑移系”。 1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。 1-7、应变硬化是“位错增殖”、“运动受阻”所致。 1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。 1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。 1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。 1-11、韧度是度量材料韧性的力学指标,又分为

4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。 4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。 4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。 4-7、断裂J判据:JI≥JIC 5-1、变动应力可分为“规则周期变动应力”和“无规则随机变动应力”两种。 5-2、规则周期变动应力也称循环应力,循环应力的波形有“正弦波”、“矩形波”和“三角形波”。 5-4、典型疲劳断口具有三个形貌不同的区域,分别为“疲劳源”、“疲劳区”和“瞬断区”。 5-6、疲劳断裂应力判据:对称应力循环下:σ≥σ-1 。非对称应力循环下:σ≥σr 5-7、疲劳过程是由“裂纹萌生”、“亚稳扩展”及最后“失稳扩展”所组成的。 5-8、宏观疲劳裂纹是由微观裂纹的“形成”、“长大”及“连接”而成的。

相关主题
文本预览
相关文档 最新文档