当前位置:文档之家› 高温热解法制备不同形貌的磁性锰锌铁氧体纳米颗粒

高温热解法制备不同形貌的磁性锰锌铁氧体纳米颗粒

高温热解法制备不同形貌的磁性锰锌铁氧体纳米颗粒

高温热解法制备不同形貌的磁性锰锌铁氧体纳米颗粒

严长志,谢俊,张宇*,顾宁

东南大学生物科学与医学工程学院,生物电子学国家重点实验室,江苏省生物材料与器件重点实验室,

南京,210009

*Email: zhangyu@https://www.doczj.com/doc/b7565106.html,

磁性锰锌铁氧体纳米颗粒以其独特的磁响应特性及生物相容性在生物医学领域有着广泛的应用,如生物分离、药物运输、核磁共振成像和肿瘤热疗等。本文采用高温热解法,以油酸和油胺作为表面活性剂,通过改变反应溶剂、表面活性剂的比例和反应物浓度等调控磁性纳米颗粒的形貌和粒径。TEM、VSM等表征显示合成的磁性纳米颗粒具有良好的单分散性和高磁响应性。锰锌掺杂有效地调节了尖晶石晶格中的离子及其磁矩的分布,直接导致磁性的增强。通过配体交换的表面修饰方法,用2,3-二巯基丁二酸取代磁性纳米颗粒表面的油酸,得到水溶性的磁性纳米颗粒,DLS表征显示其水动力尺寸为35 nm。

Fig. 1 TEM of shape-controlled Mn-Zn ferrite nanoparticles

关键词:磁性纳米颗粒;高温热解法;形貌调控

Shape-Controlled Mn-Zn Ferrite Nanoparticles Synthesis by a

High-Temperature Decomposition Reaction

Changzhi Yan, Jun Xie, Yu Zhang*,Ning Gu

School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009

The Mn-Zn ferrite nanoparticles (Mn x Zn1-x Fe2O4 NPs) have been intensively pursued because of their good magnetic properties and biocompatibility, which are widely used in broad biomedical applications including magnetic bioseparation, drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia. Here, we report shape-controlled synthesis of Mn x Zn1-x Fe2O4 NPs in high-temperature decomposition of metal acetylacetonate tuned by varying the concentration of the metal precursors, surfactant-to-metal precursor ratio and the solvent category. The as-synthesized Mn x Zn1-x Fe2O4 NPs with high-quality magnetism are monodisperse as characterized by TEM images and VSM. The water-soluble Mn x Zn1-x Fe2O4 NPs modified by DMSA are synthesized using by ligand exchange method. The Mn x Zn1-x Fe2O4@DMSA exhibite narrow hydrodynamic diameters (35 nm) in water as determined by dynamic light scattering (DLS).

锰锌铁氧体

锰锌铁氧体 本文来自维库电子市场网https://www.doczj.com/doc/b7565106.html,/news/, 本文地址:https://www.doczj.com/doc/b7565106.html,/news/html/2007-5-24/38340.html 试制高导锰锌铁氧体 试制:氧化物湿法工艺,原材料按下列配方:Fe2O3:52.1mol%,MnO:23.9mol%,ZnO:24mol%,经湿混砂磨一次喷雾造粒(25kg蒸发量)后,850℃预烧,加入少量微量元素如Bi2O3、Zn2O3、MoO3等,再经二次砂磨二次喷雾干燥造粒(25kg蒸发量),压成φ4×2×1.5环形磁芯。在小型钟罩炉中1400℃烧结4~6小时,烧结过程中严格控制氧含量。磁环的磁导率μi通过HP4284ALCR表测量,用电子显微镜SEM观察磁环表面及断面结构,用EDAX分析表面成份。 选择原辅材料及微量添加元素如Bi2O3、In2O3、MoO3等,获得了初始磁导率达32000的高磁导率MnZn 铁氧体材料。经喷雾干燥后铁氧体粉料颗粒外观形状是实心球状,该粉料具有较好的流动性,同时松装比重较高,对铁氧体毛坯成型非常有利。粉料压制特性对毛坯密度及强度的影响,铁氧体粉料颗粒均已破碎,对应毛坯的密度为3.2g/cm3,较高的毛坯密度对于获得较好的电磁性能如高磁导率和低损耗的铁氧体是十分有益的。铁氧体颗粒形态及成型密度对初始磁导率影响还是比较大的。 微量元素是加入0.02wt%的Bi2O3,0.03wt%的Zn2O3,以及0.04wt%的MoO3,材料起始磁导率为32000,测试条件为:f=1kHz,U=0.05V,N=10Ts,25℃,φ4×2×1.5环。平均晶粒直径为45μm。 Bi2O3及ZnO在烧结过程中的挥发性,向铁氧体中加入过量Bi2O3(为0.08wt%,其中主成份及其它微量元素完全相同)后,由于Bi2O3大量挥发,导致铁氧体磁芯表层存在大量不规则气孔。φ4×2×1.5环内表面和外表面EDAX成份谱线。其中内表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=35.36 : 13.27 : 53.60 : 0.40 mol%;外表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=46.62 : 18.82 : 35.28 : 0.09 mol%,经比较不难发现,内表面Bi2O3和ZnO含量分别是外表面的4倍和1.5倍。说明经过1400℃烧结时,Bi2O3的挥发比ZnO更厉害。料浆参数会影响铁氧体喷雾造粒粉料颗粒形状,以及铁氧体粉料的压制特性,从而影响毛坯的密度及机械强度,并最终影响铁氧体的初始磁导率。 通过精心选择原辅材料,添加微量元素Bi2O3、In2O3 以及MoO3等,并通过严格控制烧结工艺参数在小型钟罩炉中烧结,获得了μi=32000的高磁导率MnZn铁氧体材料。对高密度、轻量化、薄型化的高性能电子元器件的需求量大幅度增长。高磁导率MnZn铁氧体材料由于其特殊的电磁性能,在抗电磁干扰(EMI)噪声滤波器、电子电路宽带变压器、脉冲变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明、汽车电子等领域具有非常广泛的应用。高磁导率MnZn铁氧体材料特性主要体现在以下七个方面:高初始磁导率;在宽频下具有较高的磁导率;低损耗因数;低总谐波失真(THD);在宽温下具有较高的磁导率;磁导率减落系数要小;磁导率的应力敏感性要小。不同的应用领域对高磁导率MnZn铁氧体上述某个或几个方面的性能具有更高的要求。 环形铁心Le和Ae的计算方法 磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe)式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。 下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。 第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

非晶纳米晶软磁材料都有哪些

如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,其排列方式类似于液体,是混乱的,这就是非晶合金。非晶纳米晶软磁材料都有哪些?您可以咨询安徽华晶机械有限公司,下面小编为您简单介绍,希望给您带来一定程度上的帮助。 非晶软磁合金材料的种类: 1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T )、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电 变压器可降低铁损60-70%。铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下) ,

例如配电变压器、中频变压器、大功率电感、电抗器等。 2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。 3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。 4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。

安徽华晶机械有限公司位于安庆长江大桥经济开发区。是人民解放军第4812工厂全资子公司。公司经营以机械制造为主,拥有各类专业生产、检验试验设备94台(套),涉及铸造、橡胶制品、压力容器、制造等多个行业,主要从事非晶软磁设备、空压机及气源设备、橡胶件(含特种橡胶件)、餐余垃圾处理设备、铸件、机械加工等产品的研制、生产、经营和服务。 自成立以来,公司上下高度重视技术创新和产品结构升级工作,建立了以市场为导向,努力满足用户需求的产品研发体系。公司坚持以跨越发展的思想为指导,秉承敬业、高效、求实、创新的优良传统,继续依托军工技术和“中”牌品质,为广大新老客户提供更优良的产品和服务。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

磁性纳米材料的模板法制备研究

磁性氧化物纳米材料的模板法制备研究 摘要磁性氧化物纳米材料的模板制备方法,主要内容包括:模板法的基本原理,模板的制备,利用电沉积法、溶胶凝胶沉积法和化学还原法在模板上制备磁性纳米线及纳米多层结构的技术。 关键词磁性氧化物纳米材料模板法 磁性纳米材料是20 世纪80 年代出现的一种新型磁性材料。磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单 畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。目前可选作磁性金属氧化物微粒的仅有少 数几种,主要为三氧化二铁(Fe 2O 3 )、MFe 2 O 4 (M=Co,Mn,Ni)、四氧化三铁(Fe 3 O 4 )。纳米 科技的发展,使这些磁性材料的应用成为可能,目前,磁性材料纳米化已成为材料科学的一个发展趋势。 磁性纳米材料的制备手段有物理法和化学法,而模板法[1]是由美国科罗拉多州立大学化学系Martin教授领导的研究组在20世纪80年代首创性地将其应用于磁性纳米材料的合成。模板合成是将具有纳米结构、价廉易得、形状容易控制的物质作为模子,通过物理或化学的方法将相关材料沉积到模板的孔中或表面,而后移去模板,得到具有模板规范形貌与尺寸的纳米材料的过程。 1 两种重要模板 用作模板的材料主要有两种:多孔阳极氧化铝模板及痕迹刻蚀聚合物模板,前者孔率较高,且膜孔孔径大小分布均匀; 后者膜孔孔径大小分布较广,且分布不均匀。 1. 1 多孔阳极氧化铝模板(AOO) 是通过电化学氧化的方法在纯铝表面形成的具有高度规整结构的氧化铝薄膜。其研究历史已有40 多年,最早主要用于铝及铝合金的耐腐蚀处理及染色,20世纪80年代Martin 等人首次将其用于纳米材料合成。AAO模板通常采用两步阳极氧化法制备[2-3]。此法所得AAO 模板孔道为六角柱形、垂直膜面呈有序平行排列,孔密度高达1011cm-2,孔径可在4~200nm范围内方便地调节,孔深可达几十到上百微米。AAO模板还具有孔径单分散、耐高温、强度高的特点,是迄今应用最为广泛的模板。AAO 模板的制备过程:首先是99. 99 %的纯铝在酸性条件下进行第一次氧化,后将生成的氧化铝膜在酸性溶液中腐蚀掉,然后以同样的条件进行第二次阳极氧化。得到的AAO 膜经扩孔后可沉积金属及氧化物。 1. 2 痕迹刻蚀聚合物模板 用核裂变碎片轰击6~10μm 厚的聚碳酸酯、聚酯或聚乙烯醇等高分子膜,使膜出现损伤,然后用化学法使损伤痕迹腐蚀发展成纳米孔道即得痕迹刻蚀聚合物模板聚合物模板的纳米孔呈圆柱形,孔径一般为10~200 nm ,孔密度109cm-2,其孔道不如AAO规整,有交错现象,孔轴与膜表面夹角有时可达30°且无序分布,导致所制纳米点阵的各向异性降低。但聚合物模板柔韧性好,不像AAO 模板那样脆,且在高酸性条件下能维持较长时间,因此应用也相当广泛。 2 几种基于模板的合成方法 2.1 电化学沉积法 电化学沉积指金属的阴极还原沉积,适合在模板的纳米孔道内制备金属纳米线。首先在模板的一面通过溅射或真空镀膜等方法制备一层金属薄膜作阴极,通过控制电压、电流、温

锰锌软磁铁氧体磁芯MSDS

材料安全資料表(M SD S)、J 1-11-11司,l'J、/,,X..J l'-IJ Y-!..中可﹒ ""F品中文名林: 戶品英文名林: 制造商或供座商名不示: 制造商或供座商地址: 制造商或供座商屯活/仿真:二、成分/組成信息: 組成成分成分百分比 F e203 52.9wt% MnO 32. 3wt% ZnO 13.6wt% CoO 0.03wt% Coating 1. 17wt% 三、危隘性概述: 最健康危書效庄:猛梓軟磁缺氧体磁芯 THE sofe ferrite cores of Manganese and Zinc CAS NO 危害物反分癸及囡式 1309-37-01 NIA 1317-35-7 NIA 1314-13-2 NIA 1307-96-6 NIA 1633-22-3 NIA 重如果泣敏体反者接蝕而沒有立即清洗,可能辱致脫皮等症狀。 要詞:境影日向:NIA 危物理性及化字性危害:NIA 害 效 特殊危害:NIA !主 主要症狀:NIA 物品危害分笑: 四、急救措施: 不同暴露途徑之急救方法: ﹒皮月夫接她:美t敏体l賞者接他@..立即用水沖洗干淨即可〉 最重要症狀及危害效皮:如果迂敏体庚者接蝕而沒有立1日清洗,可能早致脫皮等症狀。河急救人民之防妒: 文才匿州之提示: 五、芳:火措茄: 道)廿夫:x荊:惰性究体、干粉、水 特殊夫﹔)<程序:趴在安全情況下格可能引燃物品搬高﹔人﹔坊。2、大區域之大型火夾

使用元人操作之水寡控制架、水管架或自劫搖摟消防水咕,若不可行則撤寓,監控火燃燒完。消防人民之恃妹防妒浸在「: 六、泄漏赴現方法: 小人座注意﹔事項:N/入 到:境座注意事項:NIA 清理方法:日/A 七、安全赴置勻儲存方法: 赴置:1、遠寓火源、引燃源及不相容物c 2.張 貼“F 禁姻火”的警示你示。 3.保持走道出口暢通元阻。 儲存:1、要儲存在開涼、通夙良好以及附光元法直拉照射的地方。 2、避免接她水及其他有机溶荊等。 3、自然那境溫度下儲存即可。 八、暴露預防措施:工程控制:保持良好通夙。 令人防妒改各: ﹒手部防t戶:建汶迂敏体庚者接她配戴防t戶手套。 其他防妒:1、工作現場禁止吸姻或飲食。2、維持作立場所清浩。辰 一性 翱一℃翩 化一太耐心 3m 一及及一固九九川一性理 一.. 色体何 一定物一太心黑本主祿、一收.... 一九一灰色京度一十物顏熔密一形狀:那型 左乏味:元味內火鳥:NI A 溶解度:不溶于水穩定性:穩定特殊狀況下可能之危害:水、強氧化荊合腐蝕磁芯。庄避免之狀況: NIA IE.避免之物廣:水、強氧化荊等。 危害分解物:NIA 十一、毒性資料: 急、毒性:NIA 致敏感性:世敏件:廣者接她可能早致皮狀迂敏。 慢毒性或長期毒性:NIA 致癌性: NI A 十二、生恣資料: 可能之詞:境影日內/ 王軍境流布:N/A 十三、痠奔赴置方法:

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米晶软磁材料的应用

纳米晶软磁材料的应用 【摘要】本文首先回顾了纳米晶软磁材料的发展过程,介绍了纳米晶软磁材料的组织结构与磁特性,并介绍了纳米晶软磁合金的应用。 【关键词】纳米晶;软磁材料;铁芯;铁基合金 引言 八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D 约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B (M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。 1 纳米晶软磁合金的性能 1.1 软磁合金的磁特性 对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。 (1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。 (2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

锰锌软磁铁氧体磁芯术语及定义(精)

1.初始磁导率i μ 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 i μ=01μ0H lim →H B 式中0μ为真空磁导率(4л×710-H/m ) H 为磁场强度(A/m ) B 为磁通密度(T ) 2.有效磁导率e μ 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。 e μ=20N L ?μ﹒e e A L 式中 L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数 Le 为有效磁路长度(m ) e A 为有效截面积(2m ) 0μ为真空磁导率(4л×710-H/m ) 3. 饱和磁通密度Bs(T) 磁化到饱和状态的磁通密度。见图1. 4.剩余磁通密度Br(T) 从饱和状态去除磁场后,剩余的磁通密度。见图1.

5.矫顽力Hc(A/m) 从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强度称为矫顽力。见图1. 6.损耗因数 tanδ 损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和 tanδ =tan h δ+tan e δ+tan r δ 式中tan h δ为磁滞损耗因数 tan e δ为涡流损耗因数 tan r δ为剩余损耗因数 7.相对损耗因数 tanδ/μ 相对损耗因数是损耗因数与磁导率之比 tanδ/i μ(适用于材料) t anδ/e μ(适用于磁路中含有气隙的磁芯) 8.品质因数Q 品质因数为损耗因数的倒数: Q=1/tanδ 9.温度系数μα(1/K ) 温度系数为温度在T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: μα=1 2112T T 1-?-μμμ (T2>T1) 式中1μ 为温度为1T 时的磁导率 2μ 为温度为2T 时的磁导率 10.相对温度系数r μα(1/k) 温度系数和磁导率之比:r μα=1222 12T T 1-?-μμμ (T2>T1)

新型纳米晶软磁合金及其应用(二)

综述·动态·评论 新型纳米晶软磁合金及其应用 张世远 南京大学物理系 3 Fe-Si-B-Cu-Nb纳米晶合金 这种纳米晶合金是最先发现的新型软磁材 料 因此 研究退火过程中微结构的变化十分重要 图 3 为晶化过程示意图 在退火的 开始阶段通过调幅分解或成 核机理成分接近于30at% Cu 的Cu团簇Fe的浓度也会出现涨落 体心立方晶态相的晶核密度明显增大 而Nb和B则因为不溶 于α-FeSi 相中而在残余非晶相中富集 当晶化继续时 最后富Cu颗粒顺磁相的直径达到5 nm 左右 然而 它的析出不会对软 磁性能造成有害影响 图4是最佳热处 理后合金中所观察到的微结构 α-FeSi相含 ~20at% Si 残余非晶相 ~5at% Si 富Cu相 Si Nb中每一种都小于5at% 差热分析和X射线衍射实验表明[20] 以上温 度退火Fe 2 B相一经析出 由于硼化铁具有大的磁 晶各向异性常数L o ≈ 5 nm 即使Fe 2 B的体积分数只有百分之几 如图5所示除了可以有 效阻止α-FeSi相长大之外 的温度下才析出 图3 FINEMET合金的纳米晶化过程[20] 图4 FINEMET合金用透射电镜观察到 的典型微结构[21]

3.2 饱和磁化强度 Fe 73.5Si 13.5B 9Cu 1Nb 3纳米晶合金的饱和磁化强度J s 主要由α-FeSi 晶粒的成分及体积分数决定 这种合金在淬态下 为单一的非晶相 J s (T ) = J 0 (122 T C 是居里温度因此 合金在经过520 J s 1/β ~T 由两段斜率不同的直线组成 处 显然内部包含残余非晶相和纳米α-FeSi 相两个铁磁相 和T C2 =600因此在室温下 可将总磁化强度分成 两项之和 23 RT RT 经过对图6的拟合 从T C 2值可根据Fe-Si 合金的已知数据推断出纳米晶粒中的Si 含量约为23%该相的J 2 (RT ) =1.3T 由非晶相的体积 分数V 1 = 1 将两相组织等效于一球形晶粒被一薄层的 非晶相所包围则可从近似公式V 1=3δ /D 推算出α-FeSi 晶粒间距δ ≈1.2nm 约为80% 顺便指出 非晶相的体积分数约为34%与磁极化强度分析结果稍有差别 残存非晶相的磁晶各向 异性可以忽略 πδ≈(A / )1/2 将A ≈10 ≈ 0.5 J/m 3代入 对于一无应变样品可以估计出畴壁厚度为2μm 畴壁预计还要窄得多比值 δ /D 似乎要更大或许可达200左右该图中实际上 在这种材料中 因此畴壁 钉扎很小 其典型值为 100 MPa 左右 为使磁性优化 然而 1 退火温度T a / 图5 退火温度对纳米晶磁性的影响[9] 图6 非晶态和纳米晶合金饱和磁极化 强度的温度依赖性 [8] 图7 纳米晶材料中180

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

非晶纳米晶软磁材料应用市场概况

非晶/纳米晶软磁材料应用市场概况 非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。其技术特点为:采用超急冷凝固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。非晶、纳米晶合金的优异软磁特性都来自于其特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。 表1 非晶/纳米晶软磁材料的典型性能及主要应用领域

近年来,随着信息处理和电力电子技术的快速发展,各种电器设备趋向高频化、小型化、节能化。 在电力领域,非晶、纳米晶合金均得到大量应用。其中铁基非晶合金的最大应用是配电变压器铁芯。由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。因此,非晶配电变压器作为换代产品有很好的应用前景。纳米晶合金的最大应用是电力互感器铁芯。电力互感器是专门测量输变电线路上电流和电能的特种变压器。近年来高精度等级(如级、级、级)的互感器需求量迅速增加。传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。而采用纳米晶铁芯不但可以达到精度要求、而且价格低于玻莫合金。 在电力电子领域,随着高频逆变技术的成熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。硅钢高频损耗太大,已不能满足使用要求。铁氧体虽然高频损耗较低,但在大功率条件下仍然存在很多问题,一是饱

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

相关主题
文本预览
相关文档 最新文档