当前位置:文档之家› 几何组成分析习题及答案

几何组成分析习题及答案

几何组成分析习题及答案
几何组成分析习题及答案

题15.7试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 2j -6-r

=2×8-9-7=0

(2)几何组成分析。首先把三角形ACD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。最后得知整个体系为几何不变,且无多余约束。

题15.8试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 3m - 2h -r

=3×6-2×7—4=0

(2)几何组成分析。刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BICEG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。

题15.9试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为W- 3m - 2h -r=3×14 -2×19 -4一O

(2)几何组成分析。在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O 相联,构成几何不变体系,且无多余约束。

题15.10试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W-2j—b-r

=2×7—11-3一O

(2)几何组成分析。由于AFG部分由基础简支,所以可只分析AFG部分。可去掉二元体BAC只分析BFGC部分。把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。

题15.11试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 2j -6-r

=2×9-13—5一O

(2)几何组成分析。首先在基础上依次增加二元体12、AE3、AFE、ABF、FI4,成一个大的刚片I。其次,把CDHG部分看做刚片Ⅱ,刚片I、Ⅱ由三根共点的链

杆BC、IG、5相联,因而整个体系为瞬变。

题15.12试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W一2j -6-r

=2×7- 11-3一O

(2)几何组成分析。由于ABCDEF部分由基础简支,所以可只分析ABCDEF部分。

把三角形ABD看做刚片I,BCF看做刚片I,杆件GE看做刚片Ⅲ,则三个刚片由不共线的单铰B,虚铰Ol、02分别两两相联,构成几何不变体系,且无多余约束。

题15.13试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W= 2j -6-r’

=2×6—8-4=0

(2)几何组成分析。把三角形CDF看做刚片I,杆件AB看做刚片Ⅱ,基础和二元体23看做刚片Ⅲ。刚片I和刚片Ⅱ由链杆BC、AD相联,相当于虚铰D;刚片I和刚片Ⅲ由链杆

CE、4相联,相当于虚铰Ol;刚片Ⅱ和Ⅲ由链杆EB、1相联,相当于一个虚铰,三个虚铰不共线,因此构成几何不变体系,且无多余约束。

题15.14试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 2j-b-r

=2×12 - 21-3—0

(2)几何组成分析。由于ABCGLKD部分由基础简支,所以可只分析

ABCGLKD部分。

在三角形ADE上依次增加二元体ABE、BFE、BCF、CGF、FHE组成刚片I。将三角形HJI 看做刚片Ⅱ,杆件KL看做刚片Ⅲ。刚片I和刚片Ⅱ由单铰H相联;刚片Ⅱ和Ⅲ由链杆KI 和JL相联,即在H点由虚铰相联;刚片I和刚片Ⅲ由链杆EK、 FL相联,即在无穷远处由虚铰相联显然,这三个铰共线,因而整个体系为瞬变。

;B

题15.15试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m - 2h -r

=3×7-2×9-3=O

(2)几何组成分析。由于ACEFG部分由基础简支,所以可只分析ACEFG部分。在杆件ABC 上增加二元体BGA构成刚片I,同理可把CDEF部分看做刚片Ⅱ,刚片I和刚片I由不共线的单铰C及链杆GF相联,因而整个体系为几何不变,且无多余约束。

题15.16试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W= 3m一2h -r

=3×9—2×13 -3=-2

(2)几何组成分析。由于ADEFG部分由基础简支,所以可只分析ADEFG部分。把三角形AED看做刚片I,杆BE看做多余约束;把三角形AFG看做刚片I,杆CF看做多余约束。刚片I和刚片Ⅱ由不共线的铰A及链杆EF相联,因而整个体系为几何不变,且有两个多余约束。

题15.17试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j -b-r

=2×9-15-3=0

(2)几何组成分析。由于ADIHGFEB部分由基础简支,所以可只分析

ADIHGFEB部分。

在三角形BEF上依次增加二元体BCE、CGF组成刚片I,同理可把CDIH部分看做刚片Ⅱ。刚片I和刚片I由不共线的铰C及链杆GH相联,构成一个更大的刚片,然后再增加二元体

BAD。最后得知整个体系为几何不变,且无多余约束。

题15.18试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m - 2h -r

=3×6-2×8-3=-1

(2)几何组成分析。由于ABCDFE部分由基础简支,所以可只分析ABCDFE部分。

在杆件ABCD上依次增加二元体AEB、CFD构成几何不变体系,链杆EF可看做多余约束。因而整个体系为几何不变,且有一个多余约束。.

题15.19试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j -b-r

=2×6-8—4=O

(2)几何组成分析。把三角形BCE看做刚片I,杆件DF看做刚片Ⅱ,基础上增加二元体12看做刚片I。刚片Ⅱ和刚片Ⅲ由链杆AD、3相联,即由虚铰F相联;I刚片I和刚片I由链杆BD、EF相联,交点在无穷远处;刚片I和刚片I由链杆AB、4相联,即由虚铰C相联;显然三铰在一条直线上,因而整个体系为瞬变。

题15.20试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为W= 2j -b-r=2×8-13 -3=O

(2)几何组成分析。首先在三角形AEF上依次增加二元体ABF、BCF、CGF组成刚片I,而杆件BG可看做一个多余约束。其次,去掉二元体CDH、GH3。把基础上增加二元体12看做刚片Ⅱ,则刚片I和刚片1只用铰E相连,因而整个体系为几何可变,但在BCGF部分有一个多余约束。

题15- 21试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W= 2j -6-r

=2×9-14-4=O

(2)几何组成分析。首先在体系上依次去掉二元体DAB、BCF、DBF不改变原体系的几何组成性质,所以下面只分析DEF以下部分即可。

把三角形EFI看做刚片I;把杆件DH看做刚片Ⅱ;把基础上增加二元体12看做刚片I。刚片I和刚片Ⅱ由虚铰F相联;刚片I和刚片Ⅲ由链杆GE及链杆4相连,交点在CI直线上;刚片I和刚片Ⅲ由平行链杆DG及链杆3相联,由于链杆DG、3和直线CI平行,且三直线将在无穷远处相交,所以三个虚铰在同一直线上,因而整个体系为瞬变。

题15.22试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m一2h一r

=3×10 -2×14=2

(2)几何组成分析。该体系没有和基础相联,只需要分析其内部几何性质。杆件AH和杆件HJ由不共线单铰H和链杆相联构成刚片I;同理可把DMJ部分看做刚片Ⅱ;再把折杆ABCD 和二元体BFC看做刚片Ⅲ。刚片I、Ⅱ、I由三个不共线的单铰A、J、D两两相联,构成几何不变体系,链杆FJ可看做多余约束。因而整个体系内部为几何不变,且有一个多余约束。

题15.23试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m - 2h -r

=3×4—2×4-4=0

(2)几何组成分析。把曲杆ACF看做刚片I;曲杆BDE看做刚片Ⅱ,基础和二元体12、34看做刚片Ⅲ。刚片I、Ⅱ、Ⅲ由不共线的三铰A、B、G两两相联,因而‘整个体系为几何不变,且无多余约束。

题15.24试对图示体系进行几何组成分析。

解体系的自由度为

W= 3m-2h-r

=3×4-2×3-5=1

体系缺少足够的约束,为几何可变体系。

题15.25试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m - 2h-r

=3×2-2×1-4=0

(2)几何组成分析。把ABD部分看做刚片I,BCE部分看做刚片Ⅱ,基础看做刚片I。刚片I、Ⅱ由单铰B相联,刚片Ⅱ和Ⅲ由链杆3、4相联(即在两杆轴线的点处用一虚铰相联),刚片I和刚片Ⅲ由链杆1、2相联(即在两杆轴线的交点处用一虚铰相联),显然,这三个铰不在一条直线上,因而整个体系为几何不变,且无多余约束。

题15.26试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W= 3m - 2h-r

=3×9-2×10 -7=O

(

2)几何组成分析。首先在体系上依次去掉二元体EAB、CDH、IEF、GHL、112、6L7,不改变原体系的几何组成性质,所以下面只分析JBCK和基础部分即可。把折杆JBCK看做刚片I;把基础看做刚片Ⅱ。刚片I和刚片Ⅱ由不共点的三根链杆3、4、5相联,因而整个体系为几何不变,且无多余约束。

题15.27试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为

W= 2j - b-r

=2×9-14 -4=O

(2)几何组成分析。首先在三角形GHE上依次增加二元体GKH、KLH,把EGKLH部分看做刚片I,同理把LMJFI部分看做刚片Ⅱ,把基础看做刚片Ⅲ,则三个刚片用不共线的三个铰G、L、J分别两两相联,因而整个体系为几何不变,且无多余约束。

题15.28试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j -b-r

=2×13-20-6=0.

(2)几何组成分析。首先在体系上依次去掉二元体JAB、BCD、DEM、FBG、KFG、KGH、HDI、LHI不改变原体系的几何组成性质,所以下面只分析余下部分即可。

杆件JK由三个不共点的链杆1、2、3与基础相连,组成刚片I;杆件LM由三个不共点的链杆4、5和KL与刚片I相联,组成更大的刚片,但链杆6为一多余约束。

杆件IL与更大的刚片只由一个单铰相连,缺少足够的约束,因而整个体系为几何可变。

题15.29试对图示体系进行几何组成分析。解计算自由度。体系的自由度为

W- 2j -6-r

=2×5-6-3=1

体系缺少足够的约束,为几何可变体系。

题15.30试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 3m - 2h -rXXEX 3X0

=3×3-2×2-5=O

(2)几何组成分析。把折杆ACD看做刚片I,折杆CE看做刚片I,基础看做刚片Ⅲ。刚片I、Ⅱ由单铰C相联,刚片Ⅱ和Ⅲ由链杆4、5相联(即用铰E相联),

刚片I和刚片Ⅲ由链杆2、3相联(即用铰D相联),显然,这三个铰不在一条直线上,刚片I、Ⅱ、Ⅲ构成一个大的刚片。刚片BA由不共线的铰A和链杆1与上述大的刚片相联,因而整个体系为几何不变,且无多余约束。

题15.31试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 3m - 2h -r

=3×3-2×3-6一一3

’ (2)几何组成分析。由于支座A为固定端支座,可把折杆ABCE和基础作为刚片I(铰E为多余约束),把折杆BD看做刚片Ⅱ,两个刚片由不共线的铰ASB和链杆CD相联。链杆DF为多余约束。因而整个体系为几何不变,有三个多余约束。

题15.32试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为W= 3m - 2h -厂3×4—2×4-4=0

(2)几何组成分析。首先在基础上依次增加二元体HDE、DCG、CBF构成刚片I,再把折杆AC看做刚片Ⅱ,折杆AB看做刚片Ⅲ。刚片I和Ⅱ由铰c相联,刚和由铰A相联,刚片I和刚片Ⅲ由铰B相联,显然,这三个铰不在一条直线上,因而整个体系为几何不变,且无多余约束。

题15- 33,试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W- 2j -b-r

=2×10 -18-4=-2

(2)几何组成分析。首先在三角形EJI上依次增加二元体EDI、DCI、CHI、CBH、CGH、BAG、BFG,组成刚片I(链杆AF为多余约束),把基础看做刚片Ⅱ,则两个刚片用三根不共点的链杆1、3、4相联(链杆2为多余约束)。因而整个体系为几何不变,有两个多余约束。

题15.34试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自、由度为

W- 3m - 2h-r

=3×8-2×11-3=-1

(2)几何组成分析。由于ABEJGFC部分由基础简支,所以可只分析

ABEJGFC部分。

把ABD部分看做刚片I,FDG部分看做刚片Ⅱ,刚片I和Ⅱ由不共线的铰D及链杆AF 相联,构成一个大的刚片。把折杆AC看做刚片Ⅲ,再把折杆CF看做刚片1V,则刚片Ⅲ、Ⅳ和刚片I、Ⅱ组成的大刚片由三个不在一条直线上的铰A、C、F相联,构成几何不变体系。

同理折杆BE、EG和刚片I、Ⅱ、Ⅲ、1V组成的几何不变部分构成几何不变体系(链杆BG 可看做多余约束)。最后得知整个体系为几何不变,且有一个多余约束。

题15.35试对图示体系进行几何组成分析。

解 (1)计算自由度。体系的自由度为W=2j -b-r=2×18 - 33 -3=0

(2)几何组成分析。由于ACELRPOMF部分由基础简支,所以可只分析ACELRPOMF部分。

首先在三角形KLR上依次增加二元体LEK、KQR、KJQ、EDJ、JPQ、JIP、DCI,,把CELRPI 部分看做刚片I,再在三角形FGM上依次增加二元体FAG、MNG、NHG、ABH、HON、HIO,把BAFMOIH部分看做刚片Ⅱ,刚片I和Ⅱ由不共线的铰I及链杆BC相联,因而整个体系为几何不变,且无多余约束。

题15.36试对图示体系进行几何组成分析。

解 (1)计算自由度。

体系的自由度为W= 3m - 2h -r=3×7-2×8-7=-2

(2)几何组成分析。首先把三角形ACD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片Ⅲ,则三个刚片用不共线的三个铰A、B、C两两相联,构成一个大的刚片。在这个大刚片上依次增加二元体12、FHC(链杆DG可看做多余约束)、HJ3(链杆EI可看做多余约束)。最后得知整个体系为几何不变,有两个多余约束。

题15.37试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j-b-r

=2×6-9=3

(2)几何组成分析。该体系没有和基础相联,只需要分析其内部几何组成性质。

首先把三角形AEC和BFD分别看做刚片I和刚片Ⅱ,刚片I和刚片Ⅱ由不共点的三根链杆AB、EF、CD相联,因而整个体系为内部几何不变,且无多余约束。

题15.38试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W=2j -b -r

=2×6-9=3

(2)几何组成分析。该体系没有和基础相连,只需要分析其内部几何组成性质。

首先把杆件AB看做刚片I,把杆件CD看做刚片Ⅱ,把杆件EF看做刚片Ⅲ,刚片I和刚片Ⅱ由链杆AC、BD相联(相当于在两杆轴线的交点上用一虚铰相联),刚片Ⅱ和刚片Ⅲ由链杆CE、FD相联(相当于在两杆轴线的交点上用一虚铰相联),刚片I和刚片Ⅲ由链杆AF、EB相联(相当于在两杆轴线的交点上用一虚铰相联),且三个虚铰在一条直线上。因而整个体系为瞬变体系。

题15.39试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j -6-r

=2×8-15 -3=-2

(2)几何组成分析。由于ABFHGC部分由基础简支,所以可只分析

ABFHGC部分。

在三角形ACD上依次增加二元体ABD、AED、BFE(链杆BE可看做多余约束)、FHD、EGC(链杆GH可看做多余约束),构成几何不变体系。最后得知整个体系为几何不变,有两个多余约束。

题15.40试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为

W= 2j-6-r

=2×8-12-4=O

(2)几何组成分析。在三角形ADE上增加二元体ABE构成刚片I,同理可

把BCGF部分看做刚片Ⅱ,再把基础上增加二元体23看做刚片Ⅲ。刚片I和刚片II由单铰B相联,刚片Ⅱ和刚片Ⅲ由链杆HF、4相联(相当于在两杆轴线的交点上用一虚铰相联),刚片I和刚片Ⅲ由链杆HE、1相联(相当于在两杆轴线的交点上用一虚铰相联),且三铰不

在一条直线上。因而整个体系为几何不变,且无多余约束。

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

2平面体系的几何组成分析习题解答

第2章 平面体系的几何组成分析习题解答 习题2.3 对习题2.3图所示各体系进行几何组成分析。 (a) (b) 由铰A 和支杆①相联组成几何不变的部分;再与刚片BC 由铰B 和支杆②相联,故原体系几何不变且无多余约束。 习 题解2.3(a)图 (2)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A 、B 、(Ⅰ,Ⅲ)两两相联,组成几何不变的部分,如习题解2.3(b)图所示。在此部分上添加二元体C-D-E ,故原体系几何不变且无多余约束。 习 题解2.3(b)图 习题解2.3(c)图

习题解2.3(d)图 (5)如习题解2.3(e)图所示,刚片Ⅰ、Ⅱ、Ⅲ组成几何不变且无多余约束的体系,为一个大刚片;该大刚片与地基之间由平行的三根杆①、②、③相联,故原体系几何瞬变。 习题解2.3(e)图 (6)如习题解2.3(f)图所示,由三刚片规则可知,刚片Ⅰ、Ⅱ及地基组成几何不变且无多余约束的体系,设为扩大的地基。刚片ABC与扩大的地基由杆①和铰C相联;刚片CD与扩大的地基由杆②和铰C相联。故原体系几何不变且无多余约束。 习

题解2.3(f)图 (7)如习题解2.3(g)图所示,上部体系与地面之间只有3根 支杆相联,可以仅分析上部体系。去掉二元体1,刚片Ⅰ、Ⅱ由铰A 和不过铰A的链杆①相联,故原体系几何不变且无多余约束。 习题解2.3(g)图 (8)只分析上部体系,如习题解2.3(h)图所示。去掉二元体1、2, 刚片Ⅰ、Ⅱ由4根链杆①、②、③和④相联,多余一约束。故原 体系几何不变且有一个多余约束。 习题解2.3(h)图(9)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A、B、C组成无多余约 束的几何不变部分,该部分再与地基由共点三支杆①、②、③相联, 故原体系为几何瞬变体系,如习题解2.3(i)图所示。

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

几何组成分析习题及答案.

题15.7试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为 W- 2j -6-r =2×8-9-7=0 (2)几何组成分析。首先把三角形ACD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。最后得知整个体系为几何不变,且无多余约束。 题15.8试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为 W- 3m - 2h -r =3×6-2×7—4=0 (2)几何组成分析。刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BICEG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。 题15.9试对图示体系进行几何组成分析。 解 (1)计算自由度。体系的自由度为W- 3m - 2h -r=3×14 -2×19 -4一O (2)几何组成分析。在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O 相联,构成几何不变体系,且无多余约束。

题15.10试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为 W-2j—b-r =2×7—11-3一O (2)几何组成分析。由于AFG部分由基础简支,所以可只分析AFG部分。可去掉二元体BAC只分析BFGC部分。把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。 题15.11试对图示体系进行几何组成分析。解 (1)计算自由度。体系的自由度为 W- 2j -6-r =2×9-13—5一O (2)几何组成分析。首先在基础上依次增加二元体12、AE3、AFE、ABF、FI4,成一个大的刚片I。其次,把CDHG部分看做刚片Ⅱ,刚片I、Ⅱ由三根共点的链 杆BC、IG、5相联,因而整个体系为瞬变。 题15.12试对图示体系进行几何组成分析。 解 (1)计算自由度。体系的自由度为 W一2j -6-r =2×7- 11-3一O (2)几何组成分析。由于ABCDEF部分由基础简支,所以可只分析ABCDEF部分。

几何组成分析

第二章几何组成分析 [几何可变体系与几何不变体系] 几何可变体系——在任意荷载的作用下,即使不考虑材料的应变,它的形状和位置 也是可以改变的。 几何不变体系——如果不考虑材料的应变,它的形状和位置是不能改变的。 [自由度与刚片] 物体在运动时决定其位置的几何参变数称为自由度。 几何形状不变的平面体称为刚片。 一个刚片在平面内运动有三个自由度; 一个点在平面内运动有两个自由度; 一个点在空间内运动有三个自由度; 一个刚体在空间内运动有六个自由度。 [约束] 减少自由度的装置称为约束。 [约束的影响] (1)支座约束 可动铰支座相当于一个约束,减少一个自由度; 固定铰支座相当于两个约束,减少两个自由度; 固定端支座相当于三个约束,减少三个自由度; 定向支座相当于两个约束,减少两个自由度。 (2)链杆 两刚片加一链杆约束,减少一个自由度。

(3)铰结点 单铰:两刚片加一单铰结点约束,减少两个自由度。 复铰:n个刚片在同一点用铰连接,相当于n-1个单铰的约束。 (4)刚结点 单刚结点:两刚片加一刚结点约束,减少三个自由度。 复刚结点:n个刚片在同一点用刚结点连接,相当于n-1个单刚结点的约束。[结构体系自由度的计算公式] (1)一般公式 =各部件自由度总和-全部约束数 为结构体系自由度。 (2)平面杆件体系自由度的计算公式 式中为刚片个数,为单刚结点个数;为单铰结点个数;为链杆个数;为支 座约束个数,如果为自由体,即无支座约束,则=3 。 (3)平面桁架自由度的计算公式 式中为结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则=3 。 [自由度与几何不变性的关系] 体系为几何不变的必要条件是自由度等于或小于零,此条件并非充分条件。 如果>0,则体系为几何可变体系; 如果<0或=0 ,则不能确定。 [实铰与虚铰] 两根不共线链杆的约束作用与一个单铰的约束作用是等效的。 两链杆交于一点所构成的铰为实铰。

第一章 几何组成分析

第一章几何组成分析 一、是非题(“是”打√,“非”打) 1、图示体系,去掉其中任意一根支座链杆后,剩下部分都是几何不变无多余约束的体系。() 2、体系几何组成分析中,链杆都能看作刚片,刚片有时能看作链杆,有时不能看作链杆。() 3、几何不变体系的计算自由度小于或等于0;计算自由度小于或等于0的体系一定是几何不变体系。() 4、当上部体系只用不交于一点也不全平行的三根链杆与大地相连时,只需分析上部体系的几何组成,就能确定原体系的几何组成。() 5、图a铰结体系是几何可变体系,图b铰结体系是几何不变体系。() (a) (b) 6、几何组成分析中,简单铰结点和简单链杆不能重复利用,复杂铰结点和复杂链杆(这两个概念教学中一般不介绍)可以重复利用。() 7、体系几何组成分析时,体系中某一几何不变部分,只要不改变它与其余部分的联系,可以替换为另一个几何不变部分,不改变体系的几何组成特 性。() 8、下图为几何不变体系。() 9、体系的多余约束对体系的计算自由度、自由度及受力状态都没有影响,故称多余约束。()

10、瞬变体系就是瞬铰体系。() 二、选择题 1、图示体系的几何组成是() A.无多余约束的几何不变体系 B.几何可变体系 C.有多余约束的几何不变体系 D.瞬变体系 2、图示体系的几何组成是() A、无多余约束的几何不变体系 B、几何可变体系 C、有多余约束的几何不变体系 D、瞬变体系 3、图示体系的几何组成是() A、无多余约束的几何不变体系 B、几何可变体系 C、有多余约束的几何不变体系 D、瞬变体系 4、图示体系的几何组成是() A、无多余约束的几何不变体系

2006典型例题解析--第1章 几何组成分析

第1章几何组成分析 §1 – 1 基本概念 1-1-1 名词解释 ●几何不变体系——结构(静定或超静定) 在不考虑材料变形情况下,几何形状和位置不变的体系,称为几何不变体系。 ●几何可变体系 在不考虑材料变形情况下,形状或位置可变的体系,称为几何可变体系。 ●刚片在平面上的几何不变部分。 ●自由度确定体系位置所需的独立坐标数目。 ●约束(联系)能够减少自由度的装置。减少自由度的个数为约束个数。 ①链杆——相当1个约束 ②铰——相当2个约束 ③虚铰——相当2个约束 ④复铰——相当n-1个单铰的作用 ●多余联系不能减少自由度的联系,称Array为多余联系。 ●必要联系 去掉时能够增加自由度(或维持体系不 变性必须)的联系。 ●瞬变体系 几何特征:几何可变体系经过微小位移 后成为几何不变体系。 静力特征:受很小的力将产生无穷大内 力,因此不能作结构。 1-1-2 分析规则 在不考虑材料应变所产生变形的条件 下,构成无多余约束几何不变体系(静定结 构)的基本规则如下: ●三刚片规则 三个刚片用不在同一条直线上的三个 铰(或虚铰)两两相联。 ●二刚片规则

2结构力学典型例题解析 两个刚片用不交于一点也不全平行的三根链杆相联; 或:两个刚片用一个铰和不通过该铰心的链杆相联。 ●二元体规则 什么是二元体(二杆结点): 两根不在同一条直线上的链杆联接一个新结点的装置,称为二元体。 在一个体系上增加或减少二元体不影响其几何不变性。 1-1-3 几何组成分析一般方法(步骤) (1)去二元体(二杆结点)。 (2)分析地基情况:上部体系与地基之间 ●当有满足二刚片规则的三个联系时,去掉地基,仅分析上部体系; ●当少于三个联系时,必为几何常变体系; ●当多于三个联系时,将地基当作一个刚片进行分析。 (3)利用规则找大刚片(最简单情况为:三个铰接杆件为刚片)。 (4)使用几何组成规则进行分析。 利用三刚片规则分析时:首先找出三个刚片,(满足三刚片规则的连接条件,即每两个刚片间有一个铰(或虚铰),然后再标出虚铰位置,最后看三个铰是否构成三角形。 §1 – 2 典型例题解析

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

第2章平面体系的几何组成分析

第2章平面体系的几何组成分析 10 .图示体系是---------------------------- 体系,因为02.有多余约束的体系一定是几何不变体系。( ) 03.图中链杆1和2的交点O可视为虚铰。( ) 11 .联结两个刚片的任意两根链杆的延线交点称为 ------------- ,它的位置是------------------ 定的 12 .试对图示体系进行几何组成分析。 04.三个刚片用三个铰两两相互联结而成的体系是: A ?几何不变; B?几何常变; C.几何瞬变; D.几何不变几何常变或几何瞬变。() 05.联结三个刚片的铰结点,相当的约束个数为: A . 2 个; B. 3 个; C. 4 个; D.5个。() 06.两个刚片,用三根链杆联结而成的体系是: A ?几何常变; B.几何不变; C.几何瞬变; D.几何不 变或几何常变或几何瞬变。()07.图示体系是: A?几何瞬变有多余约束; B ?几何不变; C ?几何常变; D?几何瞬变无多余约束。() C B 13 . 14 . 对图示体系进行几何组成分析 成分析。 15 .对图示体系进行几何组成分 析。 E 08 .在不考虑材料------------- 的条件下,体系的位置和形状不能改变的体系称为几何------------- 体系 09 .几何组成分析中,在平面内固定一个点,需要

18.对图示体系进行几何组成分析。 19.对图示体系进行几何组成分析 20.对图示体系进行几何组成分析 21 .对图示体系进行几何组成分析。 16 . 对图示体系进行几何组成分 析。 对图示体系进行几何组成分析17 . E

结构力学 第二章 几何组成分析(典型例题)

[例题2-1-1] 计算图示体系的自由度。,可变体系。 (a)(b) 解: (a ) 几何不变体系,无多余约束 (b ) 几何可变体系 [例题2-1-2] 计算图示体系的自由度。桁架几何不变体系,有多余约束。 解: 几何不变体系,有两个多余约束 [例题2-1-3] 计算图示体系的自由度。桁架自由体。 解: 几何不变体系,无多余约束 [例题2-1-4] 计算图示体系的自由度。,几何可变体系。 解: 几何可变体系 [例题2-1-5] 计算图示体系的自由度。刚架自由体。 解: 几何不变体系,有6个多余约束 [例题2-2-1] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-2] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-3] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-4] 对图示体系进行几何组成分析。两刚片规则。

几何不变体系,有一个多余约束 [例题2-2-5] 对图示体系进行几何组成分析。二元体规则。 几何不变体系,且无多余约束 [例题2-2-6] 对图示体系进行几何组成分析。两刚片规则,三刚片规则。 几何不变体系,且无多余约束 [例题2-2-7] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束 [例题2-2-8] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束[例题2-3-1] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-2] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-3] 对图示体系进行几何组成分析。三刚片规则。 几何瞬变体系 [例题2-3-4] 对图示体系进行几何组成分析。三刚片规则。

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

2平面体系的几何组成分析习题解答

第1章绪论(无习题) 第2章平面体系的几何组成分析习题解答 习题是非判断题 (1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。( ) (2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。( ) (3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。( ) (5) 习题(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。( ) 习题 (5)图 (6) 习题(6)(a)图所示体系去掉二元体ABC后,成为习题(6) (b)图,故原体系是几何可变体系。( ) (7) 习题(6)(a)图所示体系去掉二元体EDF后,成为习题(6) (c)图,故原体系是几何可变体系。( ) (a)(b)(c) 习题 (6)图 【解】(1)正确。 W 是使体系成为几何不变的必要条件而非充分条件。 (2)错误。0 (3)错误。 (4)错误。只有当三个铰不共线时,该题的结论才是正确的。 (5)错误。CEF不是二元体。 (6)错误。ABC不是二元体。 (7)错误。EDF不是二元体。 习题填空

(1) 习题(1)图所示体系为_________体系。 习题(1)图 (2) 习题(2)图所示体系为__________体系。 习题 2-2(2)图 (3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。 习题 (3)图 (4) 习题(4)图所示体系的多余约束个数为___________。 习题 (4)图 (5) 习题(5)图所示体系的多余约束个数为___________。 习题 (5)图 (6) 习题(6)图所示体系为_________体系,有_________个多余约束。 习题 (6)图 (7) 习题(7)图所示体系为_________体系,有_________个多余约束。

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

数学 解析几何 经典例题 附带答案

数学解析几何经典例题~ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线x 22-y 21 =1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1) C .(3,0),(-3,0) D .(0,3),(0,-3) 解析: c 2=a 2+b 2=2+1,∴c = 3. ∴焦点为(3,0),(-3,0),选C. 答案: C 2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立; 当直线x +y =0与直线x -ay =0垂直时,a =1. 所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件. 答案: C 3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0 D .x 2+y 2-2x =0 解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D. 答案: D 4.方程mx 2+y 2=1所表示的所有可能的曲线是( ) A .椭圆、双曲线、圆 B .椭圆、双曲线、抛物线 C .两条直线、椭圆、圆、双曲线 D .两条直线、椭圆、圆、双曲线、抛物线 解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线. 答案: C 5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2 所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0 C .-x +2y +4=0 D .x +2y +4=0 解析: 由题意知所求直线与直线2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12 (x -0), 即x +2y +4=0. 答案: D 6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为 ( ) A.32 B.34 C .2 5 D.355

解析几何(经典题型)

高中数学解析几何公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 2、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 3、 直线与圆锥曲线相交的弦长公式:? ??=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 4、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 5、 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π ∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 6、 直线的倾斜角α与斜率k 的关系

第一章几何结构组成分析

第1章几何组成结构分析 1.1 基础知识回顾 1.1.1 几何组成结构分析的前提 不考虑结构由于材料应变而引起的结构形状的改变,将所有杆件当做刚性构件处理。 1.1.2 几何结构的分类 在不计算材料应变的前提下,体系形状及杆件的相对位置不发生变化的结构称为几何不变体系,如图1.1为几何不变体系。 如果体系的形状或者杆件的相对位置发生变化,那么就称为几何可变体系,如图1.2为几何常变体系。 瞬变体系:结构不缺少必要约束,本身是几何可变的,但是经过微小的位移后变为几何不变体系,这种结构称为几何瞬变体系,图1.3为瞬变体系。 几何结构的分类可以概括为:

??????? ???? ?? 有多余约束的几何不变体系几何不变体系无多余约束的几何不变体系常变体系 几何可变体系瞬变体系 考试中最常见考瞬变体系,记住常见的几种瞬变体系,常见的几何瞬变体系(图1.8-1.9): 注:1、图1三根链杆交于一点,具备一个瞬铰,因此可以产生位移,当机构发生微小位移后,链杆1与2交于一个瞬铰,链杆2与3交于一个瞬铰,两个瞬铰不是重合的,因此,结构变为了几何不变体系,故原结构为几何不变体系。 2、这里的两刚片是广义的刚片,可以是扩大的刚片,很多题目是这两个题目的变式! 1.1.3 自由度与约束 物体或者运动时,彼此可以独立改变的几何参数的个数称为该物体或者体系的自由度。注意在结构力学考试中,所有体系都是考虑平面体系。一个刚片在平面上包含三个自由度,,y,x θ。 平面中一个刚节点可以约束3个自由度,一个铰接点可以约束2个自由度,一个链杆可以约束1个自由度。平面中往往存在多个杆件共用一个节点,故这类复刚(铰)节点计算为: N 个杆件所组成的单刚(铰)节点可以看做由(N-1)个单刚(铰)节点组成。 对于整体结构体系而言,假如结构有n 个杆件,其中包含m 个刚节点,s 个铰接点,p

第二章-结构的几何构造分析(龙驭球第三版)

第2章结构的几何构造分析 本章内容:§2-1 几何构造分析的几个概念 §2-2 平面几何不变体系的组成规律 §2-3 平面杆件体系的计算自由度 §2-4 在求解器中输入平面结构体系(略) §2-5 用求解器进行几何构造分析(略) §2-6 小结 主要内容: 第三讲 §2-1 几何构造分析的几个概念 1. 几何不变体系和几何可变体系 一般结构必须是几何不变体系 几何不变体系—在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系—在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 2. 自由度 平面内一点有两种独立运动方式,即一点在平面内有两个自由度。 一个刚片在平面内有三种独立运动方式,即一个刚片在平面内有三个自由度。 自由度个数=体系运动时可以独立改变的坐标数 3. 约束 一个支杆相当于一个约束,如图(a);一个铰相当于两个约束,如图(b);一个刚性结合相当于三个约束,如图(c)

4. 多余约束 如果在一个体系中增加一个约束,而体系的自由度并不减少,此约束称为多余约束。 有一根链杆是多余约束 5. 瞬变体系 特点:从微小运动的角度看,这是一个可变体系;经微小位移后又成为几何不变体系;在任一瞬变体系中必然存在多余约束。 可变体系 瞬变体系:可产生微小位移 常变体系:可发生大位移 6. 瞬铰 O为两根链杆轴线的交点,刚片I可发生以O为中心的微小转动,O点称为瞬时转动中心。 两根链杆所起的约束作用相当于在链杆交点处的一个铰所起的约束作用,这个铰称为瞬铰。 7. 无穷远处的瞬铰

两根平行的链杆把刚片I与基础相连接,则两根链杆的交点在无穷远处。两根链杆所起的约束作用相当于无穷远处的瞬铰所起的作用。 无穷远处的含义 (1)每一个方向有一个∞点; (2)不同方向有不同的∞点; (3)各∞点都在同一直线上,此直线称为∞线; (4)各有限点都不在线∞上。 §2-2 平面几何不变体系的组成规律 1. 三个点之间的连接方式 规律1 不共线的三个点用三个链杆两两相连,则所组成的铰接三角形体系是一个几何不变的整体,且没有多余约束。 2. 一个点与一个刚片之间的连接方式 规律2 一个刚片与一个点用两根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。 3. 两个刚片之间的连接方式 规律3 两个刚片用一个铰和一根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。

结构力学-几何构造分析

1.图示体系是几何不变体系。() 2.有多余约束の体系一定是几何不变体系。() 3.图示体系是: A.几何瞬变有多余约束; B.几何不变; C.几何常变; D.几何瞬变无多余约束。() 4.在不考虑材料の条件下,体系の 位置和形状不能改变の体系称为几何体系。() 5几何组成分析中,在平面内固定一个点,需要。 6图示体系是体系,因为 。 7联结两个刚片の任意两根链杆の延线交点称为,它の位置是定 の。 8试对图示体系进行几何组成分析。 C D B 9对图示体系进行几何组成分析。 A C D B E 10对图示体系进行几何组成分析。 C D B 11对图示体系进行几何组成分析。A B C D E F 12对图示体系进行几何组成分析。 A B C D E F 13对图示体系进行几何组成分析。B C D E F A G 14对图示体系进行几何组成分析。 A B C D E 15对图示体系进行几何组成分析。

A B C D E 16对 图 示 体 系 进行 几 何 组 成 分析 。 A B C D G E F 17对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F G H K 18对 图 示 体 系 进 行 几 何 构 造 分 析 。 19对 图 示 体 系 进 行 几 何 构 造 分 析 。 20对 图 示 体 系 进 行 几 何 构 造 分 析 。 21对 图 示 体 系 作 几 何 构 造 分 析 。 22对 图 示 体 系 进 行 几 何 组 成 分 析 。( 图 中 未 编 号 の 结 点 为 交 叉 点 。) A C B D E F 23对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F 24三 个 刚 片 用 三 个 铰 两 两 相 联 时 の 瞬 变 原 因 是_________________________。 25图 示 体 系 按 三 刚 片 法 则 分 析 , 三 铰 共 线 , 故 为 几 何 瞬 变 体 系 。 ( ) 26图 示 体 系 为 几 何 不 变 有 多 余 约 束 。 ( ) 27图 示 体 系 为 几 何 瞬 变 。 ( ) 28图 示 对 称 体 系 为 几 何 瞬 变 。 ( )

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关主题
文本预览
相关文档 最新文档