当前位置:文档之家› 大剂量GC对下丘脑神经元[Ca_'2%2b_]_%2ci_的影响及其机制研究

大剂量GC对下丘脑神经元[Ca_'2%2b_]_%2ci_的影响及其机制研究

大剂量GC对下丘脑神经元[Ca_'2%2b_]_%2ci_的影响及其机制研究
大剂量GC对下丘脑神经元[Ca_'2%2b_]_%2ci_的影响及其机制研究

第三军医大学

硕士学位论文

大剂量GC对下丘脑神经元[Ca<'2+>]<,i>的影响及其机制研究

姓名:王旭辉

申请学位级别:硕士

专业:创伤医学

指导教师:周继红

20090501

下丘脑对内脏活动的调节

下丘脑对内脏活动的调节 下丘脑大致可分为四区,即前区、内侧区、外侧区与后区(图10-41)。前区的最前端为视前核,严格说来它属于前脑的范畴,稍后为视上核、视交叉上核、室旁核,再后是下丘脑前核,内侧区又称结节区,紧靠着下丘脑前核,其中有腹内侧核、背内侧核、结节核与灰白结节,还有弓状核与结节乳头核。外侧区有分解的下丘脑外侧核,其间穿插有内侧前脑束。后区主要是下丘脑后核与乳头体核。 图10-41 下丘脑神经核群示意图 A:前连合 1:外侧视前核 2:内侧视前核 3:室旁核4:下 丘脑前核 5:视交叉上核 6:视上核 7:下丘脑背侧核8:下丘脑腹侧 内侧核 9:下丘脑后侧核 10,11,12,13:乳头体核群14:中脑之 脚间核 15:下丘脑外侧核 16:缰纹 17:穹窿 18:后屈束横贯下 丘脑的纤维为内侧前脑束 下丘脑与边缘前脑及脑干网状结构紧密的形态和功能方面的联系,共同调节着内脏的省城。进入下丘脑的传入冲

动可来逢边缘前脑、丘脑、脑干网状结构;其传出冲动也可抵达这些部位,还可通过垂体门脉系统和下丘脑-垂体束调节垂体前叶和后叶的活动。垂体门脉是正中隆起(灰白结节的内侧前部)与腺垂体之间的门脉系统;许多含有分泌颗粒的神经末梢终止于正中隆起,其分泌物可通过这一门脉系统到达腺垂体,调节腺垂体的活动,下丘脑-垂体束是由视上核、室旁核和结节发出的神经纤维束,它经垂体柄到达神经垂体,与神经垂体的活动密切相关。 在实验中,曾经观察到电刺激下丘脑的后区可获得血压升高、心率加速、瞳孔散大等交感神经性反应;因此有人认为下丘脑的后部是交感神经中枢,而前部是副交感神经不枢。但这个概念没有得到足够实验事实的支持,已不被公认。现在知道,下丘脑不是单纯的交感和副交感神经中枢,而是较高级的调节内脏活动和其它生理活动联系起来,调节着体温、营养摄取、水平衡、内分泌、情绪反应、生物节律等重要生理过程。 (一)体温调节 哺乳类运动在下丘脑以下部位横切脑干后,即不能保持体温的相对稳定;而在间脑以上切除大脑皮层的动物,体温仍能基本保持相对稳定。可见在间脑水平存在着体温调节中枢。现已肯定,调节体温的中枢在下丘脑。有人认为,体温

镜像神经元综述

镜像神经元概述 41108132 徐海明 东南大学医学院 摘要:镜像神经元是今年来国外认知神经科学研究的热点,通过一系列最新的技术,人们确立了人体内存在镜像神经系统的观点。镜像神经系统在语言进化、动作识别与理解、行为模仿等方面都起着重要的作用。本文就镜像神经系统的研究做一概述。 关键词:镜像神经元;语言进化;动作理解 Summary of mirror neuron 41108132 Xuhaiming Medical Deparment of SEU Abstract: Mirror neuron system plays important roles in language evolution, action recognition and understanding, behavior imitation and so on. Recent progresses indicate the existence of mirror neuron system in both prmates and human. This paper reviewed on past works of mirror neuron research. Key:words: mirror neuron; language evolution; action understanding 1、镜像神经元的概念 在生活中,看到别人在干什么,就好像自己也在干同样的事情一样:看到别人在吃东西,自己的口水就来了;看到别人打球,你就浑身是劲……为何会有这样潜移默化的作用?科学家发现,原来都是一种叫做镜像神经元的细胞在起作用。 脑中的神经元网络,一般相信是储存特定记忆的所在;而镜像神经元组则储存了特定行为模式的编码。这种特性不单让我们可以想都不用想,就能执行基本的动作,同时也让我们在看到别人进行同样的动作时,不用细想就能够心领神会。由于有镜像神经元的存在,人类才能学习新知、与人交往,因为人类的认知能力、模仿能力都建立在镜像神经元的功能之上。 2、镜像神经元的发现及发展 1996年里佐拉蒂和同事们发现,恒河猴的前运动皮质F5区域的神经元不但在它做出动作时产生兴奋,而且看到别的猴子或人做相似的动作时也会兴奋。他们把这类神经元命名为镜像神经元。 1998年里佐拉蒂根据经颅磁刺激技术和正电子断层扫描技术得到的证据提出,人类也具有镜像神经元,而且有一部分存在于大脑皮层的Broca区(控制说话、动作和对语言的理解的区域)。他进一步提出,人类正是凭借这个镜像神经元系统来理解别人的动作意图,同时与别人交流。 1999年亚科博尼等人发现,镜像神经元系统会在动作模仿和模仿性学习中起作

X62W万能铣床电气原理图

X62W万能铣床的实训说明 一、X62W万能铣床实训的基本组成 1、面板1 面板上安装有机床的所有主令电器及动作指示灯、机床的所有操作都在这块面板上进行,指示灯可以指示机床的相应动作。 2、面板2 面板上装有断路器、熔断器、接触器、热继电器、变压器等元器件,这些元器件直接安装在面板表面,可以很直观的看它们的动作情况。 3、电动机 三个380V三相鼠笼异步电动机,分别用作主轴电动机、进给电动机和冷却泵电动机。 4、故障开关箱 设有32个开关,其中K1到K29用于故障设置;K30到K31四个开关保留;K32用作指示灯开关,可以用来设置机床动作指示与不指示。 二、原理图

三、机床分析 1、机床的主要结构及运动形式 (1)主要结构由床身、主轴、刀杆、 横梁、工作台、回转盘、横溜板和升降台等 几部分组成,如右图所示。 (2)运动形式 1)主轴转动是由主轴电动机通过弹性 联轴器来驱动传动机构,当机构中的一个双 联滑动齿轮块啮合时,主轴即可旋转。 1)工作台面的移动是由进给电动机驱动,它通过机械机构使工作台能进行三种形式六个方向的移动,即:工作台面能直接在溜板上部可转动部分的导轨上作纵向(左、右)移动;工作台面借助横溜板作横向(前、后)移动;工作台面还能借助升降台作垂直(上、下)移动。 2、机床对电气线路的主要要求 (1)机床要求有三台电动机,分别称为主轴电动机、进给电动机和冷却泵电动机。 (2)由于加工时有顺铣和逆铣两种,所以要求主轴电动机能正反转及在变速时能瞬时冲动一下,以利于齿轮的啮合,并要求还能制动停车和实现两地控制。 (3)工作台的三种运动形式、六个方向的移动是依靠机械的方法来达到的,对进给电动机要求能正反转,且要求纵向、横向、垂直三种运动形式相互间应有联锁,以确保操作安全。同时要求工作台进给变速时,电动机也能瞬间冲动、快速进给及两地控制等要求。 (4)冷却泵电动机只要求正转。 (5)进给电动机与主轴电动机需实现两台电动的联锁控制,即主轴工作后才能进行进给。 3.电气控制线路分析

元胞自动机简史

元胞自动机简史 元胞自动机的诞生是人类探索人的认识本质的结果,也是计算技术巨大进步推动的结果。自古以来,人类认识一般问题的根本方法就是,建模和计算(推演)。模型是人类智力能理解自然世界的唯一方式。而元胞自动机正是一种可以用来建模也非常容易进行计算的理论框架和模型工具。最早从计算的视角审视问题的是关心人的认识本质的哲学家。笛卡尔认为, 人的理解就是形成和操作恰当的表述方式。洛克认为, 我们对世界的认识都要经过观念这个中介, 思维事实上不过是人类大脑对这些观念进行组合或分解的过程。霍布斯更是明确提出, 推理的本质就是计算。莱布尼兹也认为, 一切思维都可以看作是符号的形式操作的过程。进入20 世纪, 弗雷格, 怀特海、罗素等人通过数理逻辑把人类的思维进一步形式化, 形成了所谓的命题逻辑及一阶和高阶逻辑。在他们看来, 逻辑和数学, 都是根据特定的纯句法规则运作的。在这里, 所有的意义都被清除出去而不予考虑。在弗雷格和罗素的基础上, 维特根斯坦在他的早期哲学中把哲学史上自笛卡尔以来的原子论的理性主义传统发展到了一个新的高度。在维特根斯坦看来, 世界是逻辑上独立的原子事实的总和, 而不是事物的总和; 原子事实是一些客体的结合, 这些事实和它们的逻辑关系都在心灵中得到表达: 我们在心灵中为自己建造了事实的形象。人工智能事实上就是试图在机器中实现这种理性主义理想的一门学科。 在计算理论发展过程中, 阿兰·图灵(A. Turing) 的思想可以说是最关键的。在1936 年发表的论文中, 图灵提出了著名的图灵机概念。图灵机的核心部分有三: 一条带子、一个读写头、一个控制装置。带子分成许多小格, 每小格存一位数; 读写头受制于控制装置, 以一小格为移动量相对于带子左右移动, 或读小格内的数, 或写符号于其上。可以把程序和数据都以数码的形式存储在带子上。这就是“通用图灵机”原理。图灵在不考虑硬件的前提下, 严格描述了计算机的逻辑构造。这个理论不仅解决了纯数学基础理论问题, 而且从理论上证明了研制通用数字计算机的可行性。 图灵认为, 人的大脑应当被看作是一台离散态机器。尽管大脑的物质组成与计算机的物质组成完全不同, 但它们的本质则是相同。。离散态机器的行为原则上能够被写在一张行为表上, 因此与思想有关的大脑的每个特征也可以被写在一张行为表上, 从而能被一台计算机所仿效。1950 年, 图灵发表了《计算机器和智能》的论文, 对智能问题从行为主义的角度给出了定义, 设计出著名的“图灵测验,论证了心灵的计算本质, 并反驳了反对机器能够思维的9 种可能的意见。 与图灵提出人的大脑是一台离散态的计算机的思想几乎同一时期, 计算机科学的另一个 开创者冯·诺伊曼(J . von Neumann) 则开始从计算的视角思考生命的本质问题。一个人工的机器能够繁殖它自己吗? 当年笛卡尔在声称动物是机器的时候, 就曾被这个问题所难住。但冯·诺伊曼要回答这个问题, 他要找到自动机产生后代的条件, 他要证明机器可以繁殖! 为此, 冯·诺伊曼作了一个思想实验。他想象一台机器漂浮在一个池塘的上面, 这个池塘里有许多机器的零部件。这台机器是一台通用的建造器: 只要给出任何一台机器的描述,这台机器就会在池塘中寻找合适的部件, 然后再制造出这台机器。如果能够给出它自身的描述, 它就可以创造出它本身。不过, 这还不是完全的自我繁殖, 因为后代机器还没有对自身的描述, 它们因此不能复制自己。所以, 冯·诺伊曼继续假定最初的机器还必须包含一个描述复制器, 一旦后代机器产生出来, 它也从亲代那里复制一份关于自身的描述, 这样, 后代机器就可以无穷无尽地繁殖下去。 冯·诺伊曼的试验揭示了一个深刻的问题:任何自我繁殖的系统的基因材料, 无论是自然的还是人工的, 都必须具有两个不同的基本功能: 一方面它必须起到计算机程序的作用, 是一种在繁殖下一代时能够运行的算法, 另一方面它必须起到被动数据的作用, 是一个能够复制和传给下一代的描述。1953 年沃森和克里克揭示的DNA 结构和自我复制的机理。DNA 的特性正好具备冯·诺伊曼所指出的两个要求。 然而, 冯·诺伊曼对他自己的动力学模型并不十分满意。他不能充分地获得最小的逻辑前提, 因为该模型仍然以具体的原材料的吸收为前提。冯·诺伊曼感到, 该模型没有很好地把过程的

镜像神经元_具身模拟与心智阅读_叶浩生

南京师大学报(社会科学版)/Jul.2013/No.4心理学研究 镜像神经元、具身模拟与心智阅读 叶浩生曾红* [摘要]镜像神经元是意大利帕尔玛大学的神经科学家Rizzolatti所领导的团队发现的一种新的运动神经元。这种神经元不仅在恒河猴执行一个指向目标的动作时被激活,而且在恒河猴观察同类其他个体或者实验者执行同样或类似的动作时也被激活。TMS和FMRI的研究证实在人类大脑皮层中存在着具有类似功能的镜像神经机制。镜像神经机制的存在为具身模拟提供了神经生理学的基础。镜像神经元在操作和观察两个阶段都可以被激活的事实表明,模拟过程实际上就是运动系统在观察阶段的重新激活。这种激活是知觉和运动状态在离线条件下的再使用。同时,镜像神经元在操作和观察两个阶段都被激活也解释了为什么我们能对他人的心理进行阅读和理解。通过具身的模拟,我们把他人的行为同自己的行为进行匹配,从而达到了解他人行为意义的目的。 [关键词]镜像神经元;具身模拟;心智阅读;具身认知 镜像神经元的神奇之处莫过于它不仅在恒河猴操作某个指向目标的动作时被激活,而且在被动观察同类其他个体,甚至实验者操作类似的动作时,也被激活。这一事实表明,身体动作和认知判断之间存在着某种联系,或许这正是个体之间相互理解的神经基础。个体心灵之间通过镜像神经元而架起了一座沟通的桥梁,心智阅读或称读心(mind-reading)因此而成为可能。 一、镜像神经元与人类的镜像神经机制 大约在90年代中期,意大利帕尔玛大学的神经科学家Rizzolatti等人发现了一种新的运动神经元。它们位于恒河猴腹侧前运动皮层所谓的F5区。这种新的运动神经元“不仅在猴子执行一个行动,如精确地捡起一粒葡萄干时产生放电现象,而且当它被动地观察另一个个体做出类似的举动时也产生放电现象”(Heyes,2010)。由于这种神经元具有映射其他个体动作的能力,因此,这类神经元被命名为“镜像神经元”(mirror neuron)。大量的实证证据表明,恒河猴大脑皮层的腹侧前运动皮层 *叶浩生,心理学博士,广州大学教育学院教授、博士生导师,510006;曾红,心理学博士,暨南大学医学院副教授,510005。本文为国家自然科学基金项目“相关线索诱发的心理渴求及镜像神经活动———基于具身理论的药物依赖神经机制研究”(31271113)的阶段性成果。 097

下丘脑的内分泌功能.

第二节下丘脑的内分泌功能 很久以来人们注意到神经系统的活动能引起垂体及某些内分泌腺的分泌发生变化。例如情绪紧张可以使妇女月经失调。紧张的考试可以使血中促肾上腺皮质激素增多。但是信息如何从神经系统传到腺垂体,引起科学家的极大兴趣。解剖学家的研究证明在下丘脑与腺垂体之间虽然没有神经纤维联系,但存在把两者联系起来的特殊门脉系统。并且进一步发现下丘脑有一些在形态上虽与一般神经元相似,但能分泌神经激素的神经内分泌细胞。通过一系列实验确定了下丘脑与腺垂体之间联系的方式,提出下丘脑的某些神经元即神经内分泌细胞起着换能器作用,把神经信息换成激素信息。 一、下丘脑与腺垂体结构和功能的联系 (一)垂体门脉 垂体主要由垂体上动脉和垂体下动脉供给血液。垂体上动脉从基底动脉环发出后,进入结节部和漏斗柄,然后分支,最后在漏斗处形成毛细血管网。由正中隆起和漏斗柄的毛细血管网(第一级毛细血管)汇集为若干条小静脉,小静脉下行至腺垂体前部,在脑垂体前部再一次分成毛细血管网(第二级毛细血管),上述的小静脉即垂体门脉。第二级毛细血管网再汇合为垂体静脉,垂体静脉出腺垂体后,即汇入邻近的静脉。下丘脑的神经分泌细胞的轴突末梢与门脉系统的第一级毛细血管网接触,这样轴突末梢释放的神经激素就可通过毛细血管进入门脉系统内,神经激素再从第二级毛细血管网透出而作用于腺垂体分泌细胞。这样垂体门脉就完成了下丘脑-垂体之间激素的运送,达到了功能联系。 (二)下丘脑神经内分泌细胞分泌的调节肽 在下丘脑基底部存在“促垂体区”(主要包括正中隆起、弓状核等核团),此区的神经元分泌的肽,经门脉到达腺垂体,调节它的分泌,统称下丘脑调节肽。它们中有些具有腺垂体外作用,有些在体内其它部分也能生成。下丘脑共分泌九种调节肽,已分离纯化的有五种称为激素,其它四种称为因子。现分述如下:

元胞自动机简史

元胞自动机简史元胞自动机的诞生是人类探索人的认识本质的结果,也是计算技术巨大进步推动的结果。自古以来,人类认识一般问题的根本方法就是,建模和计算(推演)。模型是人类智力能理解自然世界的唯一方式。而元胞自动机正是一种可以用来建模也非常容易进行计算的理论框架和模型工具。最早从计算的视角审视问题的是关心人的认识本质的哲学家。笛卡尔认为, 人的理解就是形成 和操作恰当的表述方式。洛克认为, 我们对世界的认识都要经过观念这个中介, 思维事实上不过是 人类大脑对这些观念进行组合或分解的过程。霍布斯更是明确提出, 推理的本质就是计算。莱布尼兹也认为, 一切思维都可以看作是符号的形式操作的过程。进入20 世纪, 弗雷格, 怀特海、罗素等人通过数理逻辑把人类的思维进一步形式化, 形成了所谓的命题逻辑及一阶和高阶逻辑。在他们看来, 逻辑和数学, 都是根据特定的纯句法规则运作的。在这里, 所有的意义都被清除出去而不 予考虑。在弗雷格和罗素的基础上, 维特根斯坦在他的早期哲学中把哲学史上自笛卡尔以来的原 子论的理性主义传统发展到了一个新的高度。在维特根斯坦看来, 世界是逻辑上独立的原子事实 的总和, 而不是事物的总和; 原子事实是一些客体的结合, 这些事实和它们的逻辑关系都在心灵中得到表达: 我们在心灵中为自己建造了事实的形象。人工智能事实上就是试图在机器中实现这种理性主义理想的一门学科。 在计算理论发展过程中,阿兰图灵(A. Turing)的思想可以说是最关键的。在1936年发表的论 文中, 图灵提出了著名的图灵机概念。图灵机的核心部分有三: 一条带子、一个读写头、一个控制装置。带子分成许多小格, 每小格存一位数; 读写头受制于控制装置, 以一小格为移动量相对于带子左右移动, 或读小格内的数, 或写符号于其上。可以把程序和数据都以数码的形式存储在带子上。这就是“通用图灵机”原理。图灵在不考虑硬件的前提下, 严格描述了计算机的逻辑构造。这个理论不仅解决了纯数学基础理论问题, 而且从理论上证明了研制通用数字计算机的可行性。 图灵认为, 人的大脑应当被看作是一台离散态机器。尽管大脑的物质组成与计算机的物质组成完全不同, 但它们的本质则是相同。。离散态机器的行为原则上能够被写在一张行为表上, 因此与思想有关的大脑的每个特征也可以被写在一张行为表上, 从而能被一台计算机所仿效。1950 年, 图灵发表了《计算机器和智能》的论文, 对智能问题从行为主义的角度给出了定义, 设计出著名的“图灵测验,论证了心灵的计算本质, 并反驳了反对机器能够思维的9 种可能的意见。 与图灵提出人的大脑是一台离散态的计算机的思想几乎同一时期, 计算机科学的另一个 开创者冯诺伊曼J . von Neumann)则开始从计算的视角思考生命的本质问题。一个人工的机器能 够繁殖它自己吗?当年笛卡尔在声称动物是机器的时候,就曾被这个问题所难住。但冯诺伊曼要回答这个问题, 他要找到自动机产生后代的条件, 他要证明机器可以繁殖! 为此,冯诺伊曼作了一个思想实验。他想象一台机器漂浮在一个池塘的上面,这个池塘里有许多机器的零部件。这台机器是一台通用的建造器: 只要给出任何一台机器的描述,这台机器就会在 池塘中寻找合适的部件, 然后再制造出这台机器。如果能够给出它自身的描述, 它就可以创造出它本身。不过, 这还不是完全的自我繁殖, 因为后代机器还没有对自身的描述, 它们因此不能复制自己。所以,冯诺伊曼继续假定最初的机器还必须包含一个描述复制器,一旦后代机器产生岀来,它也从亲代那里复制一份关于自身的描述, 这样, 后代机器就可以无穷无尽地繁殖下去。 冯诺伊曼的试验揭示了一个深刻的问题:任何自我繁殖的系统的基因材料,无论是自然的还是人工的, 都必须具有两个不同的基本功能: 一方面它必须起到计算机程序的作用, 是一种在繁殖下一代时能够运行的算法, 另一方面它必须起到被动数据的作用, 是一个能够复制和传给下一代的描述。1953 年沃森和克里克揭示的DNA 结构和自我复制的机理。DNA 的特性正好具备冯诺伊曼所指岀的两个要求。 然而, 冯诺伊曼对他自己的动力学模型并不十分满意。他不能充分地获得最小的逻辑前提, 因为该模型仍然以具体的原材料的吸收为前提。冯诺伊曼感到, 该模型没有很好地把过程的 逻辑形式和过程的物质结构区分开。作为一个数学家,冯诺伊曼需要的是完全形式化的抽象理

自身认知和镜像神经元

自身认知和镜像神经元 先来说一下自身认知,自身认知也称作为自我认知,是个体对自己存在的觉察,包括对自己的行为和心理状态的认知。自我认知(self-cognition)是对自己的洞察和理解,包括自我观察和自我评价。自我观察是指对自己的感知、思维和意向等方面的觉察;自我评价是指对自己的想法、期望、行为及人格特征的判断与评估,这是自我调节的重要条件。个体对自我的觉察,或者说意识的形成来源于个体对外界环境刺激经由记忆和思想的反应。因此,在形成记忆之前的个体是不会有自我意识的。个体对于自我的存在,行为和心理的认知会有一个发展过程。刚开始是比较模糊的,所以小孩子会让经常出于好奇心而做一些危险的行为和事情。这个时候他们的自我意识是比较朦胧的。在经过不断地试错和加深记忆以及思考学习后,对于自我肌体的存在就渐渐成熟。随后才会对自己的行为有意识,会区分那些危险和安全的行为,然后决定是否要做。最后才是对于自我心理的认知。一般来说,这需要一个人的思维和想象力达到一定程度后才会具备这种察觉自我心理变化的能力。 接着说一下镜像神经元。人类有一群被称为“镜像神经元”的神经细胞,激励我们的原始祖先逐步脱离猿类。它的功能正是反映他人的行为,使人们学会从简单模仿到更复杂的模仿,由此逐渐发展了语言、音乐、艺术、使用工具等等。这是人类进步的最伟大之处之一。由于有镜像神经元的存在,人类才能学习新知、与人交往,因为人类的认知能力、模仿能力都建立在镜像神经元的功能之上。人脑中存在的镜像神经元,具有视觉思维和直观本质的特性,它对于理解人类思维能力的起源、理解人类文化的进化等重大问题有重要意义。人类大脑有若干镜像神经系统来专门传输和了解别人的行动和意图,以及别人行为的社会意义和他们的情绪。镜像神经元不是通过概念推理,而是通过直接模仿来让我们领会别人的意思。通过感觉而非思想。 接下来谈谈镜像神经元的主要案例 (一)儿童爱模仿的原因 镜像神经元也为人们观察儿童学习的过程提供了线索。华盛顿大学的安德鲁·梅尔索夫教授通过研究发现,刚刚出生仅几分钟的婴儿,在看到大人伸出舌头时,就能做出同样的动作。和其他灵长类动物一样,人类儿童都喜欢模仿。安德鲁教授说,儿童的镜像神经元使他们能够观察其他人的动作,并模仿看到的东西。婴儿出生后没有对自我的觉察,或者说意识的形成来源于个体对外界环境刺激经由记忆和思想的反应。因此,在形成记忆之前婴儿是不会有自我意识的。他不能判断自己的行为是否正确,因而对于别人的行为进行一个模仿,当婴儿长大后有了一定的自我意识之后,他对自己的行为进行一个判断,可以进行选择性的模仿,这样就好解释了为何人年龄越大,人们学习东西就越难,随着人的年龄变大,对于外界的认识和理解也就越多,生活经验变得丰富,这时候人就会思考哪些东西是有利的,哪些东西是没有用的,是有害的。而作为小孩子,他们对于世界的认识还远远不够,生活经验不足,对于一个人的行为,他只会单纯的去模仿,去接受,而不是去进行一个价值的判断。这也是小孩子为何学习的比成年人快的原因。 (二)围观世界杯,球迷为何会集体“癫狂” 世界杯中,球迷们会为自己的球队胜利集体起舞狂欢,也会为自己的球队失败而集体哭泣宣泄。奥地利研究人员日前发表研究公报称,镜像神经元在其中发挥着重要作用。 当人们观察到的场景与自身的过往经历越相似,镜像神经元就越活跃,尤其是当这些场景与运动神经的活动相关的时候。所以,球迷往往会有下意识的“从众”行为:球队赢了就集体狂欢,输了就集体哭泣。这时候球迷其实是无意识的,是不会对自己进行一个自身认识的,这时候人往往做出一些过激的行为,而这种行为仅仅是为了宣泄自己心中某种情绪,这种情绪是由外界的刺激所做出的思想和行为的表现。人这时候会根据别人的行为进行模仿,传输自己的行为别人的意图和表达自己的情绪。

下丘脑的作用

图解高中生物学中下丘脑对生命活动的调节 (邓崇生重庆市开县实验中学高中部405400) 下丘脑是调节内脏活动和内分泌活动的较高级神经中枢。它对人体的体温恒定、水盐平衡、血糖平衡、内分泌和情绪反应等生理过程都具有重要调节作用。现就高中阶段有关下丘脑调节作用的知识整理归纳如下: 1.在对垂体及相关腺体的调节作用: 2. 在水、盐平衡调节中的作用: 3. 在血糖浓度平衡的调节中的作用

4. 在体温恒定中的调节作用 练习 1.对于生物激素调节及其应用方面的有关说法正确的是( ) A .某农民种的小麦在扬花期受到大风袭击,影响了传粉,该农民给小麦田喷洒了一定浓度的生长素,他认为这样能避免小麦减产 B .甲状腺激素分泌不足,对于蝌蚪会停止生长因而不能形成青蛙成体,对于幼年人会得呆小症,对于成年人耗氧量会增加等 C .切除动物的垂体后,动物血液中的生长激素和甲状腺激素都会减少,而下丘脑分泌的促甲状腺激素释放激素会增加 D .激素间的协同作用对于维持动物正常的新陈代谢和生长发育等都有着非常重要的意义,而激素间的拮抗作用对机体是不利的,机体能通过反馈调节来缓解这种作用 2.不符合人体体温及其调节实际情况的是( ) A .处于炎热环境中时,机体只通过神经调节保持体温相对恒定 B .正常体温因年龄性别等不同而在狭小范围内变动 C . 人的体温来源于体内物质代谢过程中所释放出来的热量 D . 由垂体分泌的激素促进肾上腺分泌肾上腺素 3.当一个人失水过多或吃的食物过咸时,会导致( ) A .细胞外液渗透压降低 B .垂体释放抗利尿激素增加 C .下丘脑释放抗利尿激素 D .垂体渗透压感受器兴奋 4.右图是甲状腺活动的调节示意图。对该图的理解,不正确的是( ) A .图中X 与Y 分别是下丘脑和垂体 B .图中a 与b 分别是促甲状腺激素释放激素和促甲状腺激素 C .甲状腺活动只受垂体促激素的调节

元胞自动机的定义与构成及其特征

元胞自动机的定义与构成及其特征 https://www.doczj.com/doc/b5408657.html, 2005-4-17 15:05:00 来源:生命经纬 尽管元胞自动机有着较为宽松,甚至近乎模糊的构成条件。但作为一个数理模型,元胞自动机有着严格的科学定义。同时,元胞自动机是一个地地道道的"混血儿"。是物理学家、数学家,计算机科学家和生物学家共同工作的结晶。因此。对元胞自动机的含义也存在不同的解释,物理学家将其视为离散的、无穷维的动力学系统;数学家将其视为描述连续现象的偏微分方程的对立体,是一个时空离散的数学模型;计算机科学家将其视为新兴的人工智能、人工生命的分支;而生物学家则将其视为生命现象的一种抽象。下面给出几种常见的定义: 1.元胞自动机的物理学定义 元胞自动机是定义在一个由具有离散、有限状态的元胞组成的元胞空间上,并按照一定局部规则,在离散的时间维上演化的动力学系统。 具体讲,构成元胞自动机的部件被称为"元胞",每个元胞具有一个状态。这个状态只琵取某个有限状态集中的一个,例如或"生"或"死",或者是256中颜色中的一种,等等;这些元胞规则地排列在被你为"元胞空间"的空间格网上;它们各自的状态随着时间变化。而根据一个局部规则来进行更新,也就是说,一个元胞在某时刻的状态取决于、而且仅仅家决于上一时刻该元胞的状态以及该元胞的所有邻居元胞的状态;元胞空间内的元胞依照这样的局部规则进行同步的状态更新,整个元胞空间则表现为在离散的时间维上的变化。 2.元胞自动机的数学定义 美国数学家L.P.Hurd和K·Culik等人在90年代初,对元胞自动机分别从集合论和拓扑学等角度进行了严格地描述和定义 (谢惠民,1994; Culik,II K,1990;李才伟,1997) 1)基于集合论的定义 设d代表空间维数,k代表元胞的状态,并在一个有限集合S中取值,r表元胞的邻居半径。Z是整数集,表示一维空间,t代表时间。 为叙述和理解上简单起见,在一维空间上考虑元胞自动机,即假定d=1。那么整个元胞空间就是在一维空间,将整数集Z上的状态集S的分布,记为S Z。元胞自动机的动

镜像神经元与自闭症

镜像神经元与自闭症 《环球科学》:镜像神经元,大脑中的魔镜 概述 ◆当人类和猴子在执行某个动作或观看其他个体执行同样的动作时,大脑中的一部分神经元就会有所反应。 ◆由“镜像神经元”产生的直接的内在体验,让我们能够理解他人的行为、意图或情感 ◆镜像神经元也许是模仿他人动作以及学习能力的基础,从而使得镜像机制成为人与人之间进行多层面交流与联系的桥梁 约翰看见玛丽的手向一朵花伸去。约翰知道玛丽要做什么——她要摘花,可是她为什么要这样做?玛丽朝着约翰莞尔一笑,他猜她要把这朵花送给自己。这个简单的场景转瞬即逝,约翰却能立即领会玛丽的意图。为什么他能毫不费力地理解玛丽的行为和意图? 10年前,大多数神经学家和心理学家都认为,我们对他人行为,特别是他人意图的理解,是通过一个快速的推理过程完成的。这个推理过程类似于逻辑推理。也就是说,约翰大脑中有一些复杂的认知结构,它们能详尽分析感官采集的信息,并把这些信息与先前储存的经历相比较,约翰就知道了玛丽在做什么,以及她为什么要这样做。 尽管在某些情况下(特别是当某人的行为难以理解的时候),这种复杂的推导过程或许确实存在,但当我们看到简单的行为时,往往马上就能作出判断,这是不是意味着还有更简单更直接的理解机制?20

世纪90年代初,在意大利帕尔马大学,我们的研究小组偶然发现,这个问题的答案隐藏在一群神奇的神经元之中。当猴子有目的地做出某个动作时(例如摘水果),它大脑中的这种神经元就会处于激活状态。不过更让我们吃惊的是,当这只猴子看到同伴做出同样的动作时,这些神经元也会被激活。这类刚刚进入人们视野的细胞似乎就像一面镜子,能直接在观察者的大脑中映射别人的动作,所以我们称它们为镜像神经元(mirror neuron)。 与大脑中储存记忆的神经回路相似,镜像神经元似乎也为特定的行为“编写模板”。有了镜像神经元的这种特性,我们就可以不假思索地做出基本动作,在看到这些动作时,也能迅速理解,而不需要复杂的推理过程。约翰之所以能够领会玛丽的行为,是因为这些动作不仅发生在他眼前,而且也在他的大脑中实时模仿着。很久以前,有哲学家就认为,一个人要真正理解一件事,就必须亲身经历。对于神经学家来说,在镜像神经元中为这种哲学观点找到物质基础,代表了我们对理解过程的认识有了巨大的变化。 发现镜像神经元 在猴子、人类的大脑中,都存在镜像神经元。不论是自己做出动作,还是看到别人做出同样的动作,镜像神经元都会被激活,也许这就是我们理解他人行为的基础。 我们的研究小组发现镜像神经元其实纯属意外。当时,我们正在研究大脑的运动皮质(motor cortex),特别是其中的F5区域,这一

下丘脑有何功能总共4页文档

下丘脑有何功能 在高中生物教材中有多处涉及到下丘脑的知识,但因为比较分散,学生难以全面系统的了解下丘脑的功能。为了便于学生理解,我在教学过程中对下丘脑的功能进行了总结和补充。 人脑可分为大脑、小脑、脑干和间脑等四部分,下丘脑属于间脑的一部分,具有控制植物性神经系统的高级中枢之称。它对体温、水盐平衡、血糖、内分泌、血压、摄食、动物行为的调节都有重要的影响。 1.对体温的调节 下丘脑前部有体温调节中枢,此处的神经元一方面接受外周温感信息的传入神经冲动,一方面也可直接感受流经脑部血液温度的变动,从而改变其活动水平,并通过一定的神经联系影响下丘脑其他与体温调节有关的神经结构的活动,使其发生相应的增强或减弱,改变产热和散热水平,保持体温的相对恒定。 例如,当人处于寒冷环境时,由于寒冷的刺激,皮肤里的冷觉感受器产生兴奋,并将兴奋传至下丘脑的体温调节中枢,通过中枢的分析综合,再使有关神经兴奋,引起皮肤血管收缩,血流量减少,通过皮肤直接散发的热量减少;同时,骨骼肌、立毛肌收缩,肾上腺素、甲状腺激素分泌增多,导致体内代谢活动加强,产热量增多,通过以上活动可使机体的体温不会因环境温度的降低而降低,从而维持体温的相对恒定。 人处于炎热环境时,体温调节的反射过程可概括为下图: 皮肤血管舒张 炎热→皮肤温觉感受器兴奋→传入神经→下丘脑体温调节中枢→传出神经 增加散热汗腺分泌活动加强 2.对水平衡的调节 当人饮水不足、体内失水过多或吃的食物过咸时,都会引起细胞外液渗透压升高,使下丘脑中的渗透压感受器受刺激而产生兴奋,一方面传入大脑皮层,通过产生渴觉来直接调节水的摄入量;另一方面使由下丘脑神经细胞分泌并由垂体后叶释放的抗利尿激素增加,从而促进了肾小管、集合管对水分的重吸收,减少了尿量,使细胞外液渗透压趋向于恢复正常。

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

镜像神经元与自闭症

镜像神经元与自闭症 摘要】自闭症,是一种较为广泛的发育障碍,神经性性疾病,其主要核心症状为:社会交际障碍、语言交流障碍、重复刻板行为[1]。研究者正在努力试图通过研究 镜像神经元的作用机制揭示其发病机制,解释自闭症的症状,进而找到治疗自闭 症的方法。镜像神经元为解开自闭症的神秘面纱带来希望。 【关键词】自闭症;镜像神经元;治疗 【中图分类号】R74 【文献标识码】A 【文章编号】1007-8231(2016)31-0035-02 自闭症个体通常表现社交及沟通能力障碍,这些能力有移情、模仿、共同关注、语言、心理理论等。自镜像神经元被发现后,有大量研究表明镜像神经元系 统在模仿、移情、心理理论、语言中扮演重要作用,于是很多研究者认为镜像神 经元系统的功能障碍可能导致自闭症的某些症状。 1.镜像神经元系统与自闭症 一项应用fMRI研究显示自闭症患者额下回的岛盖部(属于镜像神经元系统)在观察人的运动时呈现过度活化,表明自闭症患者的镜像神经元系统中镜像神经 元的活性是异常的。当自闭症患者自己执行一个动作时镜像神经元所在脑区正常 激活,表示基本的动作自我启动的感觉运动系统完整;但在观察他人的动作时活 性异常,表明自闭症患者基本的生物运动的观察系统可能出现受损。这种异常既 可能是低活性也可能是超活性,无论是哪一种异常都可能导致镜像神经元无法正 常执行其功能,引起自闭症症状[1]。 还有一项研究发现U波抑制可能与观察者对动作的熟悉程度有关,对比观察 熟悉者和陌生者抓握动作时的U波,发现无论是正常个体还是自闭症患者都在观 察熟悉人的手抓握动作时U波抑制明显,表明当自闭症患者看到熟悉个体所做的 动作时镜像神经元正常激活。这项研究的结果可能表明镜像神经元激活存在阈值 效应:自闭症患者比正常人需要更强的刺激,克服可能存在的镜像神经元系统数 量的减少或功能降低才能激活镜像神经元系统,引起U波抑制[2]。自闭症患 者在观察自己的动作或熟人的动作时U波之所以抑制可能是因为熟悉的刺激可以 增加关注力和具有激发性的特点引起镜像神经元系统活性增加。所以在特定的环 境下自闭症患者的镜像神经元有可能正常运行功能,预示着自闭症患者有望通过,通过行为训练、神经反馈或其他训练治疗干预改善自闭症患者对他人动作情感感 同身受的能力和社交障碍,提高镜像神经元系统的功能,减轻自闭症相关行为障 碍[3]。 观察-执行机制同学习机制的神经结构使人类语言进化并丰富,运动、感知、抽象思维可能共用同一神经回路。因此镜像神经元系统功能障碍不仅导致理解动 作障碍同时也会引起恰当的语言应用和交际意图的障碍。Jojanneke A.Bastiaansen 等人研究表明自闭症患者的镜像神经元系统的活性随着年龄的增长而增强且与凝 视行为改变和社交能力改善有关,增加运动模仿可能改善青少年和成年人的社交 能力。但是Peter G.enticott等人通过经颅刺激发现自闭症患者在观察递物手势时 皮质兴奋性显著降低,此现象可能表明在腹侧前运动皮质/额下回的镜像神经元系统活性减弱,限制了理解他人行为的能力然后促成自闭症及其社交相关能力障碍,结果表明镜像神经元活性和与社交相关的障碍呈负相关,但是没有任何迹象表明 镜像神经元损伤随自闭症患者年龄增长而减少。 人类镜像机制特点,是对目标导向动作和无意义运动都会做出应答,这种特

下丘脑的调节作用 -

专题----下丘脑参与下的血糖调节、水盐调节和体温调节 一、考情分析 本考点属高考高频考点之一,题目考查范围广、难度稍大、涉及血糖平衡及调节过程、体温稳态及神经、体液调节途径、水平衡调节过程等,题型既包括选择题又包括简答题及实验探究题,尤其以综合性考查为主。 丘脑某一区域

长日照 大脑皮层 促进生殖 细胞代谢 水盐代谢和糖代谢 少散热 多产热

三、知识补偿 1、(2013新课标卷)回答下列问题 (1)清晨静脉取血液测定正常人和胰岛B细胞分泌功能不足者的空腹血糖浓度。空腹时,血糖的来源是_ _和 _。 (2)空腹抽血后,一次定量饮入高浓度葡萄糖水。喝糖水后每隔一定时间静脉取血,测定血糖浓度(整个过程禁食、禁水,不做剧烈运动),发现正常人与胰岛B细胞分泌功能不足者血糖浓度的变化趋势都是先上升,再下降,但下降的速率不同。下降速率不同原因是_________。 (3)胰岛B细胞分泌的激素是在该细胞的______和______这两种细胞器中进行加工的。 2、如图表示水盐调节的部分过程。下列相关叙述中错误的是() A.图中的甲可能是饮水不足、机体失水过多或吃的食物过咸 B.乙、丙、丁分别是下丘脑、大脑皮层、肾小管和集合管 C.图中所示过程既有神经调节也有体液调节 3、下丘脑在人体生理调节过程中发挥着重要作用。请据图回答问题(甲、乙、丙、丁为人体内某种结构或细胞,A、B、C、D为调节物质): (1)当人体处于寒冷环境中时,图中激素A__________(填名称)在血液中的含量明显升高。其作用是______________________________,这一生理活动的调节方式是______________;同时激素D________(填名称)分泌也增多,并且骨骼肌产生不自主战栗。引起骨骼肌战栗的神经传导途径为:__________________→传入神经→______________→传出神经→骨骼肌。 (2)当人体内的血糖浓度降低时,丁可以直接感知血糖浓度的变化,也可以接受下丘脑的控制,通过有关神经作用使分泌的______________(填激素名称)增多;同时激素D也增多。上述过程从反射类型看属于________反射。 (3)下丘脑除参与图中的调节过程外,还能分泌__________________(填激素名称),由甲释放到血液中,调节人体内水盐的平衡。 (4)如果血液中物质A的含量过高,会抑制下丘脑和甲的分泌活动,这种调节作用称为

下丘脑-神经解剖学讲稿

下丘脑hypothalamus 一、位置和外形:背侧丘脑的前下方, 与背丘脑之间以下丘脑沟分界。构成第3脑室 前下部的侧壁和底部。 前界——前连合和终板; 后界——续于中脑。 两侧——邻大脑半球前部底面。 包括:视交叉、视束、漏斗、灰结节、 乳头体等结构。 正中隆起;视隐窝、漏斗隐窝。 二、内部结构:以弥散的小细胞为主的视周中央灰质。 (一)内部区分: 前后位——视前区:终板以后,视交叉前缘至前连合连线以前的部位; 视上区(下丘脑前区):视交叉上方; 结节区(下丘脑中区):灰结节及其上方; 乳头(体)区(下丘脑后区):乳头体及其上方。 其中前两区在人类合称“视上部”“

冠状位—以穹隆柱和乳头丘脑束为界,分为室周区:第三脑室壁的室周灰质; 内侧区:穹隆柱和乳头丘脑束与室周区 之间; 外侧区:穹隆柱和乳头丘脑束以外的部分。

(二)各部的主要核团: 视前区——视前室周核、 视前内侧核、 视前外侧核 视前室周核——位于第三脑室室管膜下。低分化的小细 胞组成,向后接视上区的前室周核。

视前内侧核——位于视前区的内侧部。较大,分内、外侧两部,其内侧部有雌雄同质异形性,故又称“性二态核”,雄性此核体积大于雌行,其细胞数目和突触密度亦大于雌性。此核含有合成“促性腺激素释放激素”(GnRH)的神经元,发纤维投射至正中隆起,对脑垂体前叶的促性腺激素有调控作用。 传入纤维:隔核、伏隔核的纤维—前脑内侧束—此核 杏仁核的纤维—终纹—此核 传出纤维: —前脑内侧束—隔核、 下丘脑其它核团、中脑 —终纹—杏仁核 —室周系统和髓纹—丘脑、缰核 —正中隆起 视前外侧区——位于视前区外侧部,下丘脑外侧区 的前部,外侧与无名质毗邻。有前脑内侧束纤维穿过,其间有 散在的神经元。前脑内侧束纤维联系边缘系统、下丘脑和脑干。 纤维联系:与隔核、海马、梨状皮质、纹状体、杏仁核等有往返联系。

下丘脑有何功能

下丘脑有何功能 李依新(山东省武城县第二中学253300) 在高中生物教材中有多处涉及到下丘脑的知识,但因为比较分散,学生难以全面系统的了解下丘脑的功能。为了便于学生理解,我在教学过程中对下丘脑的功能进行了总结和补充。 人脑可分为大脑、小脑、脑干和间脑等四部分,下丘脑属于间脑的一部分,具有控制植物性神经系统的高级中枢之称。它对体温、水盐平衡、血糖、内分泌、血压、摄食、动物行为的调节都有重要的影响。 1.对体温的调节 下丘脑前部有体温调节中枢,此处的神经元一方面接受外周温感信息的传入神经冲动,一方面也可直接感受流经脑部血液温度的变动,从而改变其活动水平,并通过一定的神经联系影响下丘脑其他与体温调节有关的神经结构的活动,使其发生相应的增强或减弱,改变产热和散热水平,保持体温的相对恒定。 例如,当人处于寒冷环境时,由于寒冷的刺激,皮肤里的冷觉感受器产生兴奋,并将兴奋传至下丘脑的体温调节中枢,通过中枢的分析综合,再使有关神经兴奋,引起皮肤血管收缩,血流量减少,通过皮肤直接散发的热量减少;同时,骨骼肌、立毛肌收缩,肾上腺素、甲状腺激素分泌增多,导致体内代谢活动加强,产热量增多,通过以上活动可使机体的体温不会因环境温度的降低而降低,从而维持体温的相对恒定。 人处于炎热环境时,体温调节的反射过程可概括为下图: 皮肤血管舒张 炎热→皮肤温觉感受器兴奋→传入神经→下丘脑体温调节中枢→传出神经 增加散热汗腺分泌活动加强

当人饮水不足、体内失水过多或吃的食物过咸时,都会引起细胞外液渗透压升高,使下丘脑中的渗透压感受器受刺激而产生兴奋,一方面传入大脑皮层,通过产生渴觉来直接调节水的摄入量;另一方面使由下丘脑神经细胞分泌并由垂体后叶释放的抗利尿激素增加,从而促进了肾小管、集合管对水分的重吸收,减少了尿量,使细胞外液渗透压趋向于恢复正常。 当人饮水过多或失盐过多而使细胞外液渗透压下降时,会减少对下丘脑渗透压感受器的刺激,抗利尿激素分泌和释放减少,肾脏排出的水分增加,从而使细胞外液渗透压恢复正常。 3.对血糖的调节 人体血糖的调节以体液调节为主,同时又接受神经系统的调节。当血糖含量升高时,下丘脑的相关区域兴奋,通过副交感神经直接刺激胰岛B细胞释放胰岛素,并同时抑制胰岛A 细胞分泌胰高血糖素,从而使血糖含量降低。当血糖含量降低时,下丘脑另一相关区域兴奋,通过交感神经作用于胰岛A细胞分泌胰高血糖素,并抑制胰岛B细胞分泌胰岛素,使血糖含量升高。机体通过神经—体液调节维持了血糖含量的相对稳定。 4.下丘脑的内分泌调节机能 下丘脑在维持机体内环境稳定和内分泌调节方面具有突出作用,被认为是机体调节内分泌活动的枢纽。下丘脑分泌的许多激素,如:促甲状腺激素释放激素、促性腺激素释放激素、生长激素释放激素、促肾上腺皮质激素释放激素、生长激素释放抑制激素等,对垂体靶细胞或起兴奋作用,促进其分泌激素,或起抑制作用,抑制其分泌激素,进而调节多种内分泌腺的活动,影响机体的各种生理机能。 例如:人在受到寒冷刺激时,下丘脑分泌的促甲状腺激素释放激素增加,这种激素作用于垂体,使垂体分泌的促甲状腺激素增加,促甲状腺激素使甲状腺分泌的甲状腺激素增强,从而增强机体代谢,使产热量增加。

相关主题
文本预览
相关文档 最新文档