当前位置:文档之家› MAX1771及其在DC-DC转换器中的应用

MAX1771及其在DC-DC转换器中的应用

MAX1771及其在DC-DC转换器中的应用
MAX1771及其在DC-DC转换器中的应用

MAX1771及其在DC

DC--DC转换器中的应用

Maxim公司北京办事处徐继红

MAX1771是MAXIM公司出品的一种DC-DC转换器控制芯片可用于多种不同形式的DC-DC转换电路它采用BiCMOS工艺制造因此兼有低功耗与高开关频率的特点正常工

作电流不超过110A进入停机状态时功耗可降低至5A以内开关频率可高达300kHz

因此可采用体积很小的外部功率元件整个DC-DC转换器尺寸可以做得非常小另外器件内部集成了多种DC-DC转换器所需的功能单元外围电路非常简单可以很容易地用它设计出满足不同需要的DC-DC转换器

1MAX1771的内部结构

如图1所示MAX1771的内部结构可划分为以下几个功能单元限流型PFM控制单元内部反馈网络低电压启动电路停机控制电路等下面分别对其结构及工作原理作一简要论述

图1. MAX1771结构框图

11限流型 PFM控制单元

包括U1U2U3U4它是DC-DC控制器的中心环节完成对输出电压及电感电流的检测并根据检测结果对外部功率开关进行控制以达到稳定输出电压的目的其中U1为

1.5V基准电压U2为误差比较器二者相配合完成对输出电压的检测U3为电流检测放大器用来检测电感受电流U4为PFM控制逻辑它根据电压电流检测结果对外部功

率开关进行控制它还具有最小关断时间最大导通时间控制以便使DC-DC转换器安全可靠地工作由图可见当开关处于关断状态时控制电路只在以下两个条件同时满足时才打开外部功率开关对电感充电最小关断时间到达采样点电压低于 1.5V当开关处

于导通状态时下面两种情况之一的出现则使开关关断最大导通时间到达电感电流

达到预定门限

12内部反馈网络

由R1R2N及方式比较器U5组成当将FB引脚接至地电平时方式比较器将电路切换至内部采样方式采样电压由R1R2分压获得R1R2的比值决定了输出为+12V当FB处于高于50mV的电平时则关闭内部采样由外部采样电路取得反馈电压以便获得不同的输出电压

13低电压启动电路

由低电压振荡器U6电压比较器U7及切换开关构成用于在电源电压较低的情况下使DC-DC转换器启动工作低压振荡器具有固定的50%占空比当V+端电压高于2.5V后则切换至PFM控制方式

14停机控制电路

当不需要DC-DC输出时该电路可使控制器处于功耗极低的停机方式在该方式下耗电低于5A外部开关处于关断状态通过给控制引脚SHDN施加一个电平信号就可使电路进入低功耗停机方式该引脚输入低电平V

IL0.4V时处于工作状态当输入高电平V IH 1.6V时则进入停机方式

2MAX1771的典型应用电路

MAX1771的典型应用电路如图2所示该电路为升压结构可以由2V至12V的输入电压得到一个稳定的12V输出电压该电路能否正常工作以及其转换效率输出纹波等性能与外部元件的选择有很大关系下面简单讨论一下几个主要功率元件的选择问题

图2. MAX1771典型应用电路由5V输入升压至12V

2.1 电感的选择

电感L1应选用直流电阻较低饱和电流较大的功率电感这种电感一般为缠绕在铁氧

体磁芯上的线圈当流经电感的电流较大时由于磁芯的饱和将使实际电感值下降所以应选用饱和电流较大大于实际流过电感的峰值电流的电感一般来讲20%的轻度饱和电感量下降20%是可以接受的

电感值一般可在10H至300H之间选择过小的电感量将会使电感电流不连续造成电流输出能力降低输出纹波增大并有可能在限流比较器关断功率开关之前使电感电流

增加到很大值而造成DC-DC转换器的损坏电感值过大则会造成瞬间响应变差并增加DC-DC

转换器体积电感值的选取应当以实际输入输出条件及对输出纹波瞬态相应等的要求为依

据下面就以图2为例说明如何选择电感参数

图2电路的输入输出条件为

输入电压 V IN =5V

输出电压 V OUT=12V

输出电流 I OUT=500mA

最大工作频率F max=300kHz

另外要求在额定输出电流时电感电流脉动的峰峰值I=0.5A

电感峰值电流的计算步骤如下

A 计算占空比D=V

OUT-V IN/V OUT=58.3%

B 计算平均电感电流I

Lavb=I OUT/1-D=1.2A

C 计算电感峰值电流I LP= I Lavb +I/2=1.45A

D 计算电感值L V

IN D/(IXF max)=19.4H

则可以选取饱和电流不低于 1.45A电感值20H左右的电感例如Coilcraft公司的

DO3308P-223或DS3316P-223型就可使用

2.2 功率开关的选择

功率开关须选用功率MOSFET其主要参数有开启电压V TH漏-源击穿电压V(BR)DSS沟道导通电阻R DS漏极电流I D等一般应选用开启电压较低导通电阻较小的MOSFET例如

International Rectifier公司出品的可工作于逻辑电平的HEXFET Power MOSFET系列产品当其被关断时所承受有最大漏源电压为V DSP=V OUT V BR DSS至少应高于此值一般还应考虑留有一

定的安全裕量另外一个需要考虑的参数就是漏极电流I D该值一般应高于电感峰值电流I LP 至于沟道电阻R DS及开启电压V TH在条件允许的情况下应选用尽量低的值

2.3 续流二极管D的选择

为提高转换效率该器件应选用正向导通压降较低的肖特基二极管其主要参数为最大反

向电压V R及最大正向电流I D当功率开关导通时D所承受的最大反向电压为

V R=V OUT

功率开关关断后流经电感的峰值电流I LP全部流过D成为续流二极管的最大峰值电流

I DP=I LP

2.4 电流检测电阻R SENSE的选择

器件内部的电流检测比较器通过检测R SENSE上的电压降并将其与内部0.1V的参考电压进行比较以限制流过电感的峰值电流由前面的计算电感峰值电流为

I LP=1.45A

故应选取R SENSE=0.1V/1.45A=0.069

3用MAX1771构杨其它类型的DC-DC转换器

用MAX1771不仅可以构成升压型DC-DC转换器还可以根据实际需要构成其它类型的DC-DC 转换器例如SEPIC flyback cuk等不同应用除主回路接法不同外控制回路基本相同下面分别进行讨论

3.1 可完成升/降压转换的SEPIC

当所需电压正好落在输入电压范围之间时就无法采用单纯的升压或降压转换得到这时可以考虑采用如图3.所示的可完成升/降压转换的SEPIC电路该电路转换效率比图2电路稍低可接近于80%左右原因是主回路上的元件数增加了但它能够在输入电压变化范围很大的情

况下以较高的效率转换得到一个稳定的输出例如当需要由4节电池的输入得到5V输出的情况下就可考虑采用此种电路

图3 可完成升/降压转换的SEPIC转换电路

3.2 flyback电路

如图4. 所示这种电路的优点是可以保持占空比在最佳范围内的情况下可通过改变高频变压器的原副边绕组的匝数比使得DC-DC转换器工作在最佳状态下另外还可以通过在高频变压器上增加绕组以获得多组输出电压

3.3 cuk电路

如图5. 所示这种电路可以由正电源得到一个负电源而且其纹波可以做得非常小若

将两只储能电感L1和L2绕在同一磁芯上适当选择其匝比耦合系数及其绕制方向就能使输

出的纹波电流被完全抵消做到零纹波输出

3.4 由-48V输入得到+5V电源的电路

如图6. 所示该电路可由高达-48V的负电源得到一个+5V电源电路中的Q2D2R5R6为

MAX1771的V+端提供了一个相对于地的正电源约为9.4V R2R3R4及Q3为反馈网络R7

R9C8D3构成一个软启动电路

图4 用MAX1771控制的flyback DC-DC变换电路

图5 由MAX1771构成的cuk型DC-DC电路

图6 由-48V输入获得+5V电源的电路

参考文献

(1) New Releases Data Book. MAXIM, 1995

(2) Coilcraft Inductors Transformers Filters

(3) 叶治政叶靖国开关稳压电源高等教育出版社

(4) 何希才新型开关电源及其应用人民邮电出版社

基于单片机的数模转换设计

目录 1、系统方案.......................................... - 3 - 1.1、方案比较与选择............................... - 3 - 1.1.1、单片机选择与论证........................ - 3 - 1.1.2、显示器件选择与论证...................... - 3 - 1.1.3、键盘形式选择与论证...................... - 4 - 1.1.4排阻形式选择与论证........................ - 4 - 2理论分析与计算 ..................................... - 8 - 2.1、D/A转换器的主要技术指标......................... - 8 - 1.分辨率......................................... - 8 - 2.转换精度....................................... - 8 - 3.输出电压(或电流)的建立时间(转换速度) ...... - 8 - 4. 温度系数 2.2 数模转换器 2.2.1权电阻网络DAC的原理分析..................... - 9 - 3、电路与程序设计.................................. - 11 - 3.1.1、总体框图设计........................... - 11 - 3.1.2、显示电路............................... - 11 - 3.1.3、权电路................................. - 12 - 3.1.4、按键电路............................... - 13 - 3.1.5、驱动电路............................... - 14 -

∑-△模数转换器的原理及应用

∑-△模数转换器的原理及应用 张中平 (东南大学微电子机械系统教育部重点实验室,南京210096) 摘要:∑-△模数转换器由于造价低、精度高、性能稳定及使用方便等特点,越来越广泛地使用在一些高精度仪器仪表和测量设备中,介绍该转换器的基本原理,并重点举例介绍AD7708芯片的应用,该芯片是16 bit模数转换器,与24 bit AD7718引脚相同,可直接升级。 关键词:模数转换器;寄存器;串行口 我们通常使用的模数转换器(ADC)大多为积分型和逐次逼近型,积分型转换效果不够好,转换过程中带来的误差比较大;逐次逼近型转换效果较好但制作成本较高,尤其是高位数转换,转换位数越多,精度越高,制作成本就越高。而∑-△ADC可以以相对逐次逼近型简单的电路结构,而得到低成本,高位数及高精度的转换效果∑-△ADC大多设计为16或24 bit转换精度。近几年来,在相关的高精度仪器制作领域该转换器得到了越来越广泛的应用[1]。 1 ∑-△ADC的基本工作原理简介 ∑-△模数转换器的工作原理简单的讲,就是将模数转换过后的数字量再做一次窄带低通滤波处理。当模拟量进入转换器后,先在调制器中做求积处理,并将模拟量转为数字量,在这个过程中会产生一定的量化噪声,这种噪声将影响到输出结果,因此,采用将转换过的数字量以较低的频率一位一位地传送到输出端,同时在这之间加一级低通滤波器的方法,就可将量化噪声过滤掉,从而得到一组精确的数字量[1,2]。 2 AD7708/AD7718,∑-△ADC的应用 AD7708/AD7718是美国ADI公司若干种∑ΔADC中的一种。其中AD7708为16 bit转换精度,AD7718为24 bit转换精度,同为28条引脚,而且相同引脚功能相同,可以互换。为方便起见,下面只介绍其中一种,也是我们工作中用过的AD7708。 2.1AD7708的工作原理 同其它智能化器件一样,AD7708也可以用软件来调节其所具有的功能,即通过微控制器MCU编程向AD7708的相应寄存器填写适当的参数。AD7708芯片中共有11个寄存器, 当模式寄存器(Mode Regis-ter)的最高位后,其工作方框图[2]如图1所示。

数模及模数转换器习题解答

数模及模数转换器习题解答

————————————————————————————————作者: ————————————————————————————————日期: ?

自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A /D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D转换器两个最重要的指标是分辨率和转换速度。 6.8位D /A 转换器当输入数字量只有最低位为1时,输出电压为0.02V ,若输入数字量只有最高位为1时,则输出电压为 V 。 A.0.039 B .2.56 C .1.27 D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D.参考电压 8.图T7.8所示R-2R网络型D/A 转换器的转换公式为 。 R R R I V REF 2R 2R 2R 2R 2R S 3 S 2 S 1 S 0 D 3 D 2 D 1 D 0 R F =R A + -v O i ∑ 图T 7.8 A .∑ =?- =3 3 REF o 22 i i i D V v ??B .∑=?- =3 4 REF o 2 232i i i D V v ??C .∑=?- =3 4 REF o 2 2 i i i D V v ??D .∑=?= 3 4 REF o 2 2 i i i D V v 9.D/A 转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R -2R 网络型、权电流型等D/A 转换器的特点,结合制造工

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

数模及模数转换器习题解答

数模及模数转换器习题 解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

自我检测题 1.就实质而言,D/A 转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D 6.8位D/A 1时,输出电压为,若输入数字量只有最高位为1时,则输出电压为 V 。 A . B .2.56 C . D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D .参考电压 8.图所示R-2R 网络型D/A 转换器的转换公式为 。 V REF v O 图 A .∑=?- =3 3 REF o 2 2 i i i D V v B .∑=?- =3 4 REF o 2 232i i i D V v D .∑=?= 3 4 REF o 2 2i i i D V v 9.D/A 转换器可能存在哪几种转换误差试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A 转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。

基本模数转换器(ADC)的设计

《数字逻辑电路分析与设计》课程 项目 实施报告 题目(A):基本模数转换器(ADC)的设计 组号: 8 任课教师:。。。 组长:。。。。 成员:。。。。 成员:。。。 成员:。。。 成员:。。。 联系方式:。。。 二零一四年十月二十五日

基本模数转换器(ADC )的设计 一.设计要求 (1) 设计一个每单次按下按钮,就能够实现数模转换的电路,并用LED 显示对应输入模拟电压(0—3V )的等级,当输入电压>3V 后,有“溢出”显示。 (2) 功能模块如图: (3) 图中的“模数转换”为本教材第六章的并行ADC 转换电路。在此基础上自行设计按键、LED 显示、模拟电压调节等模块,实现单次模数转换的功能。 模拟电压 调节模数转换LED 显示 按键 5V 电源

自行设计溢出标记的显示。 (4) 本电路的测试方法是,通过一个电位器对电源电压连续分压,作为ADC 的输入电压,每按下一次按键时,ADC 电路进行一次ADC 转换,并将转换的结果用数码管显示出来。注意不要求显示实际的电压值,仅显示模拟电压的量化等级。 二.电路原理图 LED 显示

三.设计思路 根据题目要求,我们的电路本应分五个个模块,但实验室缺少8-3编码器不能实现转化,所以只能有四个一下模块:模拟电压调节;比较电路;记忆模块;LED显示。模拟电压的调节可以用划变电阻来调节电压,理想中数模转化模块应由比较器,D触发器和编码器来实现,在我们的实际电路中我们只用了前两者。最终我们用LED的亮灭来显示结果。 具体原理叙述如下: 在比较电压时,将参考电压V ref经电阻分压器产生一组不同的量化电平V i:v1=1/16V ref,v2=3/16V ref,v3=5/16V ref ,v4=7/16V ref ,v5=9/16V ref ,v6=11/16V ref ,v7=13/16V ref ,v8=15/16V ref ,这些量化电平分别送到相应lm339比较器的反相输入端,而输入电压V同时作用于lm339比较器的同相输入端。 当V大于V i时,第i个比较器输出状态1,即高电平;反之,比较器输出状态0,即低电平。比较器的输出加到D触发器的输入端,在时钟脉冲CP的作用下,把比较器的输出存入触发器,得到稳定的状态输出Q,再由LED的亮暗状态显示,高电平则亮,低电平就暗。 当V≥15/16 V ref的时候,即V超过该转换器的最大允许的输入电压的时候产生“溢出”,我们使用了一个红色的报警LED亮作为显示。 此外,鉴于会因为按键时间的长短不一而造成的脉冲不整齐的问题,需要

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

模数转换器ADC0809应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当O E端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道

如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接+5V电压。 4.电路原理图 5.程序设计: (1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。 (2).进行A/D转换之前,要启动转换的方法: ABC=110选择第三通道 ST=0,ST=1,ST=0产生启动转换的正脉冲信号 . (3). 关于0809的计算: ad0809是根据逐位逼近的方法产生数据的。。 参考电压为0-5V的话。以0809八位255的转换精度每一位的电压值为(5-0)/255≈0. 0196V 设输入电压为X则: X-27*0.0196>=0则AD7=1否则AD7=0。 X-26*0.0196>=0则AD6=1否则AD6=0。 X-20*0.0196>=0则AD0=1否则AD0=0。 (27指2的7次方。26-------20同理) 若参考电压为0-1V (1-0)/255≈0.0039V精度自然高了。。可测量范围小了。 1)汇编源程序: CH EQU 30H DPCNT EQU 31H DPBUF EQU 33H GDATA EQU 32H ST BIT P3.0

基于ARM的模数转换器的毕业设计

学生毕业论文(设计)题目基于ARM的模数转换器的设计 姓名 XX 学号 XX 系部 XXXX系 专业 XXXXXXX技术 指导教师 XXXX 职称 XXXX(XXXX) XXXX年 1 月 XX 日 XXXXXXXXXXX教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 1 绪论 (4) 1.1 技术背景 (4) 1.2 选题意义 (4) 2 A/D转换器基本原理 (4) 2.1 A/D转换器的基本原理 (4) 2.2 A/D转换器的基本功能 (5) 2.3 A/D转换模块 (5) 2.3.1 A/D转换模块概述 (5) 2.3.2 A/D转换的技术特性 (5) 2.3.3 A/D转换的功能寄存器框图 (5) 2.3.4 A/D转换初始化 (6) 2.3.5 A/D转换的操作 (6) 3 A/D转换器的设计 (7) 3.1 A/D转换器的工作原理 (7) 3.2 A/D转换电路 (8) 3.3 A/D转换器的原理图 (8) 4 A/D转换仿真结果 (9) 4.1 仿真设备 (9) 4.2 仿真设备简介 (9) 4.2.1 ADS1.2仿真软件 (9) 4.2.2 MagicARM2200 实验箱 (9) 4.3 仿真步骤 (12) 4.4 ADS1.2软件仿真 (12) 4.4.1 仿真软件 (12) 4.4.2 仿真硬件 (14) 4.5 仿真结果 (15) 结束语 (16) 致谢 (16) 参考文献 (16) 附录参考源程序 (16)

基于ARM的模数转换器的设计 XXXXXXX技术专业学生 XX 指导老师 XXXX 摘要:随着数字技术,特别是信息技术的飞速发展及普及,在现代控制通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别,处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析,处理后输出的数字量也往往需要将其转换为相应模拟信号才能执行机构所接受。这样就需要一种能在模拟信号与数字信号之间起桥梁作用的电路——模数转换器。A/D转换器已成为信息系统中不可缺少的接口电路。为确保系统处理结果的精度,A/D转换器必须具有足够的转换精度,如果要实现快速变化信号的实时控制与检测,A/D转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D的重要指标。随着集成技术的发展,现已研制和生产出许多单片和混合集成型的A/D转换器,它们具有愈来愈先进的技术指标。本文主要介绍了在ARM系统下,通过对A/D转换模块的设计。学习A/D接口原理及硬件电路,了解ARM的A/D 相关寄存器,利用外部模拟信号编程,实现ARM系统的A/D功能,掌握带有A/D的ARM编程实现A/D 功能的主要方法。 关键词:模数转换器;ADC模块;系统设计;仿真 ARM-based analog-to-digital converter design Student majoring in Computer-controlled technology professional XXX Ting Tutor XXX Abstract:The advent of digital technology, especially the rapid development of the information technology and the popularity of the field of modern control communication and detection, in order to improve system performance, signal processing widespread adoption of digital computer technology. Since the actual object of the system are often some analog quantity (such as temperature, pressure, displacement, image, etc.), make the computer or digital instrument can recognize, process these signals, you must first convert these analog signals into digital signals; while via computer analysis, the digital output after the processing is also often need to be converted to the corresponding analog signals in order to perform bodies accepted. Need a between the analog and digital signals from the bridge circuit - ADC .A / D converter the interface circuit has become indispensable in the information system. To ensure the accuracy of the system processing the results of the A / D converter must have a sufficient accuracy of the conversion, A / D converter is also required to have a higher conversion speed; if you want to achieve the real-time control and detection of rapidly changing signal. Conversion accuracy and conversion speed is an important indicator to measure the A / D. With the development of integration technology, has been developed and produced many monolithic and hybrid integration of A / D converter, they have more and more state-of-the-art technical indicators. This paper describes the ARM system, through the design of the A / D converter module. Learning A / D interface principle and the hardware circuit, ARM's A / D register, the use of external analog signals programmed to achieve a the ARM system of A / D function, master ARM programming with an A / D A / D function method. Keywords: analog-to-digital converter; ADC module; system design;simulation

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

模数转换器综述_ADC

模数转换器ADC_综述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号。这样,就需要一种能将模拟信号转换为数字信号的电路,即模数转换电路(Analog to Digital Converter, ADC)。 模数转换过程 模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x(t)转换成时间上离散的采样信号x(n)。根据Nyquist-Shannon theorem采样定理,采样频率至少要大于或等于模拟信号最高频率的两倍,才可以无失真地重建恢复原始信号x(t)。通常采样脉冲的宽度是很短的,故采样输出是截断的窄脉冲。要将一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。图1即为采样过程。 图1采样过程 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,数字信号最低有效位中的1表示的数量大小,就等于量化单位Q,如图2所示。把量化的数值用二进制代码表示,称为编码,见图3。这个二进制代码就是ADC转换的输出信号。 量化的主要问题就是量化误差。既然模拟电压是连续的,那么它就不一定能被Q整除,因而不可避免的会引入误差,我们把这种误差称为量化误差。在把模拟信号划分为不同的量化等级时,用不同的划分方法可以得到不同的量化误差。 图2采样过程

图3编码过程 要提高ADC的精度,可以通过提高采样间隔Ts和分辨率Q来实现。实际中,输入模拟信号的频率由于存在无限次谐波,因此要在采样前加入抗混叠滤波器,该滤波器与采样频率的关系一般为:f s≈ (3…5)*f filter。图4描述了这一过程。 图4加入抗混叠滤波器 模数转换技术是现实各种模拟信号通向数字世界的桥梁,作为将模拟信号转换成数字信号的模数转换技术主要有以下几种。 分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。下面对各种类型的ADC作简要介绍。 并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高,转换需要很多个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。其原理如图5所示。

模数转换器

设计题目:模数转换器 系别:应用电子与通信技术系 班级:0992221 学生姓名:刘明慧 指导教师:刘洋 成绩: 2012年3月21日

目录 第1章绪论 (1) 1.1选题目的 (1) 1.2 设计要求 (1) 1.3 设计题目 (1) 1.4 设计指标 (1) 第2章电路结构及工作原理 (2) 2.1 整机电路方框图 (2) 2.2 整机原理图 (2) 2.3 工作原理 (3) 第3章单元电路设计及器件选择 (4) 3.1 单元电路设计 (4) 3.1.1电压比较单元 (4) 3.1.2 寄存器单元 (4) 3.1.3 优先编码器单元 (5) 3.2 器件选择 (5) 3.2.1 电压比较器的选择 (5) 3.2.2 寄存器的选择 (6) 3.2.3 优先编码器的选择 (7) 第4章电路的组装与调试 (8) 4.1 电路的组装 (8) 4.2 整机的布线原则 (8) 4.3 电子元器件的插装 (8) 4.3.1 元器件分类 (8) 4.3.2 元器件引脚成型 (8) 4.3.3 插件顺序 (8) 4.4 电子元器件的焊接 (8) 4.5 电路的调试 (9) 4.5.1 故障分析及解决办法 (9) 4.6 实验数据 (9) 4.7 误差分析 (10) 结论 (11) 收获和体会 (12) 致谢 (13) 参考文献 (14) 附录 (15)

课程设计任务书 2012年3月21日

第1章绪论 1.1 选题目的 随着数字电子技术的迅猛发展,各种数字设备几经渗透了国民经济的所有领域。计算机只能对数字信号进行处理,处理的结果还是数字量,然而计算机在用于生产过程自动控制时,其所要处理的变量往往是连续变化的物理量,如温度、压力、速度等都是模拟量,这些非电的模拟量先要经过传感器变成电压或电流等电的模拟量,然后在转化为数字量,才能送入计算机进行处理。这就需要一种能在模拟信号与数字信号之间起桥梁作用的电路,把它们称为模数转换电路。能将模拟信号转换成数字信号的电路,称为模数转换器。 1.2 设计要求 模拟量转换为数字量,模拟量输入数字量输出。 1.3 设计题目 四位并行比较型模数转换器 1.4 设计指标 输入电压模拟量,输出用发光二极管显示相应的变化。

模数转换器(ADC)的几种主要类型

模数转换器(ADC)的几种主要类型 现在的软件无线电、数字图像采集都需要有高速的A/D采样保证有效性和精度,一般的测控系统也希望在精度上有所突破,人类数字化的浪潮推动了A/D转换器不断变革,而A/D转换器是人类实现数字化的先锋。A/D转换器发展了30多年,经历了多次的技术革新,从并行、逐次逼近型、积分型ADC,到近年来新发展起来的∑-Δ型和流水线型ADC,它们各有其优缺点,能满足不同的应用场合的使用。 逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。下面对各种类型的ADC作简要介绍。 1.逐次逼近型 逐次逼近型ADC是应用非常广泛的模/数转换方法,它包括1个比较器、1个数模转换器、1个逐次逼近寄存器(SAR)和1个逻辑控制单元。它是将采样输入信号与已知电压不断进行比较,1个时钟周期完成1位转换,N位转换需要N个时钟周期,转换完成,输出二进制数。这一类型ADC的分辨率和采样速率是相

互矛盾的,分辨率低时采样速率较高,要提高分辨率,采样速率就会受到限制。 优点:分辨率低于12位时,价格较低,采样速率可达1MSPS;与其它ADC相比,功耗相当低。 缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。 2.积分型ADC 积分型ADC又称为双斜率或多斜率ADC,它的应用也比较广泛。它由1个带有输入切换开关的模拟积分器、1个比较器和1个计数单元构成,通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。 积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的D表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。能够抑制高频噪声和固定的低频干扰(如50Hz或60Hz),适合在嘈杂的工业环境中使用。这类ADC主要应用于低速、精密测量等领域,如数字电压表。 优点:分辨率高,可达22位;功耗低、成本低。

模数转换器工作原理、类型及主要技术指标

模数转换器工作原理、类型及主要技术指标 模数转换器(Analog to Digital Converter,简称A/D转换器,或ADC),通常是将模拟信号转变为数字信号。作为模拟电路中重要的元器件,本文将会介绍模数转换器的原理、分类及技术指标等基础知识。 ADC的发展随着电子技术的迅速发展以及计算机在自动检测和自动控制系统中的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号的模拟量后,需经模/数转换变成数字信号才可输入到数字系统中进行处理和控制,因而作为把模拟电量转换成数字量输出的接口电路-A/D转换器是现实世界中模拟信号向数字信号的桥梁,是电子技术发展的关键和瓶所在。 自电子管A/D转换器面世以来,经历了分立半导体、集成电路数据转换器的发展历程。在集成技术中,又发展了模块、混合和单片机集成数据转换器技术。在这一历程中,工艺制作技术都得到了很大改进。单片集成电路的工艺技术主要有双极工艺、CMOS工艺以及双极和CMOS相结合的BiCMOS工艺。模块、混合和单片集成转换器齐头发展,互相发挥优势,互相弥补不足,开发了适用不同应用要求的A/D和D/A转换器。近年来转换器产品已达数千种。 ADC原理D/A转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。 模数转换一般要经过采样、保持和量化、编码这几个步骤。 ADC的主要类型目前有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的-型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。低功耗、高速、高分辨率是新型的ADC的发展方向,同时ADC的这一发展方向将适应现代数字电子技术的发展。 并行比较ADC 并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为闪烁

模数转换器ADC

模数转换器ADC 摘要 模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大小。那么我们应该如何选择模数转换器的类型则是最为重要的,以达到功能性和经济性的良好结合,以下便是我针对数模转换器选择的介绍。 模数转换器的选择 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。 逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。 并行比较型/串并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器。

串并行比较型 Half flash(半快速)型:是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换。 三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。 Σ-Δ调制型 Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。 压频变换型 压频变换型是通过间接转换方式实现模数转换的。将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。 优点缺点分析:

微机原理模数转换器课程设计

XXXX 学院 课程设计 课程设计题目:模数转换器 系别自动控制工程系班级 XXXXX 学生姓名 XX 学号 XXXXXXXXX 指导教师 XXXXXXX 职称教授、讲师 起止日期: XXXXXXXXX----------XXXXXXXXXX

XXXXXX学校 课程设计任务书 课程设计题目:模数转换器 系别自动控制工程班级 XXXX 学生姓名 XX 学号 XXXXXXX 指导教师 XXXXXX 职称教授、讲师 课程设计进行地点:微机原理实验室 任务下达时间: 2011年 12月 8日 起止日期:XXXXXXXXXX----XXXXX日止教研室主任XX 2011年12月8日批准

一、设计目的 通过课程设计使学生更进一步掌握微机原理及应用课程的有关知识,提高应用微机解决问题的能力,加深对微机应用的理解。通过查阅资料,结合所学知识进行软、硬件的设计,使学生初步掌握应用微机解决问题的步骤及方法。为以后学生结合专业从事微机应用设计奠定基础。 二、设计的原始资料及依据 查询可编成并行芯片8255,A/D转化器ADC0809或其他相关资料。 把模拟量转换成数字量后,输出到数码管即可实现该功能。 三、设计的内容及要求 内容:采样模拟量,在LED数码管上显示采样值。 要求:连续采样一路模拟值并同步显示采样值。 四、对设计说明书撰写内容、格式、字数的要求 1.课程设计说明书(论文)是体现和总结课程设计成果的载体,一般不应少于3000字。 2.学生应撰写的内容为:目录、正文、参考文献等。课程设计说明书(论文)的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 3.说明书(论文)手写或打印均可。手写要用学校统一的课程设计用纸,用黑或蓝黑墨水工整书写;打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 4. 课程设计说明书(论文)装订顺序为:封面、任务书、成绩评定表、目录、正文、参考文献。 五、设计完成后应提交成果的种类、数量、质量等方面的要求; 提交课程设计说明书一份。在说明书中要有设计原理、硬件电路接线图、设计的程序及必要注释等。

模数转换器ADC0808的应用

实训报告十 实训目的: 通过实现由ADC0808作为A/D转换器对RV1进行电压测量,并在数码管上显示;了解ADC0808的工作方式,进行模拟数据的采样,从而利用c语言编程实现单片机控制处理信息。 实训原理图:

实训步骤: 1.在ptoteus平台找出所需的元器件 2.理解该实验的原理,按照原理图画出仿真图; 3.根据实验要求写出如下程序: #include unsigned char code dispcode[4]={0x10,0x20,0x40,0x00}; unsigned char temp; unsigned char dispbuf[4]; unsigned char count=0; unsigned char getdata; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^2; sbit CLK=P3^7; void delay(unsigned int i) { unsigned int j; for (j=0;j

{ EA=1; ET0=1; ET1=1; TMOD=0x12; TH0=216; TL0=216; TH1=(65536-4000)/256; TL1=(65536-4000)%256; TR1=1; TR0=1; } void conversion() { ST=0; ST=1; ST=0; while(EOC==0) {;} OE=1; getdata=P0; OE=0; temp=getdata; dispbuf[0]=getdata/100; temp=temp-dispbuf[0]*100; dispbuf[1]=temp/10; temp=temp-dispbuf[1]*10; dispbuf[2]=temp; } void T0X()interrupt 1 { CLK=~CLK; } void T1X() interrupt 3 { TH1=(65536-4000)/256; TL1=(65536-4000)%256; for(count=0;count<=3;count++) { P1=dispbuf[count]|dispcode[count];//输出显示控制代码 delay(50);

相关主题
文本预览
相关文档 最新文档