当前位置:文档之家› 基于梁格法的小半径钢筋混凝土弯箱梁桥空间 受力特性分析

基于梁格法的小半径钢筋混凝土弯箱梁桥空间 受力特性分析

基于梁格法的小半径钢筋混凝土弯箱梁桥空间 受力特性分析
基于梁格法的小半径钢筋混凝土弯箱梁桥空间 受力特性分析

Hans Journal of Civil Engineering 土木工程, 2017, 6(5), 439-446

Published Online September 2017 in Hans. https://www.doczj.com/doc/b3688739.html,/journal/hjce

https://https://www.doczj.com/doc/b3688739.html,/10.12677/hjce.2017.65052

Analysis of Spatial Force Characteristics of

Small Radius Curved Concrete Box Girder

Bridge Based on Grillage Method

Borui Peng1,2, Dan Tang2*

1Changsha Planning & Design Institute Co., Ltd., Changsha Hunan

2School of Civil Engineering, Central South University, Changsha Hunan

Received: Jul. 26th, 2017; accepted: Aug. 9th, 2017; published: Aug. 17th, 2017

Abstract

Curved box girder bridge is beautiful, can adapt to and improve the road linearity. In recent years, it has been widely used in urban bridges. But the force of curved box girder bridge is complex, it needs to use the spatial analysis method for analysis. In this paper, the full-bridge grid model was established by MIDAS/Civil based on grillage method, and the spatial force characteristics of the small radius curved box girder were analyzed, and the displacement and bearing reaction charac-teristics under the load were studied. By analyzing the calculation results of the space model, it can be seen that there are obvious bending and torsional coupling effects of the small radius curved box girder structure, which can cause the torsion of the cross section of the bending box and the nonuniformity of the bearing reaction. However, there is an effective reduction of the nonuniformity of the bearing reaction by bearing eccentricity.

Keywords

Curved Box Girder Bridge, Bending and Coupling, Grillage Method, Bearing Eccentricity

基于梁格法的小半径钢筋混凝土弯箱梁桥空间受力特性分析

彭勃睿1,2,唐丹2*

1长沙市规划设计院有限责任公司,湖南长沙

2中南大学土木工程学院,湖南长沙

*通讯作者。

彭勃睿,唐丹

收稿日期:2017年7月26日;录用日期:2017年8月9日;发布日期:2017年8月17日

摘 要

弯箱梁桥造型优美,能很好地适应和改善道路线型,近年来被广泛地应用于城市桥梁中。但弯箱梁受力复杂,需采用空间分析方法进行分析。本文采用MIDAS/Civil 建立全桥梁格模型,分析了小半径弯箱梁结构的空间受力特性,研究了其在荷载作用下的位移以及支座反力特性。通过分析空间模型的计算结果,小半径弯箱梁结构存在明显的弯扭耦合效应,并可引起弯箱梁截面的扭转以及支座反力的不均匀等现象,通过设置支座预偏心可有效消减支座反力不均匀现象。

关键词

弯箱梁桥,弯扭耦合,梁格法,支座预偏心

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/b3688739.html,/licenses/by/4.0/

1. 引言

近年来,我国城市建设飞速发展,为了适应新的城市的发展需求,弯箱梁桥被广泛应用于城市高架和立交桥中。弯箱梁桥造型优美,能较好地与周围环境结合在一起,满足景观需要;且能很好适应和改善道路线型,使交通线路的布置趋于合理和科学。由于城市建筑受周边环境约束,小半径弯箱梁桥越来越多的出现在城市桥梁建设中。

弯梁桥最主要的受力特点是:外荷载作用下,梁截面在发生竖向弯曲时,由于曲率的影响,必然产生扭转,而这种扭转作用又将导致挠曲变形,称为“弯扭耦合”作用[1]。由于弯箱梁桥中存在较大的扭矩,会使外侧超载,内侧卸载导致内、外侧支座受力不均,尤其对于小半径、宽跨比较大的弯箱梁桥来说,差异就更大了,因此有必要对小半径弯箱梁桥进行受力分析。

弯箱梁受力复杂,用一般的平面杆系分析方法进行计算,不能全面反映结构的受力特性及传力途径,故本文采用空间梁格法进行计算。梁格法是一种能较好地模拟原结构的空间结构分析方法,它具有基本概念清晰、易于理解和使用、计算费用低等特点,是一种实用的计算方法,在工程界得到广泛的应用。

梁格法[2] [3] [4]是借助计算机分析桥梁上部结构的一种有效适用方法。此法首先由莱特福(Liqhtfoot)和绍柯(Sawko)提出和使用,并经E.C.Hambly 等的发展应用逐渐完善,适用于板式、梁板式、箱梁上部结构及各种组合体系桥梁。它是用一个等效梁格来代替上部结构,如图1所示。

梁格法的主要思路是将桥跨结构用一个等效的梁网格来简化,将分散在箱梁每个区域内弯曲刚度和抗扭刚度“凝聚”于最邻近的等效梁格内,即将实际结构的纵向刚度“凝聚”于纵向梁格内,而横向刚度则“凝聚”于横向梁格内。一般说来,等效梁格的网格越密,计算结果的精确度就越高[5]。根据大量的计算表明,利用梁格法分析结构完全能把握住结构的总体性能,对于设计而言,其计算结果也是足够精确的。然而由于实际弯桥与比拟梁格在某些局部性能上不可避免地存在着差异,梁格法的内力数据还需从实桥的受力性能出发进行整理与修正,才能作为实桥设计的依据。

Open Access

彭勃睿,唐丹

(a) 实际结构 (b) 等效结构

Figure 1. Equivalent grillage schematic diagram

图1. 等效梁格示意图

2. 影响弯箱梁桥受力的因素

2.1. 荷载因素

自重作用下,弯桥梁体因体积重心产生偏心不均布扭矩,其旋转方向总是朝着弧线外侧的,半径越小,扭转的趋势越明显。汽车荷载的偏心行驶及其行驶时的离心力,也会造成弯梁桥向外偏转并增大主梁扭矩。以及超载现象,也对弯桥受力有很大的影响。

2.2. 曲线半径和圆心角

在曲率半径相同时,弯梁桥的一联总长度越大,其弯曲程度就越大,因而圆心角比半径大小更能够全面地反映弯曲程度。圆心角越大,弯梁桥的受力特点就越趋向于弯桥的特性。当半径一定时,桥越宽,弯道上偏心行驶的汽车活载产生的内力越大,且比直梁桥要大得多。当桥宽一定时,半径越小,活载产生的内力越大。

2.3. 支承因素

1) 在一联连续梁两端的桥台或盖梁处采用两点或多点支承的支座,可有效地提高主梁的横向抗扭性能,保证其横向稳定性。

2) 中间墩的支承的合理选用应考虑其平面上的圆曲率半径、跨径及预应力效应的影响。

3) 弯梁桥的支承形式应根据曲率半径的大小、上下部结构的总体布置决定,选用对结构受力有利的支承方式,并由此决定全桥的力学计算图示,确定全桥的内力分布。

2.4. 预设支座偏心的影响

研究资料表明,支承偏心对弯桥恒载产生的扭矩影响最大,对活载和预应力产生的扭矩影响甚微[6]。因此,当弯梁桥仅两端具有较强的抗扭约束,而中间各墩是没有抗扭约束的点铰式支座,就可以将各中间支座预设偏心,即将点铰式支座的中心沿半径方向往曲线外侧移动一较小距离(通常在几十厘米),从而大大降低梁端的内扭矩及支座反力不平衡,使结构在恒载作用下处于一种相对平衡的状态。

降低弯梁内扭矩的最大值,可以充分利用混凝土截面提供的抗扭强度,节约抗扭钢筋的数量,同时桥台受到的扭矩也减小,桥台及支座的设计可以简化。因此,预设支座偏心是一种不需要增加任何投资

而达到改善内力、节约材料目的的好办法[7]。

彭勃睿,唐丹

3. 工程实例与计算分析

本文以长沙市一处高架匝道桥为实例进行计算分析。该桥为三跨小半径钢筋混凝土弯箱梁桥,全长54.141 m ,其跨径布置为(20.5 + 17.349 + 16.292) m 。箱梁中轴线平曲线半径为28.75 m ,桥宽8 m ,箱梁平面布置如图2所示。其中G1、G3、G4号桥墩轴线与弯梁桥中轴线垂直,G2号桥墩轴线与弯梁桥斜交,斜交角度为106.7?。

上部结构采用混凝土箱梁,单箱双室,箱梁高180 cm ,箱梁顶宽800 cm ,箱梁底宽440 cm 。跨中截面如图3所示。

3.1. 有限元模型的建立

采用MIDAS/Civil 软件建立全桥梁格模型,主桥共划分为五片纵向梁格(1#~5#):1#、5#为虚拟纵向梁格,2#~4#为主梁梁格。梁格模型如图4所示。纵向梁格节点间辅以虚拟横向梁格传递作用力。

纵向梁格划分如图5所示。 节点支撑位置如图6所示。

经试算:支座布置为G1#墩上支座外偏心0.8 m ,G2#墩上支座外偏心0.3 m ,G3#墩上支座外偏心0.3 m ,G4#墩上支座外偏心0.9 m 。

Figure 2. Planar layout of small radius curved concrete box girder bridge

图2. 小半径钢筋混凝土弯箱梁桥平面布置图

Figure 3. Cross section of midspan (unit: cm) 图3. 跨中横断面示意图(单位:

cm)

彭勃睿,唐丹

Figure 4. Full bridge model 图4. 全桥梁格模型

Figure 5. The division of longitudinal cross section 图5. 纵向梁格划分

Figure 6. Support node number 图6. 支座节点编号

彭勃睿,唐丹

3.2. 计算结果与分析

在恒载作用下,弯箱梁竖向位移最大值为3.3 mm ,如图7所示。

在城-A 级荷载最不利情况下,弯箱梁竖向位移最大值为2.2 mm ,如图8所示。 在支座不均匀沉降5 mm 作用下,弯箱梁竖向位移最大值为9.5 mm ,如图9所示。 在温度荷载作用下,弯箱梁竖向位移最大值为0.6 mm ,如图10所示。

在恒载、车道荷载、不均匀沉降、温度荷载作用下,弯箱梁位移最大截面A 、B 、C 三点位移如表1

Figure 7. The vertical displacement of constant load 图7. 恒载作用下竖向位移

Figure 8. The vertical displacement of land load 图8. 车道荷载作用下竖向位移

Figure 9. The vertical displacement of uneven settlement 图9. 不均匀沉降作用下竖向位移

彭勃睿,唐丹

Figure 10. The vertical displacement of temperature 图10. 温度作用下竖向位移

Table 1. Radius of small radius curved box girder (to be down, unit:mm) 表1. 小半径弯箱梁挠度(以向下为正,单位为mm)

荷载工况 A 点 B 点 C 点 恒载 1.79 2.54 3.35 车道荷载 1.13 1.73 2.20 不均匀沉降 -5.35 1.86 9.52 温度荷载

0.02

0.29

0.56

Table 2. Support reaction table 表2. 支座反力汇总表

节点 组合一 组合二 组合三 组合四 232 2996.4 1189.6 2775.3 752.8 233 1191.7 83.4 766.9

330.7 234 4031.5 1711.6 3137.5 1268.6 235 3904.2 2122.9 2998.3 2444.5 238 1993.1 780.1 2021.2 452.1 239 1409.0 292.9 748.5 708.9 252

5538.9

3014.3

4842.9

1355.0

所示(表中A 、B 、C 点位置见图3,A 位于曲线内侧,C 位于曲线外侧)。

从表1可以看出,在荷载作用下弯箱梁同一截面内、外侧挠度不一样,弯箱梁发生了扭转,这正是弯扭耦合效应引起的。这种效应在不均匀沉降作用下表现的最为明显,截面内、外侧最大偏差为14.87 mm 。

在各种荷载组合下,支座反力的计算结果见表2。本桥考虑四种组合工况: 组合一:恒载 + 全桥满布车道荷载; 组合二:恒载 + 外侧单车道偏载; 组合三:恒载 + 内、外侧各半车道; 组合四:恒载 + 内侧单车道偏载。

从表2可以看出:由于弯箱梁存在弯扭耦合效应,桥梁内、外侧支座反力出现了不均匀现象,其中桥台处支座内外侧反力不均匀现象最明显,原因是梁端支座对弯箱梁扭转的约束贡献最大。通过在支座

彭勃睿,唐丹

处设置预偏心则可减轻弯箱梁内、外侧支座反力不均匀的情况,随着偏心距增大,梁端内、外侧支座反力有平衡的趋势,对中间墩的支座反力影响较小。

4. 结论

本文基于弯梁桥其不可忽视的空间效应和弯扭耦合问题,以小半径弯箱梁作为研究对象,依据梁格法理论,采用MIDAS/Civil软件,对一座三跨小半径混凝土弯箱梁桥进行了空间分析,以减少采用传统简化方法计算时因自由扭转假设、边界条件假设及横向尺寸效应假设等所引起的失真,从而对其空间受力特性进行更为可靠的研究,研究其在不同荷载作用之下的结构位移、支座反力,可得出以下结论:

1) 小半径弯箱梁桥对周围地形适应性高,外形美观,受力满足要求,作为城市立体交通中的匝道桥,

体现了桥梁设计“美观、安全、适用”的理念。

2) 在不同荷载的作用下,同一截面内外侧挠度最大偏差达14.87 mm,弯箱梁发生了扭转,这表明小

半径混凝土弯箱梁结构存在明显的弯扭耦合效应,可引起箱梁截面的扭转。

3) 在四种工况作用下,桥梁内外侧支座反力最大差值为2008.4 KN,表明弯箱梁的弯扭耦合作用会

引起支座反力不均匀的现象。

4) 支座偏心距对桥两端支反力影响较大,随着偏心距增大,梁端内、外侧支座反力有平衡的趋势,

对中间墩的支座反力影响较小。

参考文献(References)

[1]邓晓红, 万麟, 陈冠桦. 小半径预应力连续弯箱梁桥分析[J]. 山西科技, 2011, 26(1): 80-82.

[2]戴公连, 李德建. 桥梁结构空间分析设计方法与应用[M]. 北京: 人民交通出版社, 2001.

[3]Hambly, E.C. (1991) Bridge Deck Behaviour. CRC Press.

[4]汉勃利EC. 桥梁上部结构性能[M]. 北京: 人民交通出版社, 1982.

[5]谭万忠. 曲线梁桥平面变形特性和支承布置的研究[D]: [硕士学位论文]. 北京: 铁道部科学研究院中国铁道科学

研究院, 2005.

[6]刘鹏. 弯梁桥的评价与加固方法研究[D]: [硕士学位论文]. 西安: 长安大学, 2007.

[7]彭新星, 彭斌. 混凝土曲线梁桥支座偏心设置分析研究[J]. 公路工程, 2014, 39(3): 280-283.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.doczj.com/doc/b3688739.html,/Submission.aspx

期刊邮箱:hjce@https://www.doczj.com/doc/b3688739.html,

钢筋混凝土简支T梁桥主梁配筋设计示例

钢筋混凝土简支T梁桥主梁配筋设计 1.计算书 1.1设计资料 1.1.1桥梁跨径及桥宽 标准跨径:20.00m; 主梁全长:19.96m; 计算跨径:19.50m; 桥面净宽:净—7m+2*0.75m=8.5m。 1.1.2设计荷载 汽车荷载采用公路—B级,人群荷载3kN/m2。 1.1.3主梁纵横面尺寸 桥 中 线 图1主梁横断面图(单位:mm) 主梁中线支座中心线 17(内)15(外) 16(内)14(外) 图2主梁纵断面图(单位:mm)

1.1.4梁控制截面的作用效应设计值: (1)用于承载能力极限状态计算的作用效应组合设计值 跨中截面弯矩组合设计值M d ,1 2 =1850.2KN ?m ,其他各截面弯矩可近似按抛物线 变化计算。 支点截面剪力组合设计值V d,0=367.2KN?m,跨中截面剪力组合设计值 V d ,1 2 =64.2K N ,其他截面可近似按直线变化计算。 (2)用于正常使用极限状态计算的作用效用组合设计值(梁跨中截面)恒载标准值产生的弯矩M GK=750KN?m 不计冲击力的汽车荷载标准值产生的弯矩M Q1K=562.4KN?m 短期荷载效应组合弯矩计算值为 长期荷载效应组合弯矩计算值为 M S=1198.68KN?m M l=1002.46KN?m 人群荷载标准值产生的弯矩值为M Q2K=55KN?m 1.1.5材料要求 (1)梁体采用C25混凝土,抗压设计强度f c d=11.5M pa ; (2)主筋采用HRB335钢筋,抗拉设计强度f sd=280Mpa。

-1-道路与桥梁工程技术

8 L0=?19500=6500mm f 结构设计原理钢筋混凝土简支T梁桥主梁配筋设计示例计算书1.2截面钢筋计算 1.2.1跨中截面的纵向受拉钢筋的计算 由设计资料查附表得f cd=11.5Mpa,f td=1.23Mpa f sd=280Mpa,ξb=0.56,γ0=1.0,弯矩计算 值M=γ0M d , 1 2 =1850.2KN?m 1、计算T形截面梁受压翼板的有效宽度: 180180 (a)(b) 图2跨中截面尺寸图(尺寸单位:mm) 为了便于计算,将图2(a)的实际T型截面换算成图2(b)所示的计算截面 h'f = 80+14 2 =110m m 其余尺寸不变,故有: (1)b'=11 33 (L0为主梁计算跨径) (2)b'f=b+2b h+12h'f=180+2?0+12?110=1500mm (3)b'f=1600mm(等于相邻两梁轴线间的距离) 取上述三个数据中最小的值,故取b'f=1500mm 2、因采用的是焊接钢筋骨架,设钢筋重心至梁底的距离 a s=30+0.07h=30+0.07?1300=121mm,则梁的有效高度即可得到, 2-

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

用CAD做计算截面特性教程

CAD求截面几何质量特性教程 为了方便大家学习,给大家做一个教程。希望能对大家有所帮助。 以桥梁设计例题第4页图为例及第7页表求成桥中梁支座截面几何特性为例。 1不必说,首先你要画出所求截面图形。如下图:(画图过程略,其作图准确度自然影响计算结果,因此要求在画图成图过程中准确性是最重要的) 2、然后创建面域。如果大家很少接触三维画图,那可能就不太了解这个命令,大家可以通 过region命令来实现面域的创建,也可以使用快捷键来实现面域的创建。什么是面域呢,其实简单的理解,面域就是以面为一个单位的一个区域。——就是一个面,而不是大家所看到的多条线围起来的框。具体什么是面域,如果不了解可以百度。 其实很简单,没有想象的难。继续。画完了上面的图形之后,我们就需要创建面域了。 输入region命令或是点击快捷键,选择对象:

全部选择,右键确定,这时我们发现 这是什么原因呢,这时region命令的原因。因为创建面域的过程中,要求是一条线围成的封闭范围。上面的截面虽然已经封闭,但并不是一条线画成的:(这个自不必说,因为我们画图就不可能一次直接用一条线画出这个封闭图形) 那怎么办呢? 我们只有麻烦自己再画一次了。创建另外一个图层,线颜色换成其他颜色,我用蓝色。然后单击多段线快捷键:,在这里右键打开对象捕捉设置,全部清除然后选择交点。确定,然后打开对象捕捉。此时画多段线,将截面图形再描一遍:

闭合式要使用C闭合,以免所画蓝色截面没有完全封闭。 最后画出: 现在就可以把之前红色的弦删除了:打开图层管理器,暂时关掉蓝色图层 ,然后画面出现:

全部选择删除即可。 再回到图层管理器,打开蓝色图层:显示:

钢筋混凝土简支T形梁桥主梁计算示例

钢筋混凝土简支T形梁桥主梁计算示例 白城师范学院土木工程系 编写:车国文

钢筋混凝土T形梁桥主梁设计资料 ⒈某公路钢筋混凝土简支梁桥主梁结构尺寸。 标准跨径:20.00m; 计算跨径:19.50m; 主梁全长:19.96m; 梁的截面尺寸如下图(单位mm): ⒉计算内力 ?使用阶段的内力 跨中截面计算弯矩(标准值) 结构重力弯矩:M1/2 恒=759.45kN-m; =697.28kN-m(未计入冲击系数); 汽车荷载弯矩:M1/2 汽 人群荷载弯矩:M1/2 人=55.30kN-m; 1/4跨截面计算弯矩(设计值) M d,1/4=1687kN-m;(已考虑荷载安全系数) 支点截面弯矩 M d0=0, 支点截面计算剪力(标准值) 结构重力剪力:V0 恒=139.75kN; 汽车荷载剪力:V0 汽=142.80kN(未计入冲击系数); 人群荷载剪力:V0 人=11.33kN; 跨中截面计算剪力(设计值) =84kN(已考虑荷载安全系数); 跨中设计剪力:V d ,1/2 主梁使用阶段处于一般大气条件的环境中。结构安全等级为二级。汽车冲击系数,汽车冲击系数1+μ=1.292。 ?施工阶段的内力 ⒊材料 主筋用HRB335级钢筋 f sd=280N/mm2;f sk=335N/mm2;E s=2.0×105N/mm2。 箍筋用R235级钢筋 f sd=195N/mm2;f sk=235N/mm2;E s=2.1×105N/mm2。 采用焊接平面钢筋骨架 混凝土为30号 f cd=13.8N/mm2;f ck=20.1N/mm2;f td=1.39N/mm2;

最新先简支后结构连续梁桥的受力分析与施工技术

先简支后结构连续梁桥的受力分析与施工 技术

先简支后结构连续梁桥的受力分析与施工技术 先简支后结构连续梁桥的受力分析与施工技术 随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向 论文格式论文范文毕业论文 【摘要】随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向发展,其结构特性在有效避免了简支梁桥与连续梁桥的缺点的同时又兼顾了二者的优点,很快在桥梁中成为广泛使用的结构形式。 【关键词】 先简支后结构连续梁的受力特征;施工工艺过程;质量控制引言目前在国内高速公路桥梁中普遍使用装配式预应力钢筋混凝土“T”(箱)型板梁。简支梁桥的优点在于结构简单,属于静定结构,且造价相对较低,施工简单,工期相对较短。在正常条件使用情况下,桥梁不会有刚体位移,并且梁体一端可以自由伸缩,不产生多余的内力。但缺点是由于其自身结构,抗震能力和外力抵抗能力较弱,梁体自身变形大,存在落梁的危险,尤其是在跟高墩组合使用的情况下安全储备较低。对于大跨径的连续梁桥而言,目前主要采用支架法、挂篮悬臂对称浇筑法和拼装法施工,虽然改良了梁体自身受力,克服了简支梁桥的一些缺点,但其施工过程复杂繁琐,费时费工,成本大,一般在遇到特殊地形和跨越长距离时使用。先简支后结构连续梁因其受力和施工工艺相对简单克服了以上两者的问题而得到大范围的实际应用。 1 先简支后结构连续梁的受力特点分析 (2)在结构使用过程中,混凝土自身的收缩徐变,负弯矩预应力的布置同时也影响梁体的受力变化。

任意截面及薄壁截面特性计算

能够简单快捷的计算任意形状截面以及薄壁截面的截面特性,包括扭转惯性矩,剪切中心,翘曲常数等。 ①、在XOY平面内绘制出需要计算的截面形状,如下图所示: ②、点击菜单:模板??工程??截面助手??平面截面。 ③、选择绘制好的平面,右键确定弹出任意截面特性计算对话框,如下图所示: 截面名称:设置截面名称 调整截面高宽:选定的平面可被比例缩放,在此设置缩放后平面的高度或宽度 剖分尺寸等级:设置平面剖分尺寸等级,等级越高平均单元尺寸越小,网格越密 开始计算:开始进行截面特性计算,平面缩放也在计算完成后生效 导入截面库:将计算好的截面导入到截面库中 ④、按下图所示输入截面计算的各种参数,设置好后点击按钮。

⑤、计算完成后自动显示截面特性列表(如下图),检查无误后点击按钮将该截面导入到截面库中,完成平面截面定义。

薄壁截面: ①、在XOY平面内绘制出需要计算的薄壁截面线集,如下图所示: ②、点击菜单:模板??工程??截面助手??薄壁截面。 ③、选择绘制好的线集,右键确定弹出薄壁截面特性计算对话框,如下图所示: 截面名称:设置截面名称 统一值:统一设置所有线的宽度 tn:设置第n条线的宽度 调整截面高宽:选定的线集可被比例缩放,在此设置缩放后线集的高度或宽度 曲线尺寸等级:设置曲线剖分尺寸等级,等级越高曲线被剖分的越密 开始计算:开始进行截面特性计算,线集缩放也在计算完成后生效 导入截面库:将计算好的截面导入到截面库中 ④、按下图所示设置线宽和截面计算的各种参数,设置好后点击 按钮。

注意:图中玫红色线表示当前线,蓝色的线表示宽度大于0的线,大红色线表示线宽为0的线。开始计算之前要保证所有线都已设置线宽,且不应该存在线宽为0的线。 ⑤、计算完成后自动显示截面特性列表(如下图),检查无误后点击 按钮将该截面导入到截面库中,完成该薄壁截面的定义。

钢筋混凝土简支t型梁桥主梁设计书

一、设计题目:钢筋混凝土简支T形梁桥一片主梁设计。 二、设计资料 1、某公路钢筋混凝土 简支梁桥主梁结构 尺寸。 标准跨径:20.00m; 计算跨径:19.50m; 主梁全长:19.96m; 梁的截面尺寸如下图(单 位mm):梁高1500。 为便于计算,现将右图的实 际T形截面换算成标准T梁计算截面, h f′=(90+150)/2=120mm,其余尺寸不变。 2、计算内力 (1)使用阶段的内力 跨中截面计算弯矩(标准值) 结构重力弯矩:M1/2恒=844.72KN·m 汽车荷载弯矩:M1/2汽=573.28KN·m 人群荷载弯矩:M1/2人=75.08KN·m 作用效应组合中取Ψc=0.8 1/4跨截面弯矩:(设计值) M d.1/4=1500.00KN·m;(已考虑荷载安全系数)

支点截面弯矩 M d0=0.00KN·m, 支点截面计算剪力(标准值) 结构重力剪力:V恒=196.75KN; 汽车荷载剪力:V汽=163.80KN; 人群荷载剪力:V人=18.60KN; 跨中截面计算剪力(设计值) V j1/2=76.50KN;(已考虑荷载安全系数) 主梁使用阶段处于一般大气条件的环境中。结构安全等级为二级。汽车冲击系数1+μ=1.192. (2)施工阶段的内力 简支梁在吊装时,其吊点设在距梁端a=400mm处,而梁自重在跨中截面的弯矩标准值结构重力剪力:M k.1/2=585.90KN·m,在吊点的剪力标准值结构重力剪力:V0=110.75KN·m。 3、材料 主筋用HRB335级钢筋 f sd=280N/ mm2;f sk=335N/m㎡;E S=2.0×10N/mm2. 箍筋用R235等级钢筋 f sd=195N/m㎡;f sk=235N/m㎡;E S=2.1×10N/ mm2. 采用焊接平面钢筋骨架,初步可设a s=30+0.07h 混凝土为C30 f cd=13.8N/ mm2;f ck=20.1N/ mm2; f td=1.39N/ mm2;

迈达斯-截面特性值计算器

<图 1-(1)> 生成Plane 截面的过程 建立截面的轮廓 生成Plane 截面 利用网格进行计算

※注意事项 MIDAS/Civil和Gen数据库中提供的规则截面的抗扭刚度计算方法参见附录一。 对于MIDAS/Civil和Gen数据库中提供的规则截面,利用 MIDAS/Civil、Gen的截面特性计算功能计算截面特性值比SPC更好一些。 MIDAS/Civil和Gen数据库中提供的PSC截面,当用户输入的截面属于薄壁型截面时,应使用本截面特性值中的Line方式重新计算抗扭刚度,然后在截面特性值增减系数中对抗扭刚度进行调整。 对于Plane形式的截面,程序是通过有限元法来近似计算抗扭刚度的。在抗扭问题里使用的近似求解法有Ritz法(或者Galerkin法)、Trefftz法,所有的近似求解都与实际结果多少有点误差,其特征如下: J Ritz≤J Exact≤J Trefftz 像SPC一样利用有限元法近似地计算抗扭刚度时,通常使用Ritz法, 故其计算结果有可能比实际的抗扭刚度小。用户可通过加大网格划分密度方法来提高结果的精确度。 对于Line形式的截面, 如薄壁截面,线的厚度很薄时几乎可以准确地计算其抗扭刚度。但是如果是闭合截面(无开口截面),这种计算方式会导致其抗扭刚度的计算结果随着线厚度的增加而变小,所以对于不是薄壁截面的闭合截面应尽量避免使用Line的方式计算截面特性。 在SPC中对薄壁闭合截面,对闭合部分一定要使用model>closed loop>Register指定闭合。 SPC可以在一个窗口里任意的建立很多个截面,并分别进行分析,且可根据名称、位置、截面特性值等可以很方便地对截面进行搜索及排列。 <图2> 将DXF文件中的截面形状导入后,生成截面并进行排列

显示截面特性值

显示截面特性值 截面惯性矩(Iyy、Izz: Moment of Inertia) 面积:横截面面积。 Asy:单元局部坐标系y轴方向的有效抗剪面积(Effective Shear Area)。 Asz:单元局部坐标系z轴方向的有效抗剪面积(Effective Shear Area)。 Ixx:对单元局部坐标系x轴的扭转惯性距(Torsional Resistance)。 Iyy:对单元局部坐标系 y轴的惯性距(Moment of Inertia)。 Izz:对单元局部坐标系z轴的惯性距(Moment of Inertia)。 Cyp:沿单元局部坐标系+y轴方向,单元截面中和轴到边 缘纤维的距离。 Cym:沿单元局部坐标系-y轴方向,单元截面中和轴到边缘纤维的距离。 Czp:沿单元局部坐标系+z轴方向,单元截面中和轴到边缘纤维的距离。Czm:沿单元局部坐标系-z轴方向,单元截面中和轴到边缘纤维的距离。 Zyy:对y 轴的截面塑性模量。 Zzz:对z轴的截面塑性模量。 Qyb:沿单元局部坐标系z轴方向的剪切系数。 Qzb:沿单元局部坐标系y轴方向的剪切系数。 Peri:O :截面外轮廓周长。 Peri:I :箱型或管型截面的内轮廓周长。 注 象H型钢那样没有内部轮廓的截面的Peri:1值为'0'。 Cent:y :从截面最左 侧到质心距离。 Cent:z :从截面最下端到质心的距离。 y1、z1:截面左上方最边缘点的y、z坐标。 y2、z2:截面右上方最边缘点的y、z坐标。

y3、z3:截面右下方最边缘点的y、z坐标。 y4、z4:截面左下方最边缘点的y、z坐标。 注1 除面积和周长外,以上输入的所有数据仅使用于梁单元。 注2 不指定有效抗剪面积时,程序将忽略剪切变形。Cyp, Cym, Czp和Czm仅用于计算弯曲应力。Qyb和Qzb用于计算剪应力。周长(Peri)用于计算着色面积。 注3 Zyy/Zzz:使用设计 > 静力弹塑性(Pushover)分析 > 定义铰特性值功能进行静力弹塑性分析时,计算数值类型钢截面的刚度所需的截面塑性模量。 注4 输入截面刚性数据 截面面积(Area:Cross Section Area) 利用截面惯性矩(Moment of Inertia)可以计算弯矩(Bending Moment)作用下的截面的抗弯刚度(Flexual Stiffness)。对截面的中和轴的截面惯性矩的大小可按下式计算。对单元坐标系y轴的截面惯性矩 对单元坐标系z轴的截面惯性矩

桥梁工程课程设计(钢筋混凝土T形梁桥设计)

钢筋混凝土T形梁桥设计 一、设计资料与结构布置 (一)设计资料 1.桥面跨径与桥宽 标准跨径:主桥采用标准跨径为30m的装配式钢筋混凝土简支桥。 主桥全长:根据当地的温度统计资料,并参考以往设计经验,确定伸缩缝采用4cm,则预制桥全长29.96m。 计算跨径:根据梁桥计算跨径的取值方法,计算跨径取相邻支座中心间距为29.16m。 桥面宽度:根据一次典型交通量的抽查结果,确定该桥的桥面横向布置为净—7m(行车道)+2*1.0m(人行道+栏杆)。 2.设计荷载 根据该桥所在道路的等级确定荷载等级为: 计算荷载:公路—I级,人群荷载3.5KN/m2 栏杆:每侧1.52kN/m 人行道:每侧3.6kN/m 3.材料初步选定 混凝土:主梁采用50号,人行道、栏杆及桥面铺装用25号。 钢筋:凡直径大于或等于12毫米者用II级钢筋,直径小于12毫米者用I级钢筋。(二)结构布置 1.主梁高:以往的经济分析表明,钢筋混凝土T形简支梁高跨比的经济范围大约在 1/11~1/18之间,根据跨度大者取小值原则,本桥取1/18,则梁高应为1.67m(标准跨径为30m),实际设计按1.7m取。 2.主梁间距:装配式钢筋混凝土T形简支梁的主梁间距一般选择1.5~2.2m之间,本桥选 用2.2m。 3.主梁梁肋宽:为保证主梁的抗剪需要、梁肋受压时的稳定,以及混凝土的振捣质量,本 桥梁肋宽度取0.2m。 4.翼缘板尺寸:由于桥面宽度是给定的,主梁三间距确定后,翼缘板的宽度可得到为2.2m。 因为翼缘板同时又是桥面板,根据其受力特点,一般设计成变厚度。与腹板交接较厚,通常不小于主梁高的1/10,本设计取为0.18m,翼缘板的悬臂端部可以薄些,本设计取为0.14m。 5.横隔梁:为增强桥面系的横向刚度,本桥除在支座处设置端横隔梁外,在跨间等距离布 置三根中横隔梁,间距4*725。梁高一般取为主梁高的3/4左右,即为1.275m,在靠近腹板处横隔梁梁底缘到主梁梁顶的距离为1.455m。厚度通常取12~16cm之间,本设计横隔梁下缘取为15cm,上缘取为16cm。 6.桥面铺装:底层为25号混凝土,缘石边处厚4cm,横坡1.5%,面层采用4cm等厚沥青 混凝土。

钢筋混凝土简支t形梁桥设计计算书设计书

目录 第一章基本设计资料 (1) 第二章行车道板内力计算、配筋及验算 (2) 第三章主梁内力计算 (5) 3.1主梁几何特性计算 (5) 3.2恒载内力计算 (6) 3.3荷载横向分布计算 (7) 3.4活载内力计算 (9) 3.5主梁内力计算 (14) 第四章承载力极限状态下截面设计、配筋与计算 (15) 4.1配置主梁受力钢筋 (15) 4.2截面承载能力极限状态计算 (17) 4.3斜截面抗剪承载能力计算 (17) 4.4箍筋设计 (20) 4.5斜截面抗剪承载能力设计 (21)

第五章正常使用极限状态下的裂缝宽度和挠度验算 (22) 5.1裂缝宽度验算 (22) 5.2挠度验算 (23) 第六章结论 (25) 附录 (25)

钢筋混凝土简支T形梁桥设计计算书 第一章基本设计资料 1.桥梁跨径:20 m 2.计算跨径:19.6 m 3.主梁预制长度:19.96 m 4.主梁结构尺寸拟定:5片;设置5根横隔梁。 (1)主梁梁肋间距: 跨径L=20m,主梁间距为2.25m; 所有跨径两侧人行道宽均为0.75m。 (2)主梁高度:1.68m。 (3)梁肋厚度:本次课程设计规定,跨中稍薄一些,取180mm,在梁肋端部2.0到5.0m范围内可逐渐加宽至靠近端部稍厚一些350mm。 (4)桥面板:4.9×2.25. (5)桥面横坡:桥面横坡采用在桥面板上做铺设不等厚的铺装层,桥面横坡为1.5%。 5.设计荷载:公路-Ⅰ级 人群荷载:3.5 KN/m2

6.结构重要性系数: 1.1 7.材料:(1)钢筋,主钢筋采用HRB335,其它钢筋采用R235。其技术指标见表1; (2)混凝土及其技术指标见表2,T形主梁、桥面铺装,栏杆、人行道跨径m ,混凝土为C35。 l20 表1? 钢筋技术指标 表2 混凝土技术指标 8、设计依据

桥梁工程考试试题与答案

桥梁工程一 一、单项选择题(只有一个选项正确,共10道小题) 1. 桥梁按体系划分可分为梁桥、拱桥、悬索桥、组合体系桥。 2. 桥梁的建筑高度是指桥面与桥跨结构最低边缘的高差。 3. 公路桥梁总长是指桥梁两个桥台侧墙尾端间的距离。 4. 下列桥梁中不属于组合体系桥梁的结合梁桥。 5. 以公路40m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①>③>②。 6. 以铁路48m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①=②<③。 7. 桥梁设计中除了需要的相关力学、数学等基础知识外,设计必须依据的资料是设计技术规范。 8. 我国桥梁设计程序可分为前期工作及设计阶段,设计阶段按“三阶段设计”进行,即初步设计、技术设计与施工设计。 9. 下列哪一个选项不属于桥梁总体规划设计的基本内容桥型选定。 二.判断题(判断正误,共6道小题) 10. 常规桥梁在进行孔跨布置工作中不需要重点考虑的因素为桥址处气候条件。 11. 斜腿刚构桥是梁式桥的一种形式。(×) 12. 悬索桥是跨越能力最大的桥型。(√) 13. 桥梁设计初步阶段包括完成施工详图、施工组织设计和施工预算。(×) 14. 桥位的选择是在服从路线总方向的前提下进行的。(×) 15. 一般来说,桥的跨径越大,总造价越高,施工却越容易。(×) 16. 公路桥梁的总长一般是根据水文计算来确定的。(√) 三、主观题(共3道小题) 17. 请归纳桥上可以通行的交通物包括哪些(不少于三种)?请总结桥梁的跨越对象包括哪些(不少于三种)? 参考答案: 桥梁可以实现不同的交通物跨越障碍。 最基本的交通物有:汽车、火车、行人等。其它的还包括:管线(管线桥)、轮船(运

装配式钢筋混凝土简支t形梁桥设计

装配式钢筋混凝土简支T形梁桥设计 一.基本设计资料 (一)跨度和桥面宽度 标准跨径:16m(墩中心距)。 计算跨径:15.5m。 主梁全长:15.96m。 桥面宽度(桥面净空):净—9m(行车道)+2 2.0(人行道)。 (二)技术标准 设计荷载:公路Ⅱ级,人行道和栏杆自重线密度按照单侧6KN/M计算,人群荷载 3KN/。 环境标准:Ⅰ类环境。 设计安全等级:二级。 (三)主要材料 1.混凝土:混凝土简支T形梁及横梁采用C50混凝土;桥面铺装上层采用0.05m 的沥青混凝土,下层为厚0.06-0.13m的C30混凝土,沥青混凝土重度按23KN/m3计,混凝土重度按26KN/计。 2.钢材:采用R235钢筋,HRB335钢筋。 (四)构造形式及截面尺寸 图1 桥梁横断面和主梁纵断面图(单位:cm) 如图1所示,全桥共有6片T形梁组成,单片T形梁为1.4m,宽1.8m;桥上横坡;为双向1.5%,坡度由C30混凝土铺装控制;设有5根横梁。 二.主梁的计算

(一)主梁的荷载横向分布系数计算 1.跨中荷载横向分布系数 如前所述,桥跨内设有五根横隔梁,具有可靠的横向联系,且承重结构的宽跨比为:B/l=13/15.5=0.838>0.5,故按G-M 法计算。 (1)计算主梁的抗弯及抗扭惯性矩I 和 : 1)球主梁截面的中心位置x (见图2): 翼缘板厚度按平均厚度计算,其平均板后为 h 1= (10+16)cm=13cm 则:x= 2)抗弯惯性矩I 为 I=[ + ] =9069822 对于T 形截面梁,抗扭惯性矩可以近似按下式计算: 式中 , ——单个矩形截面的宽度和高度; ——矩形截面抗扭刚度系数; m ——梁截面划分成单个矩形截面的个数。 的计算过程及结果见表1。 表1 计算表 即得 单位宽度抗弯及抗扭惯矩: (2) 横梁的抗弯及抗扭惯矩

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

桥梁的分类(及其优缺点)

按结构分类,按结构体系分类是以桥梁结构的力学特征为基本着眼点,对桥梁进行分类,以利于把握各种桥梁的基本特点,也是桥梁工程学习的重点之一。以主要的受力构件为基本依据,可分为梁式桥、拱式桥、刚架桥、斜拉桥、悬索桥五大类。 1.梁式桥 主梁为主要承重构件,受力特点为主梁受弯。主要材料为钢筋混凝土、预应力混凝土,多用于中小跨径桥梁。简支梁桥合理最大跨径约20米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70米。 优点:采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。 缺点:结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。 2.拱式桥 拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。主要材料是圬工、钢筋砼,适用范围视材料而定。跨径从几十米到三百多米都有,目前我国最大跨径钢筋砼拱桥为170米。 优点:跨越能力较大;与钢桥及钢筋砼梁桥相比,可

以节省大量钢材和水泥;能耐久,且养护、维修费用少;外型美观;构造较简单,有利于广泛采用。 缺点:由于它是一种推力结构,对地基要求较高;对多孔连续拱桥,为防止一孔破坏而影响全桥,要采取特殊措施或设置单向推力墩以承受不平衡的推力,增加了工程造价;在平原区修拱桥,由于建筑高度较大,使两头的接线工程和桥面纵坡量增大,对行车极为不利。 3.钢架桥 是一种桥跨结构和吨台结构整体相连的桥梁,支柱与主梁共同受力,受力特点为支柱与主梁刚性连接,在主梁端部产生负弯矩,减少了跨中截面正弯矩,而支座不仅提供竖向力还承受弯矩。主要材料为钢筋砼,适宜于中小跨度,常用于需要较大的桥下净空和建筑高度受到限制的情况,如立交桥、高架桥等。 优点:外形尺寸小,桥下净空大,桥下视野开阔,混凝土用量少。 缺点:基础造价较高,钢筋的用量较大,且为超静定结构,会产生次内力。 4.斜拉桥 梁、索、塔为主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩而

钢筋混凝土t形梁桥设计

钢筋混凝土T形梁桥设计一设计资料与结构布置 1桥面跨径及宽度 标准跨径:主桥采用20m标准跨径。 计算跨径:计算跨径取相邻支座间距为19.5m。 桥面宽度:桥面横向宽度为:12m。 2 设计荷载: 根据该桥所在道路的等级确定荷载等级为: 汽车荷载:公路II级荷载。 人群荷载:人群荷载取3.0Kn/m 3材料初步选定: 混凝土:主梁采用C40,人行道,栏杆,桥面铺装采用C25. 钢筋:采用12mm的HRB335钢筋。 二结构布置 1主梁高:混凝土T形简支梁高跨比的经济范围是1/11到1/16之间,故而本桥取1.3米。 2主梁间距:装配式钢筋混凝土T形简支梁的主梁间距一般在1.5到2.2米之间,故而本桥采用2.0米。 3主梁肋宽:参考已成桥梁经验取18cm。 4翼缘板尺寸:端部取10cm,根部取14cm. 5横隔梁:支座处,桥垮的1/4处,以及1/2和3/4处,分别布置一道横隔梁,其尺寸厚度取16cm,高度取一米。

6桥面铺装:采用8cm厚的沥青混凝土桥面铺装. 二主梁内力计算: 1主梁截面几何特性, A=4488cm2 g1=11.22Kn/m 2横隔梁体积: A=1.6cm2 g2=19.5Kn/m 3栏杆,人行道,桥面铺装: 沥青混凝土重度γ=23kn/m 人行道,栏杆每延米重度γ=5.0kn/m 桥面铺装:1.84kn/m 边主梁;5.0+1.84*0.75=6.38kn/m 中主梁:1.84*2.0=3.68kn/m 梁 荷载 一二期荷载三期荷载总和边主梁12.24 6.38 18.62 中主梁12.24 3.68 15.92 4主梁横载内力计算: 项目梁弯矩M 剪力Q L/2 L/4 L/8 L/2 L/4 L/8 边主梁885.03 663.76 387.20 136.16 90.77 181.54 中主梁756.70 567.52 331.06 116.42 77.61 155.22 5用杠杆法计算1,2,3号梁的剪力的荷载横向分布系数

使用ANSYS计算截面特性

使用ANSYS计算截面特性 ANSYS提供了定义梁截面的两种方式:普通截面和用户自定义截面。工字形、箱形、T 形等12种截面属于普通截面,存储在ANSYS参数截面库中;除此之外,均属于用户自定义截面。ANSYS将截面视为多区格的有限元模型, 迭代求解几何特性。 ANSYS求解截面特性的步骤为: (1) 创建截面的几何模型。描述截面几何形状的面域可以在ANSYS中通过点一线一面的方式直接生成;也可以由外部文件导人。一般通过AUTO CAD来建立几何模型。在AUTO CAD 中可将面域分别绘制在不同的图层上,赋予不同的颜色,通过图层开关和颜色等方式进行区分和编辑。有限元分析中,控制网格尺寸和密度对结果的分析有重要影响。在AUTOCAD中,先绘出截面的内外框线,可以用Pedit命令将多段线连成一条多义线(Polyline),然后用region命令围成面域,也可以导人ANSYS后再形成面(AREA)。 (2) 将AUTOCAD中建立的面域另存为Sat文件,然后在ANSYS中用File—Import—sat 方式导人。这种转换方式较方便,模型不会失真变形。 (3) 用Sections--->Beam--->Custom Sections--->write From Areas读取截面,然后在相同目录下用Read Sect Mesh对截面进行网格划分。面进行网格划分。 (4)sections--->Beam--->Plot Sections 即可输出截面特性。 ANSYS默认的单位系是与导人的模型一致的。在图形输出框中的坐标系是Y-Z坐标系。也可以直接在ANSYS去建立模型去计算截面特性.(下面是我在ANSYS中计算斜拉桥的多箱截面主梁的截面特性命令流) (5)导入截面文件,构件一个新的自定义截面,PLOT它,Torsion Constant就是抗扭刚度。 /prep7 et,1,plane82 H=2.8 !主高 S=0.02 !梁横向坡度 k,1,0,2.8 !建立主跨侧主梁

装配式钢筋混凝土简支T型梁桥计算

装配式钢筋混凝土简支T 型梁桥(包括桥墩)计算 钢筋混凝土简支T 形梁的计算 第一部分 一、设计资料 如图 1-1所示,全断面五片主梁,设五根横梁。 极限状态法。 标准跨径:Lb=20.00m (墩中心距离); 计算跨径:L=19.50m (支座中心线距离); 主梁全长:L 全=19.96m (主梁预制长度)。 3.设计荷载 净—8m+2×0.75m 人行道。 2.主梁跨径和全长 1.桥面净空 公路—I 级,人群荷载 3kN/m2。 4.材料 钢筋:主筋用HRB335钢筋,其他用R235钢筋; 混凝土:C25。 5.计算方法 6.结构尺寸 图 1-1

7.设计依据 (1)《公路桥涵设计通用规范》(JTG D60—2004),简称《桥规》; (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》; (3)《公路桥涵地基与基础设计规范》(JTJ 024—85),简称《基规》。 二、主梁的计算 (一)主梁的荷载横向分布系数 1.主梁的抗弯及抗扭惯矩 Ix和 ITx 求主梁界面的重心位置 ax(图 1-2):

图 1-2 平均厚度: h 1=1/2×(8+14)=11(cm) a x =39.3cm I x =1/12×162×113+162×11×(39.3-5.5)2+1/12×18×1303+18×130× (130/2-39.3)2=6894843(cm 2) =6.8948×10-2(m 4) T 形截面抗扭惯矩近似等于各个矩形截面的抗扭惯矩之和,即: I Tx =∑c i b i t i 3 式中:c i —矩形截面抗扭惯矩刚度系数(查表); b i , t i —相应各矩形的宽度和厚度。 查表可知: t 1 /b 1 =0.11/1.80=0.061 , c 1 =1/3 t 2/ b 2 =0.18/(1.3-0.11)=0.151 , c 2 =0.301 故: I Tx =1/3×1.8×0.113+0.301×1.19×0.183

各种桥梁的特点

桥梁一般讲由五大部件和五小部件组成,五大部件是指桥梁承受汽车或其他车辆运输荷载的桥跨上部结构与下部结构,是桥梁结构安全的保证.包括(1)桥跨结构(或称桥孔结构.上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础.五小部件是指直接与桥梁服务功能有关的部件,过去称为桥面构造.包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明. 一、桥梁的分类: 按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥。 按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四中基本体系,此外还有组合体系桥 按行车道位置分为上承式桥、中承式桥、下承式桥 按使用年限可分为永久性桥、半永久性桥、临时桥 按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥桥梁分类多孔跨径总长L(米)单孔跨径L0(米)特大桥L≥500 L0≥100 大桥L≥100 L0≥40 中桥 30

钢筋混凝土简支T形梁桥设计计算实例

钢筋混凝土简支T形梁桥设计 1 基本资料 1.1公路等级:二级公路 1.2主梁形式:钢筋混凝土T形简支形梁 1.3标准跨径:20m 1.4计算跨径:19.7m 1.5实际梁长:19.6m 1.6车道数:二车道 1.7 桥面净空 桥面净空——7m+2×0.75m人行道 1.8 设计依据 (1)《公路桥涵设计通用规范(JTG D60—2004)》,简称《桥规》。 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》,简称《公预规》。 (3)《公路桥涵地基与基础设计规范(JTJ 124-85)》,简称《基规》。 2 具体设计 2.1 主梁的详细尺寸 主梁间距:1.7m 主梁高度:h=(1 11 ~ 1 18 )l=( 1 11 ~ 1 18 )20=1.82~1.1(m)(取1.8) 主梁肋宽度:b=0.2m 主梁的根数:(7m+2×0.75m)/1.7=5 2.2行车道板的内力计算 考虑到主梁翼板在接缝处沿纵向全长设置连接钢筋,故行车道板可按两端固接和中间铰接的板计算。 已知桥面铺装为2cm的沥青表面处治(重力密度为23kN/m3)和平均9cm厚混泥土垫层(重力密度为24kN/m3),C30T梁翼板的重力密度为25kN/m3。 2.2.1结构自重及其内力(按纵向1m宽的板条计算)

) ①每米延板上的恒载 1 g 沥青表面处治: 1 g=0.02×1.0×23=0.46kN/m C25号混凝土垫层: 2 g=0.09×1.0×24=2.16kN/m T梁翼板自重:3g=(0.08+0.14)/2×1.0×25=2.75kN/m 每延米板宽自重:g= 1g+2g+3g=0.46+2.16+2.75=5.37kN/m ②每米宽板条的恒载内力: 弯矩:M g min,=- 2 1 gl20=- 2 1 ×5.37×0.712=-1.35kN.m 剪力:Q Ag =g·l =5.37×0.71=3.81kN 2.2.2汽车车辆荷载产生的内力 公路II级:以重车轮作用于铰缝轴线上为最不利荷载布置,此时两边的悬臂板各承受一半的车轮荷载下图:

钢筋混凝土简支T型梁桥设计

课程设计题目:钢筋混凝土简支T型梁桥主梁设计 1设计资料: 1.1桥面净空 7+2×0.75m人行横道 1.2主梁跨径和全长 学号:40712039(按照规则及学号确定) 标准主梁计算跨径:L=16.40m(支座中心距离) 标准主梁全长:L=16.96m(主梁预制长度) 按学号计算规则:学号最后一位为奇数,调整后的主梁计算跨径,全长分别为准值减去修正值(取学号最后两位数值乘以0.03) 计算修正后的主梁计算跨径:L=16.40-39×0.03=15.23m 计算修正后主梁全长:L=16.96-39×0.03=15.79m 1.3设计荷载 设计荷载为公路-II级 1.4人群荷载 人群荷载为3kN?m3 1.5材料 钢筋:主筋用HRB335级钢,其它用R235级钢; 混凝土标号:C30 1.6计算方法 计算方法为极限状态法

1.7结构尺寸 纵向主梁和横隔梁布置图如图1.1所示,其中横梁用5根。 图1.1混凝土简支梁示意图 2计算采用的技术规范和参考书目 2.1中华人民共和国行业标准《公路桥涵设计通用规范》JTG D60-2004,人民交通出版社,2004年9月; 2.2中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004,人民交通出版社,2004年9月; 2.3易建国,《混凝土简支梁(板)桥》,人民交通出版社; 2.4佋旭东,《桥梁工程》,人民交通出版社; 2.5范立础,《桥梁工程》,人民交通出版社。 3主梁内力计算 3.1恒载内力计算 3.1.1恒载集度计算 主梁:g1=[0.18×1.30+1/2×(0.08+0.14)×(1.6-0.18)]×25=9.76kN/m 对于边主梁:

各种桥梁结构特点及优缺点

简支梁桥: 简支梁桥,以孔为单元,相邻桥孔各自单独受力,属静定结构,适用于中小跨度。它的优点是结构简单,架设方便,可减低造价,缩短工期,同时最易设计成各种标准跨径的装配式构件,它是梁式桥中应用最早、使用最广泛的一种桥形。其构造简单,结构内力不受地基变形,温度改变的影响。缺点:相邻两跨之间存在异向转角,路面有折角,影响行车平顺。 连续梁桥: 两跨或两跨以上连续的梁桥,属于超静定体系。连续梁在恒活载作用下,产生的支点负弯矩对跨中正弯矩有卸载的作用,使内力状态比较均匀合理,因而梁高可以减小,由此可以增大桥下净空,节省材料,且刚度大,整体性好,超载能力大,安全度大,桥面伸缩缝少,行车平顺舒适并且因为跨中截面的弯矩减小,使得桥跨可以增大。 拱桥: 以承受轴向压力为主的拱圈或拱肋作为主要承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。按拱圈的静力体系分为无铰拱、双铰拱、三铰拱。前二者为超静定结构,后者为静定结构。拱桥在竖向荷载作用下,支承处不仅产生竖向反力,而且还产生水平推力。由于这个水平推力的存在,拱的弯矩将比相同跨径的梁的弯矩小很多,而使整个拱主要承受压力。这样,拱桥可充分利用抗压性能较好而抗拉性能较差的圬工材料(石料、混凝土、砖等)来修建。 斜拉桥: 由梁、斜拉索和塔柱三部分组成。斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。 悬索桥: 悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重。悬索桥的坚固性不强,在大风情况下交通必须暂时被中断悬索桥不宜作为重型铁路桥梁,悬索桥的塔架对地面施加非常大的力,因此假如地面本身比较软的话,塔架的地基必须非常大和相当昂贵。悬索桥的悬索锈蚀后不容易更换。

相关主题
文本预览
相关文档 最新文档