当前位置:文档之家› 摩托车蓄电池的补充充电的两种方法

摩托车蓄电池的补充充电的两种方法

摩托车蓄电池的补充充电的两种方法
摩托车蓄电池的补充充电的两种方法

摩托车蓄电池的补充充电的两种方法

蓄电池亏电是摩托车一种较常见的故障,蓄电池亏电以后,不仅会对摩托车的正常使用带来不便,而且有可能危及摩托车的行驶安全。导致蓄电池亏电的原因有很多,但主要是由于充电系统不能对蓄电池进行有效地充电引发的,既充电系统的稳压整流器、电源绕阻及其连接线路有故障引发的。只要对充电系统的稳压整流器、电源绕阻及其连接线路进行排查,就可以很快地排除充电系统故障。

充电系统故障排除以后,要对亏电的蓄电池进行补充充电后再投入使用。对蓄电池的补充充电通常使用两种方法:

一、使用充电机给蓄电池进行补充充电。

二、使用摩托车充电系统在运行中对蓄电池进行充电。

摩托车充电系统采用的是恒压充电方式,维修场所使用的小型普通充电机多数也采用的是恒压充电方式。恒压充电方式的特点是:蓄电池整个充电过程中,充电电压始终保持不变,蓄电池开始充电时,由于蓄电池电压比充电电压低,充电电流比较大,就可以很快地被补充充电。通常可以在较短的时间里使蓄电池的容量大幅度提高,随着蓄电池电压的不断升高,充电电流就会逐渐减小,直到蓄电池电压与充电电压接近时,充电电流变得很小,充电工作接近停止。

对于亏电严重的蓄电池来说,充电电压要比蓄电池电压高出许多,进行充电时形成的充电电流就会特别大。以某品牌125型坐式摩托车充电系统为例,在正常情况下,发动机怠速工况时,充电电流约1A左右,提高发动机工作转速时,充电电流最大可达5A左右。蓄电池的标准充电电流,通常是以蓄电池额定容量的十分之一,即12V7AH的蓄电池的充电电流为0.7A,即使对蓄电池快速充电,充电电流也不应超过3A,蓄电池严重亏电时的充电电流会大大超过快速充电的充电电流,这对蓄电池是有害的,同时也极容易损坏稳压整流器。

蓄电池充电电流过大最大的危害就是容易导致极板上活性物质脱落,对蓄电池的使用寿命影响很大。因此,充电系统故障排除以后,最好先使用充电电流可调的充电机对蓄电池进行补充充电,充电电流为蓄电池额定容量的十分之一,蓄电池电量充足后,再装车投入使用。在缺少充电电流可调的充电机时,可以在充电线路中串接灯泡,以减小充电电流。

在不得不使用摩托车充电系统对蓄电池进行充电时,应注意发动机起动后,切不可高速运转,以免充电电流过大。对急需要行驶的摩托车,也可以采用在充电线路中串街灯泡的方法减小充电电流。方法是:断开蓄电池保险管的连接,串接一只12V 21W的灯泡,待摩托车行驶一会后,蓄电池的容量增加,再取下灯泡。

这样给蓄电池进行充电比较麻烦,但对蓄电池的使用有好处,可以延长蓄电池的寿命,非常值得。

铅酸蓄电池最佳充电方法

铅酸蓄电池最佳充电方法 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线。 目录 1原理简介

蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 2详细内容 蓄电池充电器原理 蓄电池里面有大量的硫酸等可供电离的溶液,当插上电源,电流就通过里面的铅板(有些电池不是铅)电离溶液,这样就将电能转化为化学能;如果要使用,溶液就会转化为电能通过电极输送出去。这是原理上的描述,事实上,真实的情况十分复杂,可参考相关专业书籍。 充电方法制度 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,

Android5.1 电池充电剩余时间计算

Android5.1 电池充电剩余时间计算android5.1手机在充电的时候,并且在锁屏界面的时候会显示还剩多少时间电池充满电。我们就这个机制进行下深入分析: 首先对电池的变化都会监听BatteryService发出的Intent.ACTION_BATTERY_CHANGED广播,因此在framework目录下全局搜索,结果发现在./base/packages/Keyguard/src/com/Android/keyguard/KeyguardUpdateMonitor.Java这个目录下,也就是keyguard中有对这个广播的监控 在KeyguardUpdateMonitor.java这个文件中 [java] view plain copy private final BroadcastReceiver mBroadcastReceiver = new BroadcastReceiver() { public void onReceive(Context context, Intent intent) { final String action = intent.getAction(); if (DEBUG) Log.d(TAG, "received broadcast " + action); if (Intent.ACTION_TIME_TICK.equals(action) || Intent.ACTION_TIME_CHANGED.equals(action) || Intent.ACTION_TIMEZONE_CHANGED.equals(action)) { mHandler.sendEmptyMessage(MSG_TIME_UPDA TE); } else if (Intent.ACTION_BA TTERY_CHANGED.equals(action)) {//监听电池变化的广播 final int status = intent.getIntExtra(EXTRA_STA TUS, BA TTERY_STATUS_UNKNOWN); final int plugged = intent.getIntExtra(EXTRA_PLUGGED, 0); final int level = intent.getIntExtra(EXTRA_LEVEL, 0); final int health = intent.getIntExtra(EXTRA_HEALTH, BA TTERY_HEALTH_UNKNOWN); final Message msg = mHandler.obtainMessage( MSG_BA TTERY_UPDATE, new BatteryStatus(status, level, plugged, health)); mHandler.sendMessage(msg);//发消息 } 接下来我们搜索下MSG_BATTERY_UPDATE这个消息, [java] view plain copy private void handleBatteryUpdate(BatteryStatus status) { if (DEBUG) Log.d(TAG, "handleBatteryUpdate"); final boolean batteryUpdateInteresting = isBatteryUpdateInteresting(mBatteryStatus, status); mBatteryStatus = status; if (batteryUpdateInteresting) { for (int i = 0; i < mCallbacks.size(); i++) { KeyguardUpdateMonitorCallback cb = mCallbacks.get(i).get(); if (cb != null) {

蓄电池充电机安全使用规程

蓄电池充电机安全使用规程 充电机的安装: 1.充电机内电压对人体有致命危险,只允许合格电工打开和维修充电机。打开前,请确认市电电源和蓄电池都处在断开状态。 2.充电机必须安装在干燥通风良好的地方, 不能置于可能淋雨的地方。 3. 蓄电池酸液挥发容易腐蚀充电机,充电机不能置于蓄电池的正上方。 4. 充电时保证气体的正常排放。 5. 充电机箱体适合于放在地面或墙壁上。安装在墙壁上的充电机,请参考充电机的重量 6. 确认蓄电池与充电机型号正确无误。 充电机的操作 电源连接: 单相220V、230V、240V,50/60HZ, 三相380V、400V、420V,50/60HZ。 将充电机与对应的蓄电池相接,若不匹配可能会导致危险,蓄电池会产生大量的气体、沸腾甚至爆炸。保证充电机与蓄电池的极性一致,如果极性不一致,充电机内部的快速保险将会迅速烧坏。 非可再充电的蓄电池不能充电。 连接蓄电池的插头必须符合规定的标准,尺寸和额定电流必须与充电机相匹配。 充电过程: 1.请勿对并联或串连状态的蓄电池组充电。 2.电源与蓄电池都连接好后,充电机延时8秒钟之后会自动启动,LED指示灯“ON”点亮,说明充电已经开始。 3.当充电达到80%时,LED指示灯“80%”点亮,说明充电已经到达80%。 4.脉冲充电开始时,LED指示灯“ON”“∏”同时亮。 5.当蓄电池完全充满后,充电机会自动停止充电,LED指示灯“100%”亮。 6.断开蓄电池前,请先按“停止”键。 7.均衡充电请按“均衡”键3钞钟,充电结束1小时后启动。 8.如果显示错误信号,请与有关服务人员联系。 充电特性 1.时间取决于充电电流与蓄电池容量的比值及蓄电池的放电深度。

充电机说明书

深圳市好科星电子有限公司 CD-24V60A型 24V60A全自动充电机 使 用 说 明 书 均充、浮充自动转换,多挡电流选择 开关电源技术,体积小、重量轻、效率高、全隔离

全自动充电机采用当今先进的无工频变压器开关电源技术,体积小、重量轻、效率高;结合智能充电技术,以延长蓄电池使用寿命和及时为蓄电池充满电为宗旨,针对克服工频型充电机的缺点而设计,与工频型充电机比较能显著延长蓄电池使用寿命,做到完全免人工值守的全自动工作状态,特别适用于无人值守的充电场合。可长期连接到蓄电池以保持充满电状态,适合用作汽车或发电机等设备的辅助启动电源及补充充电电源。 本全自动充电机适用于容量(20~1000)Ah的开启式或全密封蓄电池作配套充电用,既可用于临时充电,也可用于长期浮充。 1 传统充电机及简易充电机大多由工频变压器和整流(或可控硅调压)电路组成,甚至用可控硅直接调节市电向蓄电池充电,虽电路简单,但有不容忽视的缺点: ①体积笨重,运输、使用不便; ②缺乏完善的保护功能,可靠性差; ③充电需人工值守,不断调整充电电流,难以做到既使电池充足电又不造成过充电; ④用可控硅直接调节市电,则与市电不隔离有触电危险,并且破坏市电波形及产生很大的供电线路损耗。 2 蓄电池的过放电、过充电和长期欠充满都会造成蓄电池的极板提前老化,缩短蓄电池的使用寿命。因此为避免此类情况发生、延长蓄电池使用寿命,在设备用电特性及配套蓄电池不变的情况下,选择不同功能类型的充电机就成了延长蓄电池使用寿命的关键因素。这也就是为什么有些采用传统充电机的用户反映电池的使用寿命不如厂方提供的标称寿命长的原因。 二、主要特点 ●开关电源控制芯片采用进口军用级IC,其余元件则采用进口工业等级器件,充电机 的原理设计优化合理,生产工艺严格完善,保证机器的可靠性和稳定性。 ●严格按照蓄电池充电特性曲线进行充电,设计的充电程式是“(预设)恒流充电→(到 达均充稳压值)恒压减流→(自动判别转为)浮充”,具有充电速度快、充电还原效率高、无需人工值守、超长时间充电无过充电危险、确保蓄电池使用寿命等优点。 ●充电电流可在(1~60)A范围内调节选定,且不受输入交流电压变化的影响,在恒流 充电期间电流维持不变,无需人为再调整。 ●交、直流兼容输入,而且输入电压范围宽。 ●设有输出短路及电池极性反接保护,该功能采用电磁式空气开关保护,反应速度快、 寿命长。机内还设有智能温控风扇散热和过热自动关机保护功能,确保用户放心安全使用。 ●设有蓄电池容量显示,电池容量状态一目了然。 ●可用作汽车或发电机等设备的辅助启动电源及补充充电电源。 三、主要技术参数 ●输入电压:AC380V±10%,或AC220V 50Hz; 充电电流:(1~60)A 可调节设置。 ●充电程式:恒流→(恒压)均充减流→(恒压)浮充。 ●均充电压:27 V(全密封免维护电池); ●浮充电压:29.5 V。 ●环境条件:工作温度:(-10~45)℃;贮存温度:(-20~60)℃; 相对湿度:90%(40±2℃);大气压力:(70~106)kPa。

蓄电池、充电机维护与检修规程

蓄电池、充电机维护与检修规程 批准: 复审: 初审: 编写: 厦门电厂 2004年10月 1 总则 1.1 参照国家有关规定,根据制造厂的技术要求,结合我厂设备的实际情况和历年来的检修经验而编制本规程。 1.2 适用范围:110KV电压等级直流电源装置(包括蓄电池、充电机、微机监控器)的维护与检修的技术要求。 1.3 目的:保证直流电源装置有良好的运行状态,从而延长其使用年限;保证直流母线电压在合格范围;保证蓄电池组有合格的放电容量;保证直流电源装置的供电可靠性。 1.4 积极创造条件,采用新材料、新技术、新工艺、应用诊断技术,推行预测检修。 1.5 为保证检修工作的顺利进行,必须搞好备品备件管理工作。 1.6 建立和健全大修人工、材料消耗和费用的管理制度。 1.7 检修前要认真编制网络计划、并在检修的全过程确实执行,认真做好检修全过程记录工作、验收工作,及时做好台帐和大修报告。1.8 认真落实和贯彻各项安全措施,备足安全防护用品,确实防止发

生人身的设备事故。 2 蓄电池、充电机的主要技术数据 蓄电池、充电机主要技术数据如表一、表二。 3 检修周期和检修试验项目 3.1 检修周期 3.1.1 阀控式密封铅酸蓄电池组:新安装或大修后的阀控蓄电池组,应进行全核对性放电试验。以后每隔1—2年进行一次核对性试验;运行6年以后的阀控蓄电池组,应每年做一次核对性放电试验。 3.1.2直流充电装置:两年一次部分检验,六年一次全部检验;也可以结合蓄电池充放电试验时检验。 3.2检修试验项目: 3.2.1阀控式密封铅酸蓄电池组: 3.2.1.1蓄电池外观及运行环境检查:蓄电池铭牌与厂家持有资料一致; 蓄电池外观和极性检查试验记录表格:

蓄电池智能充电机

感谢您选用ZN系列充电机,读使用说明书并将此说明书保存以备参考 使用前请仔细阅 根据需要可定制或免维护铅酸蓄电池(A G M)充电模式 液态铅酸蓄电池(WET)中文安装和使用手册 蓄电池智能充电机SMART ELECTRONIC BATTERY CHARGER CE Declaration of Conformity We hereby declare that the battery chargers of the ZN charger series fulfills the requirements of the guideline Guideline 73/23 EWG ( Low-voltage Guideline ) Guideline 89/336 EWG ( EMC Guideline ) 2004-10-9

ZN系列充电机ZN系列充电机,2 特点和功能概述 ●,外壳采用铝合金特殊工艺制造,造形合理、美观大方。程序具有 ●是基于微处理器控制的智能采用优化的特性曲线工作,运用智能动态调整充电技术。在整个充电过程中蓄电池始终处于微析气状态,有效地防止了蓄电池极板活性物质的脱落,同时降低了电解液的挥发。dv/dt和di/dt技术的运用,使终止充电判断更准确,充电电量最合理,避免蓄电池寿命减少。特有的去硫化功能,有效地延长电池的使用寿命。通过特殊算法,电池组极板局部短路检测及保护功能,避免电池组过充电而损坏全部电池的现象发生。 ●具有短路、极性接反、电池断格、短格等多种保护功能。 ●采用长寿命高可靠性设计的大功率隔离变压器,使整机与市电网隔离。冷却方式采用空气自冷,能在恶劣环境安全、稳定工作。 ●具有功能全面的LED显示,指示运行状态和充电过程。操作简单,只要把充电机插头接入电池充电插座,充电过程自动完成。 ●灵活的充电模式选择,根据需要可选择定制液态铅酸蓄电池(WET)或免维护铅酸蓄电池(AGM)充电模式。 ●适用于电动车、电动高尔夫球车、电动游艇、电动升降平台、电动清洁机械所使用的深循环动力型蓄电池充电。 3 各部位部件名称作用1 提手—移动机器。 2 市电输入过载开关—机器出现故障时,此开关会凸起。 3 多种状态充电指示灯—指示运行状态和充电过程。 4 充电输出连接线—棕色线接电池组(+)极;蓝色线接电池组(-)极。 5 电源连接线和插头—插入市电电源插座,必须带接地线的电源插座! 5.4 充电过程 5.4.1 首先将电源线插头入。然后把充电机插头接入电动车充电插座, 延时6-8秒,LED指示灯亮红灯,机器进入智能控制充电状态。 5.4.2 当LED指示灯亮橙灯,表示电池组已达到80%额定容量。当LED指示灯亮绿 灯,表示电池组已达到100%额定容量,电池已处于可用状态。 5.5 充电时间 充电时间取决于充电电流与蓄电池容量的比值以及蓄电池放电深度。对于80%放电的蓄电池,充入所需容量大约需要10-12小时。 5.6 维护 本充电机无需特别维护。 检查和清洁充电机,视当地灰尘情况而定,请制定适当的检查周期。 6 操作指示 6.1 重要提示 确认充电机的充电模式是否匹配当前蓄电池类别! 接市电电源方法:充电机与电池连接时,通过LED显示绿灯闪烁次数,确认充电模式是否匹配 当前蓄电池类别。 ● LED绿灯闪烁1次:表示“液态铅酸蓄电池”(WET)充电模式。 ● LED绿灯闪烁8次:表示升降平台“液态铅酸蓄电池”(WET)充电模式。● LED绿灯闪烁若干次:表示“不同品牌免维护蓄电池”(AGM)充电模式。 LED绿灯重复两遍充电模式,如不匹配须请求售后服务! 6.2 LED指示灯显示 6.2.1 LED指示灯亮红灯:表示蓄电池充电中6.2.2 LED指示灯亮橙灯:表示蓄电池电量达到80%6.2.3 LED指示灯亮绿灯:表示蓄电池电量达到100%6.2.4 LED指示灯循环闪烁2次红灯:表示市电电源连接故障6.2.4 LED指示灯循环闪烁红灯:(见第6页错误显示和故障处理)

蓄电池充电曲线的研究

引言 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 常规充电法

镍镉电池和镍氢电池充电时间计算

镍镉电池和镍氢电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。 知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场上的充电器主要分为恒流充电器和自动充电器两种 二、恒流充电器 恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。 对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。当然在很多时候并不能计算出正好的时间,我们可以挑离得最近的半小时以方便记时。例如:充电器的电流为160mA,对1400mAH的电池充电,则时间为2100mAH/160mA约为13小时,而不用计算到分。 恒流充电器的构造简单,工作稳定,是一种不错的充电方式,对电池寿命的影响小。但它也有其局限性,首先必须计算时间,另外随着镍氢电池的容量越来越大,恒流充电所需的时间也越来越长,对使用带来了一定的不便。因此,近年来快速自动充电器也逐渐流行起来

蓄电池的充电方法

铅酸蓄电池充电方法的研究 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说, 绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对 蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研 究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。 实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电 池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了 快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下: 很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于

电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me +反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 2.1常规充电法 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 一般来说,常规充电有以下3种。 2.1.1恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法,如图2所示。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。

充电电池电量计原理及计算方法

充电电池电量计原理及计算方法 https://www.doczj.com/doc/b0327521.html,文章出处:发布时间: 2010/08/09 | 1422 次阅读 | 0次推荐 | 0条留言目前大量应用的充电电池 电池是一种能量转化与储存的装置,它通过反映将化学能或者物理能转化为电能。电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负两极浸泡再能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。[全文] 包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。 铅酸蓄电池容量大,内阻低(一般400Ah的2V蓄电池内阻大约为0.5mΩ),可进行大电流放电,但是笨重且体积庞大、不便于携带,常用在汽车和工业场合。其电极材料含铅,可对环境造成极大污染。铅酸蓄电池对充电控制的要求不高,可以进行浮充。 镍镉电池容量较大,内阻低、放电电压平稳,适合作为直流电源 直流电源是维持电路中输送稳定直流的装置,分正负极,工作时至少包括变压、整流、滤波、稳压四个环节,如干电池、蓄电池、直流发电机等。[全文] 。与其他种类的电池相比,镍镉电池耐过充电和过放电,操作简单方便,但是具有记忆效应,应尽量在完全放电之后进行充电。电极材料含有剧毒重金属镉,随着环保要求的提高,其市场份额越来越小。 镍氢电池是在镍镉电池的基础上发展而来的,采用金属化氢替代有毒的镉,在大部分场合可以替代镍镉电池。其容量约为镍镉电池的1.5~2倍,且没有记忆效应。相对于镍氢电池,它对充电控制的要求较高,目前大量使用在一些便携电子产品中。 锂离子电池 现已广泛被大家使用的锂离子电池是由锂电池发展而来的。所以在认识锂离子电池之前,我们先来介绍一下锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的负极材料是锂金属,正极材料是碳材。按照大家习惯上的命名规律,我们称这种电池为锂电池。锂离子电池的正极材料是氧化钴锂,负极材料是碳材。电池通过正极产生的锂离子在负极碳材中的嵌入与迁出来实现电池的充放电过程,为了区别于传统意义上的锂电池,所以人们称之为锂离子电池。[全文] 是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。

充电机培训资料

充电机培训资料 充电机是采用高频电源技术,运用先进的智能动态调整充电技术。它采用恒流/恒压/小恒流智能三个阶段充电方式,具有充电效率高,操作简单,重量轻,体积小等特点。并具有反接、过载、短路、过热等多重保护功能及延时启动,软启动、断电记忆自启动功能等。 目录 一、充电机资料 二、常见故障 三、大功率充电机案例 一、充电机资料 充电机[英] fast charger quick charger; fast charger; quick charger 充电机 充电机[1]是采用高频电源技术,运用先进的智能动态调整充电技术。它采用恒流/恒压/小恒流智能三个阶段充电方式,具有充电效率高,操作简单,重量轻,体积小等特点。并具有反接、过载、短路、过热等多重保护功能及延时启动,软启动、断电记忆自启动功能等。具有科学的充电电量控制技术,全自动充电机能在蓄电池充足后自动关机,确保蓄电池充足,不过充、不欠充,延长蓄电池使用寿命,全自动充电机可适用的电池类型:镍铬、镍氢、铅酸、锂离子电池等。 用途 充电机从用途上来分可以大体分为:叉车充电机电动车充电机智能充电机浮充充电机可调充电机,前三种充电机比较类似,也是大家比较熟悉的,这里就不多介绍了。

第四种充电机具有恒压限流功能,可用于启动性负载如柴油发电机不会损坏充电机,及广泛应用于发电机,泵业,通讯系统,铁路系统,UPS,电力系统,直流不间断电源等电池的自动浮充,以保证电池不过充,不欠充。 第五种充电机广泛应用于电池生产厂的极板化成,电池的初充电及用户的多组电池充电,如汽修厂,发电厂,电瓶商店,铁路系统,通讯系统等。 智能蓄电池充电机 分类 充电机从电流上分大体可以分为:变压器整流电源开关电源电阻电容降压整流电源 充电机适用于电动搬运车、电动升降车、电动托盘车、堆高车、叉车、高尔夫球车、电动游览车及汽车、坦克车、中小型发电机组上的启动蓄电池等设备;同时也是蓄电池维修商的必选产品。 (一)充电机使用注意事项 1、电池极性不能接反,否则会损坏智能充电机和电池。智能充电机应安装在专用的通风良好、干燥、无严重粉尘、无腐蚀性气体、无强电磁场干扰的场所。机壳应可靠接地(箱体后下部有接地螺栓)。 2、智能充电机适用于室内外,非车载使用,机内严禁进水。 3、智能充电机输入电源为两相380V±5%,50HZ,输入导线截面不小于62,。 4、输出线应视距离远近,选用适合的电缆,线路总压降不大于5%。 5、智能充电机适用于环境温度为-10℃~50℃,海拔高度小于1000米,机器使用时距周边影响其通风散热的墙体等障碍物应大于0.6米,要定期检查风机是否运转正常。 6. 充电时候先插上蓄电池插头后接通电源,充电完成后先切断电源后拔开蓄电池插头

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗? 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化! 这个说法对吗? ⑴维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

电池容量(C)的计算方法 蓄电池充电机的电流

农夫空间 农夫三拳有点痒 主页博客相册|个人档案 |好友 查看文章 电池容量(C)的计算方法蓄电池充电机的电流(转) 2010-06-29 15:49 充电池是一样的道理,理论上如果你按36A充,那么一个小时就充满了,如果3.6A电流充,那要充十个小时。但是,充电不是装水,如果你按36A充,那蓄电池将会很快发热并使电池内的酸液沸腾,损坏你的电池,重则发生爆裂。因此一般按照AH量的十分之一至十分之4左右的电流充,也就是说你的电池是 36AH,那就就得用3.6A到15A电流进行充电。不过还得看电池的发热情况,如果太热就降低点充电电流。我这么说希望你能听懂些了? 电池容量(C)的计算方法: 容量C=放电电池(恒流)I×放电时间(小时)T 反过来: 放电时间T=容量C/放电电流(恒流)I 比如一个电池用500MA(毫安)的恒定电流放了2 个小时,那么这个电池的容量就等于500MA*2H=1000MAH=1AH 再如一个电池用5安的电流放了2个小时,那么该电池的容量就是10AH 另外跟电压的关系就是:放电电流I*电池电压U=功率W 镍氢镍镉电池用峰值检测法才能准确知道是否充足。电压法不准因为随电池使用状况和役龄,充满电的电压不是一个常数。-△v/dt 检测法。电池充满电的准确标准是按压降来衡量的。电池厂家的质量不一。充满电的电压都不太一样。一般充满电后。那是虚电。稍微搁置。电压又会降下来。对于广大模友来说,衡量充足电的土办法就是用手摸。能感觉到电池微微发热就算是充满了。当然。这不是很准确。 按照中国的国家标准和国际IEC标准。电池的充电电流一般为0.1C或0.2C为宜。但这只是个理想状态。这个电流充电对电池是最有利的。也最能充满电。但这样时间不允许。所以很多厂家用大电流0.5C或1C充电。对于航模专用的高功率电池。甚至可以2C充电。但这样充电的效率就不是很高。 但这个C如何换算成电流A的?给你举个例子就明白了。比如AA2000MAH的电池。1C充电就是2000MA充电。0.1C充电就是200MA充电。0.5C就是1000MA充电。

铅酸蓄电池最佳充电方法

实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线。 目录 1原理简介

蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 2详细内容 蓄电池充电器原理 蓄电池里面有大量的硫酸等可供电离的溶液,当插上电源,电流就通过里面的铅板(有些电池不是铅)电离溶液,这样就将电能转化为化学能;如果要使用,溶液就会转化为电能通过电极输送出去。这是原理上的描述,事实上,真实的情况十分复杂,可参考相关专业书籍。 充电方法制度 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。

恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,恒压充电很少使用,只有在充电电源电压低而电流大时采用。例如,汽车运行过程中,蓄电池就是以恒压充电法充电的。 阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 快速充电法 ①脉冲式充电法,这种充电法不仅遵循蓄电池固有的充电接受率,而且能够提高蓄电池充电接受率,从而打破了蓄电池指数充电接受曲线的限制,这也是蓄电池充电理论的新发展。脉冲充电方式首先是用脉冲电流对电池充电,然后让电池停充一段时间,如此循环,如图5所示。充电脉冲使蓄电池充满电量,而间歇期使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加顺利地进行,使蓄电池可以吸收更多的电量。间歇脉冲使蓄电池有较充分的反应时间,减少了析气量,提高了蓄电池的充电电流接受率。 ②2REFLEXTM快速充电法,这种技术是美国的一项专利技术,它主要面对的充电对象是镍镉电池。由于它采用了新型的充电方法,解决了镍镉电池的记忆效应,因此,大大降低了蓄电池的快速充电的时间。铅酸蓄电池的充电方法和对充电状

IBCE系列-智能便携式蓄电池充电机

IBCE系列-智能便携式蓄电池充电机 概要 IBCE系列-智能便携式蓄电池充电机采用了功能完善的电源IC,并由数字逻辑电路进行实行采样控制,自动检测所充蓄电池的状态。该充电机采用了“恒流-恒压限流-恒压浮充”充电模式,达到了全自动工作状态,特别适合无人值守的工作场合。优质元器件的选用保证了产品本身的可靠性和稳定性,并且能显著延长蓄电池的使用寿命。 IBCE系列-智能便携式蓄电池充电机广泛应用于电力等行业中,为满足市场需求,群菱能源多年来不断加大研发、设计等方面的资源投入,使产品形成系列化。我司并可根据用户的不同需求进行特殊开发、设计、使产品不但实用,而且在技术上亦具前瞻性。 IBCE系列-智能便携式蓄电池充电机产品体积小、重量轻、便于移动及携带。具有操作简便,充电速度快,充电还原效率高,超过充电无过充危险,电压/电流数据显示、具有过压、欠压、过流、输出短路、防反接保护和过热保护等功能。采用波宽调变技术、高效率、高功率因数、噪音小、电磁干扰小、可应用于各类数据中心机房中。 一、IBCE主要功能 1.采用“恒流-恒压限流-恒压浮充”充电模式,要求达到全自动工作状态,适合无人值守的工作场合。 2.采用超大触摸屏,可直接在屏上进行点击操作。 3.8M存储内存:可存储多组放电数据,通过主机就能实现对历史放电数据进行调阅查看、分析、删除等管理动作。 4.设备配备(群菱V3软件),分析软件,查看和分析整组充电曲线图。 5.具有操作简便,充电速度快,充电还原效率高,超过充电无过充危险, 6.电压/电流数据显示、具有过压、欠压、过流、输出短路、防反接保护和过热保护等功能。 7.采用波宽调变技术、高效率、高功率因数、噪音小、电磁干扰小、可用于电力机房内。 8.主机带轮子,方便移动和运输,满足不同机房充电要求。 9.充电输出电流连续可调,数字面板输入。 10.充电输出电压连续可调,数字面板输入。 二、IBCE产品特性 1、功能设定 A . 可设定恒流充电、恒压充电、浮充或并联操作功能。 B. 可设定电压、电流、温度、市电异常的报警设定以保护电池及本机的安全 C、充电完成条件:可通过充电定电压时间、充电时间、充电容量的设定,完成充电程序,并可限定输入范围,防止过度放电。 2、高频交换式(High Frequency Switched Mode)整流电路,以微电脑控制电压电流等功能,构成高可信度的充电电路。

相关主题
文本预览
相关文档 最新文档