当前位置:文档之家› 第07章 应力与应变分析

第07章 应力与应变分析

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

真应力-真应变曲线

真应力-真应变曲线(true stress-logarithmic strain curves) 表征塑性变形抗力随变形程度增加而变化的图形,又称硬化曲线。它定量地描述了塑性变形过程中加工硬化增长的趋势,是金属塑性加工中计算变形力和分析变形体应力-应变分布情况的基本力学性能数据。 硬化曲线的纵坐标为真应力,横坐标为真应变。试验时某瞬间载荷与该瞬间试件承力面积之比称真应力(或真抗力,即真实塑性变形抗力)。硬化曲线可用拉伸、扭转或压缩的方法来确定,其中应用较广的为拉伸法。根据表示变形程度的公式不同,用拉伸图计算所得硬化曲线有3种,如图1所示。第1种是S-δ曲线,表示真应力与延伸率之间的关系。第2种是S-φ曲线,是真应力与断面收缩率的关系曲线。第3种是S-ε曲线,是真应力与对数变形之间的关系曲线。由于φ与ε的变化范围为0~1,所以第2、3种硬化曲线可直观地看出变形程度的大小,使用时较为方便。 S-δ曲线的制作先作圆柱试件拉伸试验获取拉伸图(拉力P与试件绝对仲长Δl的关系图),如图2a所示。然后按下述方法计算出曲线上各点的真应力S和对应的断面收缩率φ,根据所获数据绘制S-φ曲线,如图2b所示。

按式(4)与(6)可求出试件出现细颈前的那段曲线,因为该曲线的变形沿试件长度上是均匀的,符合体积不变条件。 当拉伸力达最大时,变形迅速集中并形成细颈,细颈部位受三向拉仲应力作用而逐渐变小,最终发生破断。由于形成细颈后变形发展得极不均匀,每瞬间参加变形的体积不知,故不能用公式计算这个阶段中曲线上任意点处的应力与应变;实用中只能按细颈中断口部位面积F f及断裂时的拉伸力P f来算出断点处的真实断裂应力S K及真实断裂应变φK,然后将该点与出现细颈前所算出的点,用光滑曲线联结即可组成一条完整的曲线(图2b)。

第四章应力应变关系

4 应力应变关系 4.1弹性变形时应力和应变的关系 当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即 1()1() 1() 111222x x y z y y x z z z x y xy xy yz yz zx zx E E E G G G εσνσνσεσνσνσεσνσνσετετετ?=--?? ?=--???=--???===? ,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足() 21E G ν=+关系。 由上式可得 11212()()33m x y z x y z m E E νν εεεεσσσσ--=++= ++= (4.2) 于是 11 ()'2x m x m x E G νεεσσσ+-= -= 或 1112''22x m x x m G G E ν εεσσσ-=+ =+ 类似地可以得到 1112''22y m y y m G G E ν εεσσσ-=+ =+ 1112''22z m z z m G G E ν εεσσσ-=+=+ 于是,方程(4.1)可写成如下形式 121 2'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-?????? ? ? ?=+ ? ? ? ? ? ????? ?? 即 '1122ij ij m ij ij m G E ν εεεσδσ-'=+= + (4.3)

显然,弹性变形包括体积改变的变形和形状改变的变形。前者与球应力分量成正比,即 12m m E νεσ-= (4.4) 后者与偏差应力分量成正比,即 ''12''12''1211 1222x x m x G y y m y G z z m z G xy xy yz yz zx zx G G G εεεσεεεσεεεσετετετ? =-=?=-=??=-=??=== ? ,, 或简写为 2ij ij G σε''= (4.5) 此即为广义Hooke 定律。 4.2塑性变形时应力和应变的关系 弹性力学是以应力与应变成线性关系的广义Hooke 定律为其基础的;而在塑性力学的范围内,一般来说,应力与应变间的关系是非线性的,同时这种非线性的特征,又与所研究的具体材料和塑性应变有关。 塑性变形过程中的应力应变关系十分复杂,相关的理论较多,但可将它们分为两大类,即增量理论和全量理论。 4.2.1增量理论 在弹性极限范围内,弹性全量应变与当时的应力状态有确定的一一对应关系,而与加载的历程无关。但由于塑性变形的不可恢复性,塑性全量应变与当时的应力状态不是单值关系,而与加载的历史有关。图4.1所示低碳钢拉伸实验的结果表明:在应力超过弹性极限条件下卸载时,其应力应变基本呈平行于弹性线的线性关系,直到材料反向时的屈服极限's σ,这就是材料的卸载规律(图4.1a )。因此,当材料发生塑性 图4.1 单向拉伸随加载历史变化的应力应变关系

弹性力学课件:第四章应力应变关系

第四章应力应变关系静力平衡和几何变形 通过具体物体的材料性质相联系材料的应力应变的内在联系 材料固有特性,因此称为物理方程或者本构关系

目录 §4.1广义胡克定理 §4.2拉梅常量与工程弹性常数§4.3弹性体的应变能函数

§4.1广义胡克定义 ?应力应变关系属于材料性能 ?称为物理方程或者本构方程 ?单向拉伸或者扭转应力应变关系可以通过实验确定 ?复杂应力状态难以通过实验确定

?广义胡克定理——材料应力应变一般关系 xz yz xy z y x xz xz yz xy z y x yz xz yz xy z y x xy xz yz xy z y x z xz yz xy z y x y xz yz xy z y x x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετγγγεεετγγγεεετγγγεεεσγγγεεεσγγγεεεσ666564636261565554535251464544434241363534333231262524232221161514131211+++++=+++++=+++++=+++++=+++++=+++++=?工程材料,应力应变关系受到一定的限制 ?一般金属材料为各向同性材料 ?复合材料在工程中的应用日益广泛

弹性体变形过程的功与能 ?能量守恒是一个物理学重要原理 ?利用能量原理可以使得问题分析简化 ?能量原理的推导是多样的,本节使用热力 学原理推导。 外力作用——弹性体变形——变形过程外力作功——弹性体内的能量也发生变化

钢筋之应力-应变曲线

二第一章绪论 (1) 1.1 前言................................................................................................... .1 1.2 研究动机.. (2) 1.3 研究目的 (3) 第二章旧桥柱试体.................................................................................4 2.1 桥梁设计规范 (4) 2.1.1 公路桥梁工程设计规范.............................................................4 2.1.2 公路桥梁耐震设计规范.............................................................5 2.2 圆形旧桥柱试体................................................................................7 2.2.1 试体设计.. (7) 2.2.2 BMCL100试验观察.................................................................9 2.2.3 BMCL50试验观察.................................................................10 2.2.4 BMC4试验观察.....................................................................11 2.2.5 圆形旧桥柱试体破坏状况比较.....................................14 2.2.6 圆形旧桥柱试体侧力-位移图比较................................15 2.2.7

本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论重点、难点、考点 本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。能够用广义胡克定律求解应力和应变关系。理解强度理论的概念,能够

按材料可能发生的破坏形式,选择适当的强度理论。 难点主要有 ① 主平面方位的判断。当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。 ② 最大切应力。无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =α τα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。 本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。 ② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。会计算任意斜截面上的应力分量。 ③ 计算单元体的最大切应力。 ④ 广义胡克定律的应用。 ⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。 本章习题大致可分为四类: ( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。特别是当单元体包括构件表面(自由面)时,其上应力分量为零。 ( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。 ( 3 )广义胡克定律的应用在求解应力与应变关系的题目中,不论构件的受力状态,均采用广义胡克定律,即可避免产生不必要的错误,因为广义胡克定律中包含了其他形式的胡克定律。 ( 4 )强度理论的应用对分析破坏原因的概念题,一般先分析危险点的应力状态,根据应力状态和材料性质,判断可能发生哪种类型的破坏,并选择相应的强度理论加以解释。计算题一般为组合变形构件的强度分析(详见第 8 章)与薄壁容器的强度分析,薄壁容器可利用平衡条件求出横截面与纵向截面上的正应力,由于容器的对称性,两平面上无切应力,故该应力即为主应力,并选择第三或第四强度理论进行强度计算。

相关主题
文本预览
相关文档 最新文档