当前位置:文档之家› 点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用
点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用

定理 在椭圆122

22=+b

y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是

弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22

00a

b x y k MN

-=?.

证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,

则有???????=+=+)2(.1)1(,122

22

2222

1221 b y a x b y a x

)2()1(-,得.022

22

122

22

1=-+-b

y

y a x x

.22

12121212a

b x x y y x x y y -=++?--∴

又.22,21211212x y x y x x y y x x y y k MN

==++--= .22

a

b x y k MN -=?∴

同理可证,在椭圆122

22=+a

y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点)

,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22

00b

a x y k MN

-=?.

例1 设椭圆方程为14

2

2

=+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足1

()2

OP OA OB =

+,点N 的坐标为??

?

??21,21.当l 绕点M 旋转时,求: (1)动点P 的轨迹方程;(2)||NP 的最大值和最小值.

解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点

P

是弦AB 的中点 . 焦点在y 上,.1,422

==b a

假设直线l 的斜率存在

.

由22b

a x y k AB -=?得:

.41-=?-x

y

x y 整理,得:.0422=-+y y x 当直线l 的斜率不存在时,弦AB 的中点P 为坐标原点)0,0(O ,也满足方程。

∴所求的轨迹方程为.0422=-+y y x

(2)配方,得:.14

1)21(1612

2

=-+

y x .4141≤≤-∴x

12

7

)61(341

)21()2

1

()21(||22

22

22+

+-=-+-=-+-=∴x x x y x ∴当41=

x 时,41||min =NP ;当6

1

-=x 时,.6

21

||

max =

例2 在直角坐标系xOy 中,经过点)2,0(且斜率为k 的直线l 与椭圆12

22

=+y x 有两个不同的交点P 和Q.(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存

在常数k ,使得向量+与

共线?如果存在,求k 的取值范围;如果不存在,请说明理由.

解:(1)直线l 的方程为

.2+=kx y

由?????=++=.12

,22

2y x kx y 得:.0224)12(22=+++kx x k

直线l 与椭圆1222

=+y x 有两个不同的交点,)12(83222+-=?∴k k >0.解之得: k <2

2

-

或k >

22.∴k 的取值范围是???

? ??+∞???? ??-∞-,2222, . (2)在椭圆

12

22

=+y x 中,焦点在

x

轴上,

1

,2==b a ,

).1,2(),1,0(),0,2(-=∴B A 设弦PQ 的中点为),(00y x M ,则).,(100y x OM =

由平行四边形法则可知:.2=+ +与共线,∴与共线.

12

y

x =-∴,从而

.22

00-=x y 由2200a

b x y k PQ -=?得:21

22-=???

? ??-?k

,.22=∴k 由(1)可知2

2

=

k

时,直线l 与椭圆没有两个公共点,∴不存在符合题意的常数k .

例3已知椭圆12222=+b

y a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22

=

e ,右准

线方程为

2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于

M 、N 两点,且

3

26

2||22=

+F F ,求直线l 的方程. 解:(Ⅰ)根据题意,得

???

????====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P . 由平行四边形法则知:P F N F M

F 2222=+.

由3262||

22=

+F F 得:3

26||2=F .∴.926)1(2

2=+-y x ……………① 若直线l 的斜率不存在,则x l

⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F N F M F ,

与题设相矛盾,故直线l 的斜率存在. 由22

a

b x y k MN

-=?得:

.211-=?+x y x y ∴).(21

22x x y +-= ………② ②代入①,得.9

26)(21)1(22

=+-

-x x x 整理,得:0174592

=--x x .解之得:3

17

=x ,或3

2-

=x

. 由②可知,3

17=

x

不合题意.∴32-

=x ,从而31±=y .∴.11

±=+=

x y

k ∴所求的直线l 方程为1+=x y ,或1--=x y .

例4 已知椭圆1:2222=+b

y a x C (a >b >0)的离心率为33

,过右焦点F 的直线l 与C 相交于A 、

B 两点. 当l 的斜率为1时,坐标原点O 到l 的距离为

2

2.

(1)求b a ,的值;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有+=成立?若存在,求出所有点P 的坐标与l 的方程;若不存在,说明理由.

解:(1)椭圆的右焦点为)0,(c F ,直线l 的斜率为1时,则其方程为

c x y -=,即0=--c y x .

原点O 到l 的距离:2

2

222

|

00|=

=

--=

c c

d ,∴1=c . 又3

3

=

=

a c e ,∴3=a . 从而2=

b .∴3=a , 2=b . (2)椭圆的方程为1232

2=+y x . 设弦AB 的中点为),(y x Q . 由OB OA OP +=可知,点Q 是线段OP 的中点,点P 的坐标为)2,2(y x .∴123

422

=+y x .…………………① 若直线l 的斜率不存在,则x l ⊥轴,这时点Q 与)0,1(F 重合,)0,2(=,点P 不在椭圆上,

故直线l 的斜率存在.

由22a

b x y k AB -=?得:

.321-=?-x y x y ∴)(3

2

22x x y --=.………………………② 由①和②解得:4

2,43±==

y x

.

∴当4

2,43==

y x 时,21

-=-=

x y

k AB

,点P 的坐标为)2

2,23(

,直线l 的方程为022=-+y x ;

4

2,43-==

y x 时,21

=-=

x y

k AB

,点P 的坐标为)2

2,23(

-,直线l 的方程为022=--y x .

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4) 2(82 221+-=+k k k x x , 又M 为AB 的中点,所以21 4) 2(422 221=+-=+k k k x x , 解得2 1 -=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x , 两式相减得0)(4)(2 22 12 22 1=-+-y y x x , 所以 21)(421212121-=++-=--y y x x x x y y ,即21 -=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642 222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆 136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。 解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),

1.中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题:④圆锥曲线的相关最值(范围)问 题;⑤求曲线的方程问题:⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题 ——点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是: 联立直线和圆锥曲线的方程,借助于一元二次 方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策 具有斜率的弦中点问题,常用设而不求法( 点差法):若设直线与圆锥曲线的交 点(弦的端点)坐标为 A(x i ,yj 、B(X 2,y 2),将这两点代入圆锥曲线的方程,然后两方程 相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论) 个参数。 (3)y 2=2px( p>0)与直线 I 相交于 A 、B 设弦 AB 中点为 M(x o ,y o ),则有 2y o k=2p,即 y o k=p. 经典例题讲解 一、求以定点为中点的弦所在直线的方程 2 2 例1、过椭圆x 匚 1内一点M(2,1)引一条弦,使弦被 M 点平分,求这条弦所在直线 16 4 的方程。 解:设直线与椭圆的交点为 A(x 1, y 1)、B(x 2,y 2) M (2,1)为 AB 的中点 x 1 x 2 4 y 1 y 2 2 2 2 2 2 ,消去四 如: 2 (1)笃 a 2 y b 2 1( a x o 2 阶 o 。 a b 2 2 (2)笃 y 2 1( a a b X o yo, o 2 a b 严 b 0)与直线相交于A 、B ,设弦AB 中点为M(x o ,y o ),则有 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为M(x o ,y o )则有

高中数学椭圆的弦长中点弦

椭圆弦长中点弦问题 1.已知椭圆2222b y a x +(a >b >0)的离心率36=e ,焦距是22. (1)求椭圆的方程; (2)若直线2(0)y kx k =+≠与椭圆交于C 、D 两点,5 26= CD ,求k 的值. 2.椭圆C:12222=+b y a x )0(>>b a 的离心率为36,短轴的一个端点到右焦点的距离为3. (1)求椭圆C 的方程; (2)设直线y=x+1与椭圆C 交于A ,B 两点,求A ,B 两点间的距离. 3.已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为36,椭圆C 上任意一点到椭圆两焦点的距离之和为6. (Ⅰ)求椭圆C 的方程; (Ⅱ)设直线2:-=x y l 与椭圆C 交于N M ,两点,O 是原点,求OMN ?的面积.

4.已知椭圆2222x 1(0)y a b a b +=>>经过点A (0,4),离心率为5 3; (1)求椭圆C 的方程; (2)求过点(3,0)且斜率为 5 4的直线被C 所截线段的中点坐标. 5.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为)(03,F -,且过点 ) (02,D . (1)求该椭圆的标准方程; (2)设点) ,(2 11A ,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程. 6.已知椭圆5x 2+9y 2=45,椭圆的右焦点为F , (1)求过点F 且斜率为1的直线被椭圆截得的弦长. (2)求以M (1,1)为中点的椭圆的弦所在的直线方程. (3)过椭圆的右焦点F 的直线l 交椭圆于A ,B ,求弦AB 的中点P 的轨迹方程.

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221ΛΛΛΛb y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--=Θ.22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为?? ? ??21,21.当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 . 焦点在y 上,.1,42 2 ==b a 假设直线l 的斜率存在.

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

椭圆中互相垂直的弦中点过定点问题

椭圆中互相垂直的弦中点过定点问题 (1)过椭圆22 221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点22 2 (,0)a c a b +。 (2)过椭圆22 221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (,0)a s a b +。 设AB 的直线为x my s =+,则CD 的直线方程为1 x y s m =- +, 222222 x my s b x a y a b =+??+-=?,22222222 ()2()0m b a y b msy b s a +++-=, 22 22 2 2 4()0a b m b a s ?=+->,21122 22msb y y m b a -+=+,22211222 () a s a y y m b a -?=+, 由中点公式得M 22 22 2222 (,)a s msb m b a m b a -++, 将m 用1m -代换,得到N 的坐标222 22 2222 (,)a sm msb m a b m a b ++ MN 的直线方程为222222222222 ()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x a b =+ 所以直线MN 恒过定点22 2 (,0)a s a b +。 (3)过椭圆22 221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (0,)b t a b +。

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

点差法求解中点弦问题

点差法求解中点弦问题 点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。求出直线的斜率,然后利用中点求出直线方程。用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。 【定理1】在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦 MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-, 得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴又.22,21211212x y x y x x y y x x y y k MN ==++--= .22a b x y k MN -=?∴ 【定理2】在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是 弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.02 2 2 2 122 22 1=---b y y a x x .2212121212a b x x y y x x y y =++?--∴ 又.22,000021211212x y x y x x y y x x y y k MN ==++--= .2 2 00a b x y k MN =?∴ 【定理3】 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k M N =?0.

高中数学解题方法系列:解析几何中的点差法解中点弦问题

高中数学解题方法系列:点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11y x A 、) ,(22y x B )1,2(M 为AB 的中点∴4 21=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,16 42222=+y x 两式相减得0 )(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、) ,(22y x B 则221=+x x ,221=+y y

第7讲-点差法公式在椭圆中点弦问题中的妙用

第7讲 点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221ΛΛΛΛb y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--=Θ.22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

解-点差法公式在抛物线中点弦问题中的妙用教案资料

“点差法”公式在抛物线中点弦问题中的妙用 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)2(.2)1(,2222121ΛΛΛΛmx y mx y )2()1(-,得).(2212 221x x m y y -=- .2)(121 212m y y x x y y =+?--∴ 又01212122,y y y x x y y k MN =+--= Θ. m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01 . 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 例1.抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 2 12-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21=?-y x y , 整理得:)1(22-=x y .

椭圆中点弦问题

已知椭圆C: 122 22=+b y a x (a>b>0)○ 1,它的左右焦点分别是F 1(-c ,0),F 2(c ,0),过点F 2直线l 交椭圆于A,B 两点,试求线段AB 的中点的轨迹方程. 分析:此题是一个求点的轨迹方程的常规性问题,问题求解的本身没有特殊性可言,依据轨迹方程的求解步骤即可解决.在此我们略去解答过程,得到: 2222 2a cx b y a x =+ ○2 我们对比方程○ 1与方程○2看到,两个方程的左边完全相同,而方程○2的右式只含有x 的一次项,且系数为 2c a .这里我们称AB 为椭圆的焦半径,将上述问题称为焦半径中点轨迹问题.于是我们自然地会有如下的猜想,即只要知道椭圆的标准方程,则可以对应地写出焦半径中点的轨迹 方程.比如,现在我们要求过F 1的焦半径中点的轨迹方程,根据猜想有22222a cx b y a x -=+ ○ 3,那么这样的结果是否正确呢,我们只要重复上述问题的求解过程,即可以验证结果的正确性. 类似地,对于双曲线: 122 2 2=-b y a x (a,b >0),对应地我们有两个焦半径中点的轨迹方程: 22222a cx b y a x ±=- (过右焦点时为正,过左焦点时为负);对于抛物线:y2=2px(p>0),相应地焦半径中点轨迹方程为y 2=p(x-p 2). 更一般的结论,我们仍以椭圆为例, 已知椭圆C: 122 22=+b y a x (a>b>0),过定点P(m,n )的直线 l 交椭圆于A,B 两点,则线段AB 中点的轨迹方程为222222b ny a mx b y a x +=+ 接下来我们看这样一个结论在几个高考题中的应用: 例1: (08福建卷)21. 椭圆122 22=+b y a x (a>b >0) 的一个焦点是F (1,0),O 为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有 OA 2+ OB 2< AB 2,求a 的取值范围. 分析:这里我们略去第一问的解答. 要使 OA 2+ OB 2< AB 2成立,只需满足原点O 在以AB 为直径的圆内部,也即是满足原点O 至圆心M 的距离 OM 小于半径r(2r= AB ),而我们看到圆心M 是线段AB 的中点 解:设M(x 0,y 0),A(x 1,y 1),B(x 2,y 2)由于它是过右焦点F 的弦中点,则点M 的轨迹方程为 2 2222a x b y a x =+(0≤x ≤1). ○1

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 一、求以定点为中点的弦所在直线的方程例 1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例 2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。 二、求弦的中点坐标和中点轨迹方程例 3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。例

4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为 三、求与中点弦有关的圆锥曲线的方程例 5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立 ①②解得,所求椭圆的方程是 四、求圆锥曲线上两点关于某直线对称的问题例 6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,, 这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例 7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。又因为在直线上,所以,因为在抛物线开口内,所以,故,所以。即的取值范围是。策略:本题需要根据弦中点位置求的取值范围,如果不考虑位置,可能得出错误的结果。请务必小心。

椭圆的弦中点问题解析版(供参考)

东光一中 高二 年级 数学 学科课时练 出题人: 许淑霞 出题时间: 椭圆的中点弦问题学案 学习目标:会求与椭圆的中点弦有关的问题 掌握一种思想:设而不求,整体代换的思想 体会两种方法:判别式法与点差法 学习重点:能解决与椭圆的中点弦有关的问题 学习过程: 一、方法总结: 1、与椭圆的弦的中点有关的问题,我们称之为椭圆的中点弦问题。 2、解椭圆的中点弦问题的一般方法是: (1)判别式法:联立直线和椭圆的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解。 (2)点差法:若设直线与椭圆的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入椭圆的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 3、设直线的技巧: (1)直线过定点时引入参数斜率,利用点斜式设方程,注意讨论斜率存在与不存在两种情况。 (2)直线斜率一定时引入参数截距,利用斜截式设方程。 (3)已知一般直线可设直线的斜截式方程,利用条件寻找k 与b 的关系。 3、直线与椭圆相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求过中点的弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求与中点弦有关的圆锥曲线的方程 二、题型复习: (一)、求过中点的弦所在直线方程问题 例1、已知椭圆1222=+y x ,求过点p (12,12 )且被点p 平分的弦所在直线方程 注意:解决过中点的弦的问题时判断点M 位置非常重要。 (1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在; (2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点弦问题中的妙用 广西外国语学校 隆光诚(邮政编码530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=---b y y a x x .22 12121212a b x x y y x x y y =++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= .2200a b x y k MN =?∴ 同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点, 点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN =?. 典题妙解 例1 已知双曲线13 :2 2 =-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.

椭圆中互相垂直的弦过定点问题

(1)过椭圆22 221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点22 2 (,0)a c a b +。 (2)过椭圆22 221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (,0)a s a b +。 设AB 的直线为x my s =+,则CD 的直线方程为1 x y s m =- +, 222222 x my s b x a y a b =+??+-=?,22222222 ()2()0m b a y b msy b s a +++-=, 22 22 2 2 4()0a b m b a s ?=+->,21122 22msb y y m b a -+=+,22211222 () a s a y y m b a -?=+, 由中点公式得M 22 22 2222 (,)a s msb m b a m b a -++, 将m 用1m -代换,得到N 的坐标222 22 2222 (,)a sm msb m a b m a b ++ MN 的直线方程为222222222222()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+, 令0y =,得222a s x a b =+ 所以直线MN 恒过定点22 2 (,0)a s a b +。 (3)过椭圆22 221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (0,)b t a b +。

相关主题
相关文档 最新文档