当前位置:文档之家› 平面六杆机构应用于锻压的计算机仿真

平面六杆机构应用于锻压的计算机仿真

平面六杆机构应用于锻压的计算机仿真
平面六杆机构应用于锻压的计算机仿真

武汉工程大学

机械原理课程设计说明书

课题名称:平面六杆机构应用于锻压的计算机仿真专业班级:过程装备与控制工程02班

学生学号:

学生姓名:

学生成绩:

指导教师:秦襄培

课题工作时间:2009.6.29 至2009.7. 10

武汉工程大学

目录

第一章:前言 (2)

第二章:机械原理课程设计简介 (3)

2.1 机械原理课程设计的题目 (3)

2.2 机械原理课程设计的目的 (3)

2.3 机械原理课程设计的任务 (3)

2.4 机械原理课程设计的步骤 (4)

第三章:机构运动方案的比较和确定 (5)

3.1 设计方案一:偏置平面六杆机构 (5)

3.2 设计方案二:曲柄摇杆二型移动从动件平面六杆机构 (6)

3.3 设计方案三:曲柄摇块二型移动从动件平面六杆机构 (6)

3.4 设计方案评定 (7)

第四章:机构运动及受力分析的说明 (8)

4.1 机构运动分析 (8)

4.2 机构受力分析 (11)

第五章:机构运动部分程序源代码 (15)

第六章:程序运行界面及结果分析 (22)

6.1 程序运行界面 (22)

6.2 机构运动线图分析 (22)

第七章:课程设计心得体会 (23)

参考文献 (24)

第一章前言

机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸以及润滑方式等进行构思、分析和计算,并将其转化为制造依据的工作过程。机械设计是机械产品生产的第一步,是决定机械产品性能的最主要环节,整个过程蕴涵着创新和发明。为了综合运用机械原理课程的理论知识,分析和解决与本课程有关的实际问题,使所学知识进一步巩固和加深,我们参加了此次的机械原理课程设计。

锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。

在锻造加工中,坯料整体发生明显的塑性变形,有较大量的塑性流动;在冲压加工中,坯料主要通过改变各部位面积的空间位置而成形,其内部不出现较大距离的塑性流动。锻压主要用于加工金属制件,也可用于加工某些非金属,如工程塑料、橡胶、陶瓷坯、砖坯以及复合材料的成形等。

锻压和冶金工业中的轧制、拔制等都属于塑性加工,或称压力加工,但锻压主要用于生产金属制件,而轧制、拔制等主要用于生产板材、带材、管材、型材和线材等通用性金属材料。

锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。常用的锻压机械有锻锤、液压机和机械压力机。锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。

我们这里主要讨论平面六杆机构应用在锻压中的计算机仿真设计。

第二章机械原理课程设计简介

2.1机械原理课程设计设计题目

平面六杆机构应用于锻压的计算机仿真

2.2机械原理课程设计设计目的

机械原理课程设计是使学生较全面、系统巩固和加深机械原理课程的基本原理和方法的重要环节,是培养学生“初步具有确定机械运动方案,分析和设计机械的能力”及“开发创新能力”的一种手段。其目的是:

1) 以机械系统运动方案设计与拟定为结合点,把机械原理课程中分散于各章的理论和方法融会贯通起来,进一步巩固和加深学生所学的理论知识。

2) 使学生能受到拟定机械运动方案的训练,具有初步的机构选型与组合和确定运动方案的能力。

3) 使学生在了解机械运动的变换与传递及力传递的过程中,对机械的运动、动力分析与设计有一个较完整的概念。

4) 进一步提高学生运算、运用流行软件编写应用程序和技术资料的能力。

5) 通过编写说明书,培养学生表达、归纳、总结和独立思考与分析的能力。

2.3机械原理课程设计设计任务

要达到课程设计的目的,必须配以课程设计的具体任务:按照选定的机械总功能要求,分解成分功能,进行机构的选型与组合;设计该机械系统的几种运动方案,对各运动方案进行对比和选择;对选定方案中的机构——连杆机构、凸轮机构、齿轮机构,其他常用机构,组合机构等进行运动分析与参数设计;通过计算机编程,将机构运动循环图在计算机屏幕上动态地显示出来,并给出相应的运动参数值。

针对设计题目,有以下设计任务:

a)设计出的平面六杆机构必需满足锻压设备的基本特性

b)尽量使机构工作时获得最大的机械利益

c)设计传动系统并确定其传动比分配。

d)对连杆机构进行速度、加速度分析,用解析法设计连杆机构

e)图纸上画出平面运动方案简图,并用运动循环图分配各机构运动节拍。

f)机构的设计计算

g)编写设计计算说明书

h)使用VB程序设计出动画仿真,完成计算机动态演示

2.4机械原理课程设计设计步骤

1. 功能原理方案的设计和构思根据所选机械所要实现的功能(功用)采用有关的工作原理,由工作原理出发设计和构思出工艺动作过程。

2. 机械运动方案的设计机械运动方案通常用机械运动示意图来表示,它是根据功能原理方案中提出的工艺动作过程及各个动作的运动规律要求,选择相应的若干个执行机构,并按一定的顺序把它们组合成机械运动示意图。这个机构系统应能合理地、可靠地完成上述工艺动作。机械运动方案中所画出的表示机构结构型式、机构相互联接情况的示意图是进行机械运动简图设计尺度设计的依据。

3. 机械运动模型的建立确定已知参数;作所选机构的封闭矢量图形,并建立相应的机构的位置矢量多边形方程;将矢量方程转换为直角坐标方程,求出机构各关键点的位置坐标方程;将位置方程两边对时间分别求一次、二次导数,联立求出机构的速度和加速度方程。

4. 根据所求出的位置、速度、加速度方程,应用可视化编程语言编制可视化的计算和动画显示程序,上机调试、运行通过。

5. 编写设计说明书

第三章 机构运动方案的比较和确定

要达成以上目的,杆件的组合选择相对简单,关键是要将冲压与物料接触的过程时间配合的非常恰当,使机构在锻压物料时获得最大的机械利益,并且减少机构的磨损消耗。这样来说就对机构提出了较高的要求。我们设计了三个方案。

3.1 方案一:偏置平面六杆机构

图一

曲柄摇杆机构,构件A 为原动件,作圆周转动时带动连杆C ,经传动使B 作上下往复运动,当B 到达最低点时,与物料接触,达到冲压的目的。(如图一)

e

A

B

C

3.2 方案二:曲柄摇杆二型移动从动件平面六杆机构

图二

此方案在方案一的基础上做了一点修改。同样是曲柄摇杆机构,以构件A 为原动件,作圆周转动时带动连杆C ,经传动使B 作上下往复运动,但去掉了偏距e ,可以使机构工作时获得的机械利益更大。(如图二)

3.3 方案三:曲柄摇块二型移动从动件平面六杆机构

图三

A

C

B

D

C

B

A

此方案的机构为曲柄摇块,A为原动件做圆周运动,经过B,C摇块,使D滑块做上下往复运动,当D到达最低点时,获得最大动量,同时与物料接触,达到冲压的目的。

3.4 方案评定

方案一存在偏距e,在死点位置时,不能获得最大机械利益,达不到预期目的,而方案二接近死点位置时具有最大机械利益,满足工作需要。

方案三曲柄滑块机构,在D接近最低位置时具有的加速度的并不理想,等它到达预定的地方,我们用一个带有滑块的杆件(上下方向)来推动,实现上下振动的目的;但是这样做有一个很大的缺陷,就是加上一个上下方向的机构将会对机构产生更大的磨损,而且多一个机构就又需要多一个动力引进,时间配合上就比较烦琐。另外设计中可能会出现死点,在机构惯性不大时会影响运动的进行。方案二采用了简短的运动链,有利于降低机械的重量和制造成本,也有利于提高机械效率和减少积累误差。

所以最终选定方案二为最佳设计方案。

第四章 机构运动及受力分析的计算说明

4.1机构的运动分析

图四

在图四所示的坐标系中,B.C 两点的坐标分别为1cos B x x H L ?=+,

1sin B x y H L ?=-+, 3cos C x L δ=,3sin C y L δ=, B.C 两点间的杆长约束方程及其解分别为

22231312(sin sin )(cos cos )y x L H L L H L L φφ?+-+?--= ○1

定义

1A .

1

B 和.

1

C 分别为

2222

13211(sin )(cos )y x A L L H L H L φφ=-+-++ ○

2 1312(sin )y B L H L φ=- ○

3 1312(cos )x C L H L φ=+ ○4

式○1转化成以δ为变量的三角函数式为

111sin 0A B C COS +?-?= ○5

将正弦与余弦函数转化为正切函数,式○5转化为

211111()tan (/2)2tan(/2)()0A C B A C +?+?+-= ○6

于是,摇杆3的角位移δ为

22221111112tan [()/()]arc B B A C A C ?=+-+-- ○7

杆1.2.3与6组成曲柄摇杆机构,其位置方程与速度方程分别为

/231

2i i i i i y x H e H e L e Le L e ππφ

θ?++=+ ○8 332211i i i L e L e L e θ?ωωω?-= ○

9

由式○9得连杆2与摇杆3的角速度2ω.3ω分别为

2112sin()/[sin()]L L ωω?θ=--?-? ○10 3113sin()/[sin()]L L ωω?θθ=-?- ○11

对式○9 求关于时间t 的一阶导数,得角加速的方程及其解2?.3?分别为

222333322221111i i i i i i L e iL e L e iL e L e iL e θθ

??ωωω???+-?-=?+ ○

12 211111322322[sin()()cos()()cos()]/[sin()]L L L L ?ωωω?ωωωθθ?=?-?+--?--?-?-

13 311111233323[sin()()cos()()cos()]/[sin()]L L L L ?θωωω?θωωωθθ?=?-+----?-?-

○14

连杆2质心处的位置

2x .

2

y 速度

2x V .

2

y V 加速度

2x a .

2

y a 分别为

212cos cos x C x H L L ?θ=++ ○15 212sin sin y C y H L L ?θ=-++ ○16 21122sin sin x C V L L ω?ωθ=-- ○17 21122cos cos y C V L L ω?ωθ=+ ○

18 22

211112222sin cos sin cos x C C a L L L L ?ω?θωθ=-?--?- ○

19 22

211112222cos sin cos sin y C C a L L L L ?ω?θωθ=?-+?- ○

20

杆3,4,5与6组成曲柄滑块机构,其位置方程及其解?,5S 分别为

3/2543i i i S e L e L e π??+= ○

21 222

433arctan 2[cos /(cos )]L L L ?=-?? ○

22 543sin sin S L L ?=-? ○

23

对式○21求关于时间t 的一阶导数,得速度方程及其解4ω,5V 分别为

3/254433i i i V e iL e iL e π?ωω?+= ○24 4334sin /(sin )L L ωωφ=? ○25 54433cos cos V L L ωφω=-? ○

26

对式○24求关于时间t 的一阶导数,得加速度方程及其解4α,5a 分别为

3/222544443333i i i i i a e iL e L e iL a e L e πφφωω??

+?-=- ○27 22

43333444[sin cos cos ]/[sin ]L L L L αωωφφ=??+?- ○28 22

533334444sin cos cos sin a L L L L ωφωφ=?-??+?- ○

29

连杆4质心处的位置

4x ,4y ,速度4x V ,4y V 及加速度4x a ,4y a 分别为

444()cos c x L L ψ=- ○30

434sin sin c y L L δψ=- ○31

4444()sin x c V L L ωψ=- ○

32

43344cos cos y c V L L ωδωψ

=- ○

33

24444444()sin ()cos x c c a L L L L w αψψ=-+- ○

34

22433334444cos sin cos sin y c c a L L L L αδωδαψωψ=--+ ○

35

4.2机构的受力分析

在图四中,当5V <0时,

55max 9500[10.2cos()]r F V V N

=-;当

5V ≥0时,0r F =。

设滑块5的质量5185m kg =,连杆4的质量495m kg =,关于中点4S 的转动惯量

240.600s J kgm =,连杆2的质量280m kg =,关于中点B 的转动惯量2

0.400B J kgm =,

其余构件的质量与转动惯量忽略不计。各运动副中的相互作用力以及平衡力矩

b M 如图四所示。

在图四中,首先对图四所示的杆组4—5做受力分析,构件之间的受力标注如图所示。由构件4关于E 点的力矩平衡方程得4C t F 为

444444444444()sin ()()cos 0

C t x C y C F L m a L L m a g L L J ψψα+-++--= 444444444444

[()sin ()()cos ]C t x C y C F m a L L m a g L L J L ψψα=--++--

对杆组4-5的C 点取力矩平衡方程,得机架6对滑块5的作用力

65

F 为

65455444444444sin [()]cos ()cos sin 0

r y C x C F L m a g F L m a g L m a L J ψψψψα-++-++--=

655554444444444[()cos ()cos sin ](sin )

r y C x C F m a m g F L m a g L m a L J L ψψψαψ=+-++--

对杆组4—5取杆4方向的力平衡方程,得4C r F 为

444556544[()()]sin ()cos 0

C r y r x F m a g m a g F F m a ψψ++++-++=

444556544[()()]sin ()cos C r y r x F m a g m a g F F m a ψψ

=-+++--+

构件4在C 点受到的总作用力4C F 为

22

444C C t C r F F F =+

为此,构件4,5之间的相互作用力

22

4565555()r F F m a m g F =++-

其次,对图四所示的杆组2—3作受力分析,构件之间的受力标注如图所示。由构件2关于C 点的力矩平衡方程得12t F 为

1222222222222()()cos()()sin()0

t y C x C F L m a g L L m a L L J πθπθα-+------=

1222222222222

[()()cos ()sin ]t y C x C F J m a g L L m a L L L αθθ=-+-+-

由于构件3为二力杆,设构件3对C 点的作用力3C F 沿δ方向,对杆组2—3的B 点取力矩平衡方程,得3C F 为

322222222222sin()()cos()sin()sin(0.5)sin()0

C y C x Ct Cr F L m a g L m a L J F L F L δθπθπθαψπθψθ-++-+--+--+-=

222222223222[()cos sin [sin()]

sin(0.5)sin()]

y C x C Ct Cr m a g L m a L J F L F L F L θθαδθψθθψθ+-+=

------

对杆组2—3取杆2方向上的力平衡方程,得12r

F 为

122222cos()()sin()cos()sin()0r x y Cr Ct F m a m a g F F πθπθθψθψ-+--+-+---=

即,

122222cos()()sin()cos()sin()r x y Cr Ct F m a m a g F F πθπθθψθψ=--+-+---

构件1,2之间的总作用力12F 为

22

121212t r F F F =+

再次,对曲柄1作受力分析,连杆2对曲柄1的作用力2112r r F F =,2112t t F F =,为此,曲柄1上的驱动力矩b M 及其平均值bp

M 为

1211210b r t M L F L F +?+?= 即

121121b r t M L F L F =-?-?

211211sin()sin(2)b r t M F L F L ?θ?θπ=-+--

1

1

1()

N bp b j M M N ?==∑

最后,曲柄1上的等效阻力矩

51er r M F V ω=?

11

11()N erp er j M M N ?==∑

机构关于构件1的固定转动中心A 与1ω的等效转动惯量e J 及其平均值ep J 分别为

2222

224422

25242244522

11111()()()()x y x y e V V V V V J J m J m m ωω?ωωωωω++=++++

1

1

11()N ep e j J J N ?==∑

表1. 机构的设计参数

参数 1ω

(rad/s)

1L (m) 2L (m) 2C L (m) 3L (m) 4L (m) 4C L (m) x H (m) y

H (m) 数据 12

0.150 0.800 0.450 0.650 0.700 0.300 0.650 0.650

第五章 仿真机构部分程序源代码

经过上述解析法的讨论,经VB编程

源代码如下:

Dim t!

Dim L1, L2, L3, L4, w1, w2, w3, a2, a3, φ1, φ2, φ3, A, B, C

Dim i As Integer

Private Sub Command1_Click()

Timer1.Enabled = True

Timer1.Interval = 50

t = 0.1

End Sub

Private Sub Command2_Click()

Timer1.Enabled = False

End Sub

Private Sub Command3_Click()

Timer1.Enabled = True

Timer1.Interval = 50

t = -0.1

End Sub

…………省略部分代码

Private Sub Form_Load()

Top = 0

Left = 0

Label2.Visible = False

Form1.Height = Screen.Height

Form1.Width = Screen.Width

Scale (-Width / 2, Height / 2)-(Width / 2, -Height / 2)

Timer1_Timer

φ1 = 0

End Sub

Private Sub Label13_Click()

Label13.Visible = False

End Sub

Private Sub Label2_Click()

Label2.Visible = False

End Sub

Private Sub Timer1_Timer()

Static q

q = q + t

Cls

'计算式

Const L1 = 1000: L2 = 4000: L3 = 1500: L4 = 4000: pi = 3.14159: l5 = 3000

A = L4 - L1 * Cos(q)

B = -L1 * Sin(q)

C = (A ^ 2 + B ^ 2 + L3 ^ 2 - L2 ^ 2) / (2 * L3)

f3 = 2 * Atn((B + Sqr(A ^ 2 + B ^ 2 - C ^ 2)) / (A - C))

xb = L1 * Cos(q)

yb = L1 * Sin(q)

xd = 4000

yd = -1000

xc = L3 * Cos(f3) + 4000

yc = L3 * Sin(f3) - 1200

xe = 4000

ye = Sqr(l5 ^ 2 - (L1 * Cos(q)) ^ 2) + yc

DrawStyle = 0

DrawWidth = 2

ForeColor = RGB(0, 0, 0)

Line (xc, yc)-(xe, ye)

Line (xe - 150, ye - 250)-(xe + 150, ye + 250), vbGreen, BF '画锻压头

Line (0, 0)-(xb, yb)

Line (xb, yb)-(xc, yc)

Line (xc, yc)-(xd, yd)

Circle (0, 0), 50 '画铰链

Circle (xb, yb), 50

Circle (xc, yc), 50

Circle (xd, yd), 50

Line (0, 0)-(-100, -200) '画A点机架

Line (0, 0)-(100, -200)

Line (-200, -200)-(200, -200)

Line (4000, -1000)-(3900, -1200) '画D点机架

Line (4000, -1000)-(4100, -1200)

Line (3800, -1200)-(4200, -1200)

Line (4150, 3500)-(4150, 1500) '画锻压头各边的约束

Line (4000 - 150, 3500)-(4000 - 150, 1500)

Line (3000, 3800)-(5000, 3800)

CurrentX = 4500

CurrentY = 3700

Print "<-------这里可放被锻压的物品"

For jj = 0 To 20 Step 1 '锻压头水平约束斜线jjj = 3000 + 100 * jj

Line (jjj, 3800)-(jjj - 100, 3900)

Next jj

For ii = 0 To 20 Step 1 '锻压头左边垂直约束斜线iii = 1500 + 100 * ii

Line (4000 - 150, iii)-(4000 - 250, iii + 100)

Next ii

For s = 0 To 20 Step 1 '锻压头右边垂直约束斜线k = 1500 + 100 * s

Line (4150, k)-(4250, k + 100)

Next s

For j = 0 To 4 Step 1 'A点约束斜线

m = -200 + 100 * j

Line (m, -200)-(m - 100, -300)

Next j

For i = 0 To 4 Step 1 'D点约束斜线

n = 3800 + 100 * i

Line (n, -1200)-(n - 100, -1300)

Next i

DrawStyle = 2

DrawWidth = 1

ForeColor = RGB(0, 0, 0)

Circle (xa, ya), L1

…………省略部分代码

'运动线图分析计算式

w1 = pi

A = L4 - L1 * Cos(φ1)

B = -L1 * Sin(φ1)

C = (A ^ 2 + B ^ 2 + L3 ^ 2 - L2 ^ 2) / (2 * L3)

φ2 = Atn((B + L3 * Sin(φ3)) / (A + L3 * Cos(φ3)))

φ3 = 2 * Atn((B + Sqr(A ^ 2 + B ^ 2 - C ^ 2)) / (A - C))

w2 = -w1 * L1 * Sin(φ1 - φ3) / (L2 * Sin(φ2 - φ3))

w3 = w1 * L1 * Sin(φ1 - φ2) / (L3 * Sin(φ3 - φ2))

a3 = (L2 * w2 ^ 2 + L1 * w1 ^ 2 * Cos(φ1 - φ2) - L3 * w3 ^ 2 * Cos(φ3 - φ2)) / (L3 * Sin(φ3 - φ2))

a2 = (L3 * w3 ^ 2 - L1 * w1 ^ 2 * Sin(φ1 - φ3) - 2 * w2 ^ 2 * Cos(φ2 - φ3)) / (L2 * Sin(φ2 - φ3))

φ1 = φ1 + pi / 180

'画三条运动线

For ii = 0 To pi Step 2

φ1 = φ1 + pi / 180

If φ1 <= 2 * pi Then

Picture1.PSet (φ1 * 58, φ2 * 180), vbGreen

Picture1.PSet (φ1 * 58, w2 * 150), vbRed

Picture1.PSet (φ1 * 58, a2 * 10), vbBlue

计算机仿真技术的发展概述及认识

学院 专业 届别 课程 班级 姓名 学号 联系方式 指导老师2012年5月

计算机仿真技术的发展概述及认识 摘要:随着经济的发展和社会的进步,计算机技术高速发展,使人类社会进入了信息时代,计算机作为后期新秀渗入到人们生活中的每一个领域,给人们的生活带来了前所未有的变化。作为新兴的技术,计算机技术在人类研究的各个领域起到了只管至关重要的作用,帮助人类解决了许多技术难题。在科研领域,计算机技术与仿真技术相结合,形成了计算机仿真技术,作为人们科学研究的一种新型方法,被人们应用到各个领域,用来解决人们用纯数学方法或者现实实验无法解决的问题,对科研领域技术成果的形成有着积极地促进作用。 本文在计算机仿真技术的理论思想基础上,分析了计算机仿真技术产生的基本原因,也就是人们用计算机模拟解决问题的优点所在,讨论了模拟、仿真、实验、计算机仿真之间的联系和区别,介绍了计算机仿真技术的发展历程,并查阅相关资料介绍了计算机仿真技术在不同领域的应用,分析并预测了计算机仿真的未来发展趋势。经过查阅大量数据资料并加以分析对比,这对于初步认识计算机仿真技术具有重要意义。 关键词:计算机仿真;模拟;仿真技术;发展 Discussionand understanding of the development of computer simulation technology Abstract:In the field of scientific research, computer technology and simulation technology is the combination of computer simulation technology as a new method of scientific research applied to various fields, used to solve the problems of pure mathematical methods or practical experiments can not be solved, has a positive role in promoting the formation of scientific research and technological achievements. In the theory of computer simulation technology based on the idea of computer simulation technology to produce the basic reason people use computer simulation to solve the problem of the advantages of where to discuss the links and

通信对抗原理大作业题目

通信对抗原理仿真大作业题目 基本要求:仿真大作业分组完成,每个组3~5人,至少选择4个题目,并且在每一类中至少选择一个题目。利用MATLAB完成计算机仿真,并且撰写仿真实验报告。大作业完成情况将作为评价平时成绩的依据。 第一类:测频方法仿真 1.FFT法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以上, 基于FFT法进行载波频率测量。画出信号的时域、频域波形,给出FFT法测量的结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 2.互相关法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以上, 基于互相关法进行载波频率测量。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 3.相位差分法数字测频技术仿真。仿真模拟通信信号或者数字通信信号三种以 上,基于相位差分法法进行载波频率测量。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比与测量误差的关系。 第二类:测向方法仿真 4.相位干涉仪测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上, 基于相位干涉仪测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出到达方向测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 5.到达时差测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基 于到达时差测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,观察相关函数,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。6.多普勒测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基于 多普勒测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 7.沃森-瓦特测向方法仿真。仿真模拟通信信号或者数字通信信号两种以上,基 于沃森-瓦特测向方法,对不同方向到达的通信信号进行测向。画出信号的时域、频域波形,给出测量结果。进一步在0-20dB信噪比条件给出不同信噪比下的测量曲线,分析信噪比、到达角与测量误差的关系。 第三类:信号处理技术仿真 8.信号带宽和幅度测量方法仿真。仿真模拟通信信号或者数字通信信号三种以 上,基于FFT法进行信号带宽、信号相对幅度测量。画出信号的时域、频域

计算机仿真试题和答案

控制系统计算机辅助设计 综合实验指导 实验名称:连续与离散系统校正实验,系统可控性与可观性实验,系统的simulink仿真实验 陈茜编 实验人:苏建聪 学号:200830810122 班级:08电气工程及其自动化1班 信息工程系

实验任务书 1. 有一个单位负反馈控制系统,如果控制对象的传递函数为 设计要求: ① 相角裕度≥45°; ② 当系统的输入信号是单位斜坡信号时,稳态误差ess ≤0.04。 ③ 要求绘制出校正后系统和未校正系统的Bode 图及其闭环系统的单位阶跃响应曲线,并进行对比。 2. 有一个单位负反馈控制系统,如果控制对象的传递函数为: 试设计一个串联滞后校正装置。 设计要求: ①相角裕度≥45°; ② 当系统的输入信号是单位斜坡信号时,稳态误差ess ≤0.04。 ③ 要求绘制出校正后系统和未校正系统的Bode 图及其闭环系统的单位阶跃响应曲线,并进行对比。 3. 有一个单位负反馈控制系统,如果控制对象的传递函数为 ()() 4+= s s k s G p 试设计一个串联超前滞后校正装置,设计要求: ①相角裕度≥45°; ② 当系统的输入信号是单位斜坡信号时,稳态误差ess ≤0.04。 ③ 要求绘制出校正后系统和未校正系统的Bode 图及其闭环系统的单位阶跃响应曲线,并进行对比。 4. 系统结构图如图所示,其中,采样周期Ts=0.01s ,被控对象()() 110+= s s s G ,()s G h 为 零阶保持器。用W 变换法设计一超前校正装置D(z),使系统相位裕度γ≥50°,校验设计后系统的性能指标。 5. 系统结构图如图所示,其中,采样周期Ts=0.01s ,被控对象1) s(0.2s k )(+= s G ο, () s G h 为零阶保持器。用对数频率法设计D(z),使系统开环增益k ≥30(1/s),截

机械毕业设计1157牛头刨床六杆机构运动分析程序设计

摘要 在工程技术领域,经常会遇到一些需要反复操作,重复性很高的工作,如果能有一个供反复操作且操作简单的专用工具,图形用户界面就是最好的选择。如在本设计中对于牛头刨床平面六杆机构来说,为了保证结构参数与运动参数不同的牛头刨床的运动特性,即刨刀在切削过程中接近于等速运动从而保证加工质量和延长刀具寿命,以及刀具的急回性能从而提高生产率,这样的问题如果能够通过设计一个模型平台,之后只需改变参量就可以解决预期的问题,这将大大的提高设计效率。本设计中正是通过建立牛头刨床六杆机构的数学模型,然后用MA TLAB程序设计出一个友好的人机交互的图形界面,并将数学模型参数化,使用户只需改变牛头刨床的参数就可以方便的实现运动分析和运动仿真,用户可以形象直观地观察到牛头刨床的运动轨迹、速度变化及加速度变化规律。 关键词:牛头刨床六杆机构MA TLAB 运动仿真程序开发

Abstract In the engineering area, often repeatedly encountered some operational needs, repetitive highly, and if the operation can be repeated for a simple operation and dedicated tool graphical user interface is the best choice. As in the planer graphic design for six pole bodies, and campaigns to ensure the structural parameters of different parameters planer movement characteristics, planning tool in the process of cutting close to equal campaign to ensure processing quality and extended life cutlery and cutlery rush back to the performance enhancing productivity, If such issues can be adopted to design a model platform parameter can be changed only after the expected settlement, which will greatly enhance the efficiency of the design. It is through the establishment of this design planer six pole bodies mathematical model, and then use MATLAB to devise procedures of a friendly aircraft in the world graphics interface, and mathematical models of the parameters, so that users only need to change the parameters planer can facilitate the realization of movement analysis and sports simulation, Users can visual image observed in planer movement trajectories, speed changes and acceleration changes. Keywords:Planer 6 pole bodies MATLAB Campaign simulation Procedure development.

计算机仿真技术的发展概述及认识

计算机仿真技术的发展概述及认识 摘要:随着经济的发展和社会的进步,计算机技术高速发展,使人类社会进入了信息时代,计算机作为后期新秀渗入到人们生活中的每一个领域,给人们的生活带来了前所未有的变化。作为新兴的技术,计算机技术在人类研究的各个领域起到了只管至关重要的作用,帮助人类解决了许多技术难题。在科研领域,计算机技术与仿真技术相结合,形成了计算机仿真技术,作为人们科学研究的一种新型方法,被人们应用到各个领域,用来解决人们用纯数学方法或者现实实验无法解决的问题,对科研领域技术成果的形成有着积极地促进作用。 本文在计算机仿真技术的理论思想基础上,分析了计算机仿真技术产生的基本原因,也就是人们用计算机模拟解决问题的优点所在,讨论了模拟、仿真、实验、计算机仿真之间的联系和区别,介绍了计算机仿真技术的发展历程,并查阅相关资料介绍了计算机仿真技术在不同领域的应用,分析并预测了计算机仿真的未来发展趋势。经过查阅大量数据资料并加以分析对比,这对于初步认识计算机仿真技术具有重要意义。 关键词:计算机仿真;模拟;仿真技术;发展 一、引言 计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。其原理可追溯到1773年法国自然学家G.L.L.Buffon为估计圆周率值所进行的物理实验。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中,但难以满足航天、化工等大规模复杂系统对仿真时限的要求;到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 二、基本概念 模拟:(Simulation)应用模型和计算机开展地理过程数值和非数值分析。不是去求系统方程的解析解,而是从系统某初始状态出发,去计算短暂时间之后接着发生的状态,再以此为初始状态不断的重复,就能展示系统的行为模式。模拟是对真实事物或者过程的虚拟。模拟要表现出选定的物理系统或抽象系统的关键特性。模拟的关键问题包括有效信息的获取、关键特性和表现的选定、近似简化和假设的应用,以及模拟的重现度和有效性。可以认为仿真是一种重现系统外在表现的特殊的模拟。 仿真:(Emulation)利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验来研究存在的或设计中的系统,又称模拟。即使用项目模型将特定于某一具体层次的不确定性转化为它们对目标的影响,该影响是在项目仿真项目

计算机仿真期末大作业Mersenne Twister随机数发生器及随机性测试

Mersenne Twister随机数发生器及随机性测试 一、实验目的 用MATLAB实现Mersenne Twister随机数发生器,并对其随机性进行测试。二、实验原理 伪随机数的产生,首先是选取种子,然后是在此种子基础上根据具体的生成算法计算得到一个伪随机数,然后利用此伪随机数再根据生成算法递归计算出下二个伪随机数,直到将所有不重复出现的伪随机数全部计算出来。这个伪随机数序列就是以后要用到的伪随机数序列。上面的计算过程可以一次性计算完毕,也可以使用一次递归计算一次,每次生成的伪随机数就是这个伪随机数序列中的一个,不过不管怎么样,只要确定了种子,确定了生成算法,这个序列就是确定的了。所谓种子,就是一个对伪随机数计算的初始值。 Mersenne Twister算法是一种随机数产生方法,它是移位寄存器法的变种。该算法的原理:Mersenne Twister算法是利用线性反馈移位寄存器(LFSR)产生随机数的,LFSR的反馈函数是寄存器中某些位的简单异或,这些位也称之为抽头序列。一个n位的LFSR能够在重复之前产生2^n-1位长的伪随机序列。只有具有一定抽头序列的LFSR才能通过所有2^n-1个内部状态,产生2^n - 1位长的伪随机序列,这个输出的序列就称之为m序列。为了使LFSR成为最大周期的LFSR,由抽头序列加上常数1形成的多项式必须是本原多项式。一个n阶本原多项式是不可约多项式,它能整除x^(2*n-1)+1而不能整除x^d+1,其中d能整除2^n-1。例如(32,7,5,3,2,1,0)是指本原多项式x^32+x^7+x^5+x^3+x^2+x+1,把它转化为最大周期LFSR就是在LFSR小邓第32,7,5,2,1位抽头。利用上述两种方法产生周期为m的伪随机序列后,只需要将产生的伪随机序列除以序列的周期,就可以得到(0,1)上均匀分布的伪随机序列了。 伪代码如下: // 建立624位随机序列数组 int[0..623] MT int index = 0 //初始化随机序列数组 function initializeGenerator(int seed) { MT[0] := seed for i from 1 to 623 { MT[i] := last 32 bits of(1812433253 * (MT[i-1] xor(right shift by 30 bits(MT[i-1]))) + i) // 0x6c078965 } }

系统结构期末考试试题及答案

得分 评分人 填空题: (20分,每题2 分) 单选题:(10分,每题1分) A.任何虚页都可装入主存中任何实页的位置 B. 一个虚页只装进固定的主存实页位置 《计算机系统结构》期末考试试卷(A ) 得分 注:1、共100分,考试时间120分钟。 2、此试卷适用于计算机科学与技术本科专业。 1、."启动I/O"指令是主要的输入输出指令,是属于( A. 目态指令 B.管态指令 C.目态、管态都能用的指令 D.编译程序只能用的指令 2、 输入输出系统硬件的功能对 (B )是透明的 A.操作系统程序员 B.应用程序员 C.系统结构设计人员 D.机器语言程序设计员 3、 全相联地址映象是指(A ) C. 组之间固定,组内任何虚页可装入任何实页位置 D.组间可任意装入,组内是固定装入 4、( C ) 属于MIMD 系统结构 A.各处理单元同时受一个控制单元的管理 B.各处理单元同时受同个控制单元送来的指令 C.松耦合多处理机和多计算机系统 D. 阵列处理机 5、多处理机上两个程序段之间若有先写后读的数据相关,则( B ) A.可以并行执行 B.不可能并行 C.任何情况均可交换串行 D.必须并行执行 6、 计算机使用的语言是(B ) A.专属软件范畴,与计算机体系结构无关 B.分属于计算机系统各个层次 C.属于用以建立一个用户的应用环境 D. 属于符号化的机器指令 7、 指令执行结果出现异常引起的中断是( C ) A.输入/输出中断 B.机器校验中断 C.程序性中断 D.外部中断 &块冲突概率最高的 Cache 地址映象方式是(A ) A.直接 B .组相联 C .段相联 D .全相联 9、 组相联映象、LRU 替换的Cache 存储器,不影响 Cache 命中率的是(B ) A.增大块的大小 B .增大主存容量 C .增大组的大小 D .增加Cache 中的块数 10、 流水处理机对全局性相关的处理不 包括(C ) A.猜测法 B.提前形成条件码 C.加快短循环程序的执行 D.设置相关专用通路

平面六杆机构运动分析

平面六杆机构运动分析 2111306008 王健 1、 曲柄摇杆串RRP 型II 级杆组平面六杆机构数学模型 如图1所示,当曲柄1做匀速转动时,滑块5做往复移动,该机构的行程速比系数大于1,有急回特性,且传动角较大。设曲柄1的角速度为ω,并在铰链C 建立坐标oxy 。由图可知,该机构由构件1、2、3、6组成的曲柄导杆机构和构件3、4、5、6组成的摆动滑块机构组成。机构中错误!未找到引用源。 (i=1,2,3,4)分别表示曲柄l 、机架2、导杆3、连杆4的长度及滑块5的行程用5s 表示。曲柄转动中心A 的坐标(y x H H ,)。 图1 六杆机构运动简图 对构件1、2、3、6组成的曲柄导杆机构进行运动分析。曲柄1转动角度 ?、连杆2转动角度 错误!未找到引用源。 及摇杆3转动角度错误!未找到引用源。都是以X 轴正方向为起始边的度量角度,单位为rad 。并设机构初始位置为曲柄1转角 0=?的位置。该机构的位置方程为: ?θδππi i i i x i y e L e L e L e H e H 1232/+=++ (1) 式(1)中x 、y 轴的分量等式为:

{ θ?δθ?δcos cos cos cos sin sin 213213L L L H L L L H x y +=+-+=+ (2) 当 错误!未找到引用源。 在 3600-作匀速变化时,就可以求出对应的连杆2的转角 错误!未找到引用源。 以及摇杆3的转角δ的值。将式消去 错误!未找到引用 源。 ,得到: ()()22213213cos cos sin sin L L H L L H L x y =--+-+?δ?δ (3) 将(3)式分解,并分别定义: ()212122231cos )sin (??L H L H L L A x y ++-+-= )sin (2131?L H L B y -= )cos (2131?L H L C x += 摇杆3的角位移 ()]/)tan[(2112121211C A C A B B a --+-+=δ (4) 由(2)式可得连杆 2 的角位移 ]/)sin sin arcsin[(213L L L H y ?δθ-+= (5) 假设曲柄作匀角速度dt d /φω=是常数,对式2求时间导数,得到连杆2的角速度2ω以及摇杆3角速度3ω,方程式如下: ( )()][sin cos sin cos sin cos 11233322?ω?ωωωδδθθL L L L L L =-- (6) 对式(6)求时间导数, 得到连杆 2 的角加速度及摇杆 3 的角加速度2a ,方程式 如下: ()()] [cos cos cos sin sin sin sin cos sin cos 3232221232322212233322δωθ?ωδωθ?ωδ δθθL L w L L L w L a a L L L L -+-----= (7) 再对构件3、4、5、6 组成的摆动滑块机构进行运动分析。首先建立机构位置方程,方程如下: 2/3543πφδi i i e S e L e L += (8) 式中5S 为滑块的行程。 按同样的方法可分别得到滑块 5 的位置、速度、加速度方程。连杆4和滑块5的位置方程为:

控制系统数字仿真大作业.

《控制系统数字仿真》课程 大作业 姓名: 学号: 班级: 日期: 同组人员:

目录 一、引言 (2) 二、设计方法 (2) 1、系统数学模型 (2) 2、系统性能指标 (4) 2.1 绘制系统阶跃响应曲线、根轨迹图、频率特性 (4) 2.2 稳定性分析 (6) 2.3 性能指标分析 (6) 3、控制器设计 (6) 三、深入探讨 (9) 1、比例-微分控制器(PD) (9) 2、比例-积分控制(PI) (12) 3、比例-微分-积分控制器(PID) (14) 四、设计总结 (17) 五、心得体会 (18) 六、参考文献 (18)

一、引言 MATLAB语言是当今国际控制界最为流行的控制系统计算机辅助设计语言,它的出现为控制系统的计算机辅助分析和设计带来了全新的手段。其中图形交互式的模型输入计算机仿真环境SIMULINK,为MATLAB应用的进一步推广起到了积极的推动作用。现在,MATLAB语言已经风靡全世界,成为控制系统CAD领域最普及、也是最受欢迎的软件环境。 随着计算机技术的发展和应用,自动控制理论和技术在宇航、机器人控制、导弹制导及核动力等高新技术领域中的应用也愈来愈深入广泛。不仅如此,自动控制技术的应用范围现在已发展到生物、医学、环境、经济管理和其它许多社会领域中,成为现代社会生活中不可或缺的一部分。随着时代进步和人们生活水平的提高,在人类探知未来,认识和改造自然,建设高度文明和发达社会的活动中,控制理论和技术必将进一步发挥更加重要的作用。作为一个自动化专业的学生,了解和掌握自动控制的有关知识是十分必要的。 利用MATLAB软件及其SIMULINK仿真工具来实现对自动控制系统建模、分析与设计、仿真,能够直观、快速地分析系统的动态性能和稳态性能,并且能够灵活的改变系统的结构和参数,通过快速、直观的仿真达到系统的优化设计,以满足特定的设计指标。 二、设计方法 1、系统数学模型 美国卡耐尔基-梅隆大学机器人研究所开发研制了一套用于星际探索的系统,其目标机器人是一个六足步行机器人,如图(a)所示。该机器人单足控制系统结构图如图(b)所示。 要求: (1)建立系统数学模型; (2)绘制系统阶跃响应曲线、根轨迹图、频率特性; (3)分析系统的稳定性,及性能指标; (4)设计控制器Gc(s),使系统指标满足:ts<10s,ess=0,,超调量小于5%。

计算机系统结构期末考试试题及其答案

计算机系统结构期末考试试题及其答案

《计算机系统结构》期末考试试卷A 卷第 2 页 共 24 页 计算机科学系《计算机系统结构》期末考试试卷(A 卷) 2、此试卷适用于计算机科学与技术本科专业。 一 单选题:(10分,每题1分) 1、 ."启动I/O"指令是主要的输入输出指 令,是属于( B ) A.目态指令 B.管态指令 C.目态、管态都能用的指令 D.编译程序只能用的指令 2、 输入输出系统硬件的功能对(B )是透 明的 A.操作系统程序员 B.应用程序员 C.系统结构设计人员 D.机器语言程序设计员 3、 全相联地址映象是指(A ) A.任何虚页都可装入主存中任何实页的位置 B.一个虚页只装进固定的主存实页位置 C.组之间固定,组内任何虚页可装入任何实页位

置 D.组间可任意装入,组内是固定装入 4、( C ) 属于MIMD系统结构 A.各处理单元同时受一个控制单元的管理 B.各处理单元同时受同个控制单元送来的指令 C.松耦合多处理机和多计算机系统 D.阵列处理机 5、多处理机上两个程序段之间若有先写 后读的数据相关,则(B ) A.可以并行执行 B.不可能并行 C.任何情况均可交换串行 D.必须并行执行 6、计算机使用的语言是(B) A.专属软件范畴,与计算机体系结构无关 B.分属于计算机系统各个层次 C.属于用以建立一个用户的应用环境 D.属于符号化的机器指令 7、指令执行结果出现异常引起的中断是 (C ) A.输入/输出中断 B.机器校验中断 C.程序性中断 D.外部中断 《计算机系统结构》期末考试试卷A卷第 3 页共 24 页

理论力学课后习题答案第6章刚体的平面运动分析

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 2 2 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ ? ?+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ???+=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的 角速度A ω与B ω有什么关系设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解: R v R v A A == ω R v R v B B 22== ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v h 习题6 P v A B C v h 习题6-2 习题6-3解图 习题6-3图 v A v B

通信原理大作业

通信原理大作业 1、说明 在通信原理课程中,介绍了通信系统的基本理论,主要包括信道、基带传输、调制 / 解调方法等。为了进一步提高和改善学生对课程基本内容的掌握,进行课程作业方法的改革的试点,设立计算机仿真大作业。成绩将计入平时成绩。 2、要求 参加的同学3~5人一组,选择1?2个题目,协作和共同完成计算机编程和仿真,写出计算机仿真报告。推荐的计算机仿真环境为MATLAB也可以 选择其它环境。 3、大作业选题 (1) 信道噪声特性仿真产生信道高斯白噪声,设计信道带通滤波器对高斯白噪 声进行滤波, 得到窄带高斯噪声。对信道带通滤波器的输入输出的噪声的时域、频域特性进行统计和分析,画出其时域和频域的图形。 (2) 基带传输特性仿真利用理想低通滤波器作为信道,产生基带信号,仿真验证奈氏第一准则的给出的关系。改变低通滤波器的特性,再次进行仿真,验证存在码间干扰时的基带系统输出,画出眼图进行观察。加入信道噪声后再观 察眼图。 (3) 2ASK言号传输仿真 按照2ASK产生模型和解调模型分别产生2ASK言号和高斯白噪声,经过信道传

输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2ASK信号的解调可以选用包络解调或者相干解调法。(4) 2FSK信号传输仿真 按照2FSK产生模型和解调模型分别产生2FSK信号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2FSK信号的解调可以选用包络解调或者相干解调法。(5) 2PSK信号传输仿真 按照2PSK产生模型和解调模型分别产生2PSK言号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2PSK信号的解调选用相干解调法。 ⑹2DPSK言号传输仿真 按照2DPSK产生模型和解调模型分别产生2DPSK言号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2DPSK信号的解调可以选用非相干解调或者相干解调法。 (7) 模拟信号的数字传输 产生模拟语音信号,进行PCM编码过程的计算机仿真。仿真发送端采样、 量化编码的过程、仿真接收端恢复语音信号的过程。按照有或者无信道噪 声两种情况分别进行仿真。

计算机仿真技术与CAD习题答案

第0章绪论 0-1 什么是仿真?它所遵循的基本原则是什么? 答: 仿真是建立在控制理论、相似理论、信息处理技术和计算机技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识、统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。 它所遵循的基本原则是相似原理。 0-2 仿真的分类有几种?为什么? 答: 依据相似原理来分:物理仿真、数学仿真和混合仿真。 物理仿真:就是应用几何相似原理,制作一个与实际系统相似但几何尺寸较小或较大的物理模型(例如飞机模型放在气流场相似的风洞中)进行实验研究。 数学仿真:就是应用数学相似原理,构成数学模型在计算机上进行研究。它由软硬件仿真环境、动画、图形显示、输出打印设备等组成。 混合仿真又称数学物理仿真,它是为了提高仿真的可信度或者针对一些难以建模的实体,在系统研究中往往把数学仿真、物理仿真和实体结合起来组成一个复杂的仿真系统,这种在仿真环节中有部分实物介入的混合仿真也称为半实物仿真或者半物理仿真。 0-3 比较物理仿真和数学仿真的优缺点。 答: 在仿真研究中,数学仿真只要有一台数学仿真设备(如计算机等),就可以对不同的控制系统进行仿真实验和研究,而且,进行一次仿真实验研究的准备工作也比较简单,主要是受控系统的建模、控制方式的确立和计算机编程。数学仿真实验所需的时间比物理仿真大大缩短,实验数据的处理也比物理仿真简单的多。 与数学仿真相比,物理仿真总是有实物介入,效果直观逼真,精度高,可信度高,具有实时性与在线性的特点;但其需要进行大量的设备制造、安装、接线及调试工作,结构复杂,造价较高,耗时过长,灵活性差,改变参数困难,模型难以重用,通用性不强。 0-4 简述计算机仿真的过程。 答: 第一步:根据仿真目的确定仿真方案 根据仿真目的确定相应的仿真结构和方法,规定仿真的边界条件与约束条件。 第二步:建立系统的数学模型 对于简单的系统,可以通过某些基本定律来建立数学模型。而对于复杂的系统,则必须利用实验方法通过系统辩识技术来建立数学模型。数学模型是系统仿真的依据,所以,数学模型的准确性是十分重要。

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

大作业题目

控制系统仿真大作业 1、曲线拟合的Matlab实现和优化度检验 通过一个实际的例子,介绍最小二乘曲线拟合法的基本原理,对最小二乘曲线拟合法的Matlab实现方法进行研究,并给出曲线拟合Matlab实现的源程序。论述了Matlab软件在做曲线拟合时的用法,并进行曲线的拟合和相应的图像。 2、基于Matlab的液位串级控制系统 运用组态王和Matlab混合编程的方法设计了一个双容(两个水箱串联)液位串级在线控制系统,由组态王编制人机交互界面,用Matlab完成控制算法,二者通过DDE进行实时数据交换;采用串级控制策略,减小二次干扰的影响,验证其方法的有效性。 3、基于Matlab的变压器差动保护闭环仿真研究 应用Matlab建立了微机保护仿真系统,并对不同原理的变压器差动保护进行了仿真和比较.仿真系统采用积木式结构,根据微机保护的实现原理构建模块,实现保护的闭环仿真,对保护的动作过程进行分析. 4、基于MATLAB/SIMULINK的交流电机调速系统建模与仿真 根据直接转矩控制原理,利用MATLAB/SIMULINK软件构造了一个交流电机调速系统,该系统能够很好地模拟真实系统,实现高效的调速系统设计。仿真结果验证该方法的有效性。 5、基于MCGS和MATLAB的薄膜厚度控制系统仿真 以MCGS组态软件和MATLAB为平台,设计和仿真了一个薄膜厚度控制系统.MCGS完成硬件接口的设置、数据的实时采集、人机对话、以动画的方式显示控制系统的运行情况,MATLAB完成PID参数的自动整定,并利用动态数据交换(DDE)技术建立两者间的通讯.并分析其仿真结果。 6、Matlab在动态电路分析中的应用 用Matlab计算动态电路,可得到解析解和波形图.一阶电路先计算3要素,后合成解

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

2015数学建模选修大作业

中华女子学院 成绩2014 — 2015学年第二学期期末考试 (论文类) 论文题目数学建模算法之蒙特卡罗算法 课程代码1077080001 课程名称数学建模 学号130801019

姓名陈可心 院系计算机系 专业计算机科学与技术 考试时间2015年5月27日 一、数学建模十大算法 1、蒙特卡罗算法 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。接下来本文将着重介绍这一算法。 2、数据拟合、参数估计、插值等数据处理算法 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。 3、线性规划、整数规划、多元规划、二次规划等规划类问题 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。这个也是我们数学建模选修课时主要介绍的问题,所以对这方面比较熟悉,也了解了Lindo、Lingo软件的基本用法。 4、图论算法 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,上学期数据结构课程以及离散数学课程中都有介绍。它提供了对很多问题都很有效的一种简单而系统的建模方式。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7、网格算法和穷举法 网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8、一些连续离散化方法 很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9、数值分析算法 如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。10、图象处理算法 赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。 二、蒙特卡罗方法 2.1算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick

相关主题
文本预览
相关文档 最新文档