当前位置:文档之家› 水热法法合成宝石

水热法法合成宝石

水热法法合成宝石
水热法法合成宝石

水热法宝石合成工艺

摘要:

宝石以其炫目美丽、坚硬、稀少而备受世人瞩目。随着社会的发展人们对宝石的喜爱和需求日益增大。宝石除了可以作为钻戒、耳坠、手链等饰品外,工业上是金刚石的最优替代品运用于彩电、手表等电子产品中,然而自然界里的宝石毕竟很有限,价格也昂贵,于是宝石的人工合成就开始兴起,人工合成宝石也开始商业化。怎么样才能找到合适的合成工艺,合成优质且低成本的宝石呢?这就成了人工宝石合成产业的关键所在。目前人们合成宝石的工艺主要有焰熔法、助熔剂法、水热法、提拉法等,以下我将主要介绍一下宝石的合成工艺及其特点、还有它的商业前景。

关键词:人工宝石、宝石合成工艺、水热法、商业前景

一、宝石种类以及人工宝石背景

宝石概念种类:

宝石是岩石中最美丽而贵重的一类石。它们颜色鲜艳,质地晶莹,光泽灿烂,坚硬耐久,同时赋存稀少,是可以制作首饰等用途的天然矿物晶体,如钻石、水晶、祖母绿、红宝石、蓝宝石和金绿宝石(变石、猫眼)等;也有少数是天然单矿物集合体,如冰彩玉髓、欧泊。

还有少数几种有机质材料,如琥珀、珍珠、珊瑚、煤精和象牙,也包括在广义的宝石之内。

广义的概念宝石和玉石不分,泛指宝石,指的是色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物或岩石,包括天然的和人工合成的,也包括部分有机材料。

狭义的概念有宝石和玉石之分,宝石指的是色彩瑰丽、晶莹剔透、坚硬耐久、稀少,并可琢磨成宝石首饰的单晶体或双晶,包括天然的和人工合成的,如钻石、蓝宝石等;而玉石是指色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物集合体或岩石,如翡翠、软玉、独山玉、岫玉等,同样既包括天然的,又包括人工合成的。

石的一些特性:

宝石均为单晶体、颜色具有均匀单一性、多呈透明体、有光泽、密度变化具有很小范围性、良好的导热性、体积相对要小,重量也轻、硬而脆。

人工宝石的合成背景

刚玉是最早合成并进行商业化生产的一类宝石,它发展的同时也带动了其他宝石的发展。

早在1837年Gandin就合成了红宝石,但由于粒度小而为得到真正的发展,直到1902年法国合成了红宝石,1909年合成了无色蓝宝石,到二十世纪初维尔纳叶炉诞生后,合成了红、蓝宝石才算真正成功。

苏联是合成宝石生产大国, 生产的刚玉主要采用水热法合成工艺和设备, 二十世纪五

十年代末, 我国为了发展精密仪器仪表工业, 从苏联引进了焰熔法合成刚玉(红宝石、蓝宝石)的设备和技术, 有20多家合成宝石工厂, 生长出十几种颜色的刚玉系列宝石和星光刚玉宝石。二十世纪七十年代由苏联发明的熔体导模法在天津硅酸盐研究所得到了充分的应用, 生长出了宝石行业可用的白色和红色刚玉宝石、红宝石猫眼和星光红宝石, 但产量不大。二十世纪八十年代的十年是合成技术走向成熟的十年, 此时合成刚玉的产量可达到每年150t

到200t。早先开发成功的各种新产品开始大量进入市场。二十世纪九十年代我国桂林矿产

地质研究院开始展开了水热法合成红蓝宝石的晶体研究, 合成出了红宝石、粉红色蓝宝石、黄色蓝宝石、蓝色蓝宝石、无色蓝宝石等系列产品, 产品达到了国际水平, 广泛销往海内外。这时期, 焰熔法合成红蓝宝石的技术进一步改进, 生产规模进一步扩大。二十世纪末, 我国合成红宝石的年产规模已达到了一百吨左右, 主要用于我国的钟表和珠宝行业。此时俄罗斯也已经开始在曼谷销售蓝紫色蓝宝石。合成宝石的市场不断扩大起来。进入二十一世纪, 也就是近十年左右,合成红蓝宝石的发展达到了一个新的飞跃,随着我国科技实力的增强, 对

合成宝石技术的投人逐年增加, 促进了合成红蓝宝石的发展。

二、宝石的合成方法

生长有多种方式,主要有从气体中生长晶体、从液体中生长晶体和从固体转变为晶体。宝石的晶体通常采用从液体中生长晶体的方式。其中主要有两类方法是从熔体中生长宝石的方法、从溶液中生长宝石的方法。从熔体中生长宝石的方法具体有:焰熔法、区熔法、冷坩埚法、提拉法。从溶液中生长宝石的方法具体有:水热法、助熔剂法。现在我们常用的方法是焰熔法、提拉法、助熔剂法、水热法等。

1、焰熔法

又称维尔纳叶法(Verneuil process)。从熔体中人工制取单晶的方法之一。将调配好

的原料细粉从管口漏下,均匀喷洒在氢氧焰中被熔化后,再冷凝结晶于种晶或“梨形单晶”顶层;梨晶长大是从顶部熔化的圆锥开始,生长过程中其底座下降并旋转,以确保其熔融表面有合宜的温度逐层生长,边转动边晶出的人工宝石具有如同唱片纹的弧线生长纹或色带,以及珠形、蝌蚪状气泡等特征;不用坩埚的这种方法可以低成本制取合成红宝石、蓝宝石、尖晶石、金红石及人造钛酸锶等多种人工宝石。

焰熔法得到的晶体的特点:

1)具有弯曲生长纹。这是焰熔法特殊的晶体生长方式所决定的。

2)可能含有大量的气泡而不是天然宝石中常见的气液两相的包裹体。这时因为焰熔法的晶体是在高温下生长的。其中有大量氢气和氧气的参与但没有水的参与。

3)晶体生长速度快,生产成本低。

2、提拉法

提拉法的基本原理:提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体在交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。提拉法的生长工艺首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。

提拉法能在较短的时间内生长出高质量的大晶体。但它设备昂贵,生产成本高。合成宝石中大多数氧化物类的晶体,如红宝石、蓝宝石、尖晶石、变石、YAG、GGG等都可用提拉

法生长。

3、助熔剂法

助熔剂法又称高温熔体溶液法,它是将晶体的成分在高温下溶解于低熔点的助熔剂熔体

中,形成饱和溶液。然后通过缓慢降温等方法,形成过饱和溶液,而使晶体结晶。助熔剂法的优点是适用性强,要求的温度低,因此设备相对简单。缺点是,晶体生长速度慢,生长周期长,且有此助熔剂有毒性和腐蚀性,容易污染环境。

目前在设备费用以及合成的宝石质量上上综合考虑,可是实现较大规模商业化的就只有焰熔法和水热法,由于焰熔法的生产没事简单且得到的宝石质量没有水热法的优良,故而我在此给大家重点介绍一下水热法合成宝石的原理以及这其中的关键。

4、水热法

水热法是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。

自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。

一下图1是水热法的装置图:

图1

水热法的特点:

1)合成的晶体具有晶面,热应力较小,内部缺陷少。其包裹体与天然宝石的十分相近。

2)密闭的容器中进行,无法观察生长过程,不直观;

3)设备要求高(耐高温高压的钢材,耐腐蚀的内衬)、技术难度大(温压控制严格)、

成本高;

4)安全性能差。

同时,水热法生产的粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法

制备的粉体一般无需烧结,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点。影响水热合成的因素有:温度的高低、升温速度、搅拌速度以及反应时间等。

三、水热法合成宝石关键

根据水热法宝石晶体生长的方式不同,还可以将水热法分为三类,即等温法、摆动法、温差法。

(1)等温法

等温法主要利用物质的溶解度差异来生产晶体。所用原料为亚稳定相物质,籽晶为稳定相物质。高压釜内上、下无温差,是这一方法的特色。此法的缺点是无法生长出晶形完整的大晶体。

(2)摆动法

摆动法的装置由A、B两个圆筒组成,其中A筒放置培养液,B筒放置籽晶,两筒间保持一定的温度差。定时地摆动A、B两个圆筒以加速它们之间的对流,利用两筒之间的温差在高压环境下生长出晶体,此法也曾用于水晶的生长。

(3)温差法

温差法是在立式高压釜内生产晶体,高压釜内部的对流挡板将釜腔分成上、下两部分,籽晶挂在生长区的培育架上,晶体在籽晶上逐步生长;对流挡板的下部为培养料区(也称溶解区),溶解区内放人适量的高纯度原料和矿化剂。加热,使高压釜的上、下部分形成一定的温差。

水热法目前可以合成的宝石有水晶、红宝石、祖母绿、海蓝宝石、蓝宝石等,大多是作为奢侈品而投入市场,这就要求宝石的品质要纯净度高、晶型好、色泽纯正,这其中就涉及了一下几点关键:

1、籽晶的选取

由于宝石是晶体,其结构具有远程有序重复性,因此我们只要选用缺陷少的优良籽晶长出的宝石晶体也会延续这一少缺陷的特点。对籽晶片的要求是: 无裂纹、无包裹体等晶体缺陷, 表面光洁度要高, 达到手持10倍放大镜下看不到明显的划痕。

还有籽晶的切去面也很重要,它决定了生长出晶体的形状。按( 1010) 和( 2233) 晶面方向分别切取籽晶片,在实验对比中发现, 晶体沿( 1010)品面方向生长速度很快。关于籽晶取向的还有,最理想的取向是与结晶轴C轴的夹角为20°~25°产品外观为短柱状;俄

罗斯的Tairaus采用籽晶片与C轴夹角为43°~47°是切角最大的,产品为长板状。大多

国家采用20°~40°桂林早期采用35°左右,新工艺则为23°左右。

2、生长区的温度与温差

Δt=t溶解-t生长这是快速生长优质单晶体的关键,温差大一般晶体生长的也比较快。但是温差太大就不容易长出优良的晶体了,我们一般追求在晶体溶解的亚稳区内,在恒定的均匀的温差内结晶。(原料溶解于温度的曲线关系如下图2所示)

图2

温度500~650℃,温度梯度10~130℃,桂林早期的生长温度为600℃左右, 新工艺的生长温度为570℃左右。

3、压强

我们都知道水热法就是模拟地质中高温高压的环境生长宝石的,高压有利于宝石的生长而且可以合成优质的宝石。可是太高的压强对设备要求比较高,随之成本就比较高,桂林水热法生长晶体的一般压力为70~600MPa,新工艺压力为170MPa左右。

4、原料的配比以及搅拌速度反应时间

原料的配比是直接关系合成宝石的种类、色泽、晶型等的关键因素。比如祖母绿宝石是绿柱石矿物的一种, 矿物分子式:Be3Al2Si6O18, 氧化物理论含量为: SiO2 67%、BeO14.1%、Al2O3 18.9%, 这些组份也叫“培养料”,进行生长时可按上述理论量的相同比例加入。可是实际上由于合成的工艺不一样具体加料配比就不一样了,还有搅拌速度和具有控温都是技术关键,可是由于这些涉及商业机密,很难找到具体的专利和文献。

除此之外由于使用的矿化剂多是强酸强碱,所以对高压釜要求也很高,一般用耐高温高压的钢材制成。关键结构是可开启的密封系统,内含贵金属衬里,防止钢质容器被高温高压矿化剂腐蚀。我国的桂林水热法合成祖母绿,高压釜内部多用黄金、铂做内衬。防止矿化剂腐蚀装置。

四、我国人工宝石的工业现状

到目前为止,全国已有300多家单位在进行人工合成宝石的研究和生产,主要分布在北京、天津、上海、江福吉河南、江辽宁、广东、广西、浙江、陕西、安徽、四川等地区,生产技术不断更新,产品种类繁多,极大地丰富了我国的宝石市场,且价廉物美,深受广大消费者的喜爱。广西梧州还有人工宝石之乡的美称,还有桂林水热法合成的宝石品质世界一流,尽管如此人们对宝石的渴望日益增大,人工宝石市场还有很大的潜力。

参考文献

[1].桂林水热法合成祖母绿宝石的生长原理、鉴定特征和发展前景.珠宝科技.2002年第2期14卷.

[2]. 水热法宝石晶体生长[ N] . 宝玉石信息, 1993-03-28.

[3]. 中国水热法生长的红宝石与祖母绿[ C] . 2000 年北京国际珠宝首饰学术会议, 2000-05.

[4].本宏,蔡丽. 桂林新型水热法合成祖母绿的宝石学特征. 宝石和宝石学杂志 .2000年

12月第2卷第4期.

[5].水热法人工晶体生长的原理及应用 . 天津化工 .2010年9 月第24 卷第5 期.

[6].义,李志强,等.水热法合成a- Al2O3 晶体[J].人工晶体学报,2002 ,31(2) : 90- 93.

[7].乐惠,晶体生长科学与技术:上册[M].北京:科学出版社,1997,253- 271.

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

一步水热法制备手性碳量子点

Material Sciences 材料科学, 2019, 9(6), 549-557 Published Online June 2019 in Hans. https://www.doczj.com/doc/b7310752.html,/journal/ms https://https://www.doczj.com/doc/b7310752.html,/10.12677/ms.2019.96070 One-Step Hydrothermal Synthesis of Chiral Carbon Quantum Dots Yao Wang, Yupeng Lu, Yuanzhe Li, Lumeng Wang, Fan Zhang College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi Received: May 21st, 2019; accepted: Jun. 4th, 2019; published: Jun. 11th, 2019 Abstract Carbon Quantum Dots (CQDs) have many excellent properties, such as low toxicity, biocompatibil-ity, photoluminescence, etc., which play an important role in many fields such as photocatalytic electrocatalytic chemical sensing in biological imaging and endowing CQDs with chiral proper-tiesto broaden its applications in chiral recognition and separation and asymmetric catalysis and chiral detection. Chiral carbon quantum dots (L-CQDs and D-CQDs) were synthesized by one-step hydrothermal method using tryptophan (L-Trp and D-Trp) as carbon source and chiral source and sodium hydroxide as reaction regulator. The optical properties and surface structures of L-CQDs and D-CQDs were characterized by high resolution lens electron microscopy, elemental analyzer, ultraviolet-visible absorption spectrometer, steady-state fluorescence spectrometer and circu-lar dichroism (CD). The results show that the prepared L-CQDs and D-CQDs with particle size less than 10 nm presented similar characteristics and optical properties, with strong fluores-cence characteristics and the property of stimulating independence, whose the maximum emis-sion wavelength is 476 nm as well as the optimal excitation wavelength is 360 nm. CD signals taking on mirror symmetry feature near 223 and 290 nm indicate that L-CQDs and D-CQDs are enantiomers. Keywords Hydrothermal Method, Chirality, Carbon Quantum Dots, Circular Dichroism 一步水热法制备手性碳量子点 王耀,鲁羽鹏,李远哲,王璐梦,张帆 太原理工大学材料学院,山西太原 收稿日期:2019年5月21日;录用日期:2019年6月4日;发布日期:2019年6月11日

表面活性剂_水热法一步制备纳米In_2O_3气敏材料_娄向东

第28卷第6期 硅 酸 盐 通 报 V o l .28 N o .6 2009年12月 B U L L E T I N O F T H E C H I N E S E C E R A M I C S O C I E T Y D e c e m b e r ,2009 表面活性剂-水热法一步制备纳米 I n 2O 3气敏材料 娄向东,李 培,王晓兵,秦 楠,王学峰 (河南师范大学化学与环境科学学院,新乡 453007) 摘要:以聚乙二醇600(P E G -600)为表面活性剂,用水热法一步制备了I n 2O 3粉体,通过X R D 、S E M 、T E M 等手段对粉体的物相、形貌、粒度等进行表征,结果表明产物的形貌为棒状,平均长度约150n m ,直径约20n m ,分布均匀。采 用静态配气法测定材料的气敏性能,发现以I n 2O 3为基体的气敏元件在125℃的工作温度下对10p p m N O 2气体的 灵敏度高达32.2,并且具有选择性好、响应-恢复时间短等特性。 关键词:I n 2O 3;表面活性剂; 水热法;气敏性质中图分类号:T B 383 文献标识码:A 文章编号:1001-1625(2009)06-1327-05 O n e S t e pS y n t h e s i s o f G a s S e n s o r Ma t e r i a l N a n o s i z e d I n 2O 3b y S u r f a c t a n t -h y d r o t h e r m a l Me t h o d L O UX i a n g -d o n g ,L I P e i ,W A N GX i a o -b i n g ,Q I NN a n ,W A N GX u e -f e n g (C o l l e g e o f C h e m i s t r y a n dE n v i r o n m e n t a l S c i e n c e ,H e n a nN o r m a l U n i v e r s i t y ,X i n x i a n g 453007,C h i n a ) A b s t r a c t :T h e p r e p a r a t i o n o f I n 2O 3n a n o -p o w d e r u s e do n e -s t e ph y d r o t h e r m a l m e t h o dw i t h P E G -600a s s u r f a c t a n t .I t s s i z e ,p h a s e a n dm o r p h o l o g yw e r e a n a l y z e d b y X R D ,S E M a n dT E M .T h e g a s s e n s i n g c h a r a c t e r i s t i c s o f t h e m a t e r i a l s w e r e t e s t e d i n s t a t i c s l a t e .T h e r e s u l t s s h o wt h a t t h e m o r p h o l o g y o f I n 2O 3i s n a n o r o d s w i t h g o o d d i s p e r s i t y .T h e a v e r a g e l e n g t h o f t h e a s -s y n t h e s i z e d n a n o r o d s r e a c h e s a b o u t 150n m , a n d t h e w i d t h a b o u t 20n m ,g i v i n g a n a s p e c t r a t i o o f a f e wh u n d r e d s .I t h a s a h i g h s e n s i t i v i t y a s h i g h a s 32.2t o 10p p m N O 2a t l o w e r w o r k i n gt e m p e r a t u r e 125℃.T h es e n s o r b a s e do nI n 2O 3a l s oh a s s a t i s f a c t o r y s e l e c t i v i t y ,q u i c k l y r e s p o n s e a n d r e c o v e r t i m e s . K e y w o r d s :I n 2O 3; s u r f a c t a n t ;h y d r o t h e r m a l m e t h o d ;g a s s e n s i n g c h a r a c t e r i s t i c s 基金项目:河南省教育厅自然科学基金(2008B 43001;2008B 150012);河南师范大学青年科学基金(525185) 作者简介:娄向东(1964-),男,教授.主要从事功能材料的制备及应用的研究.E -m a i l :c h e m e n g l x d @126.c o m 1 引 言 I n 2O 3是一种N 型半导体,主要缺陷有氧空位和间隙铟离子,具有较宽的禁带宽度(3.6~3.75e V )。可广泛用于光电领域,如太阳能电池、液晶设备、二极管 [1]等。因此I n 2O 3材料的制备和性能的研究逐渐引起人们的重视,并成为气敏材料的研究热点。 纳米I n 2O 3材料的制备方法通常有低压物理气相沉积法 [2]、化学气相沉积(C V D )法[3]、直流磁电管溅射(D C )法[4]、射频溅射法 [5]、电子束放射法[6]、沉淀法[7]、溶剂热法[8]、碳热还原法[9]、溶胶凝胶法[10]、脉冲激光沉积法[11]、模板法[12]、微乳液法[13]、固相合成法[14]等,但都存在颗粒的粒径分布较宽、分散性较差、设备

第三章 提拉法合成宝石及其鉴定方法

第三章提拉法及其合成宝石的鉴定 要点: ?晶体提拉法的原理方法 ?提拉法合成宝石的鉴定 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 第一节提拉法 一、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 图 3-1 提拉法合成装置 (点击可进入多媒体演示) 二、提拉法的生长工艺

首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 1.晶体提拉法的装置 晶体提拉法的装置由五部分组成: (1)加热系统 加热系统由加热、保温、控温三部分构成。最常用的加热装置分为电阻加热和高频线圈加热两大类。采用电阻加热,方法简单,容易控制。保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。控温装置主要由传感器、控制器等精密仪器进行操作和控制。 (2)坩埚和籽晶夹 作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。 籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。 (3)传动系统 为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。 (4)气氛控制系统 不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。 (5)后加热器 后热器可用高熔点氧化物如氧化铝、陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。 2.晶体提拉法生长要点 (1)温度控制 在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

一步水热法合成SiO2纳米棒

Studies in Synthetic Chemistry 合成化学研究, 2018, 6(2), 23-28 Published Online June in Hans. https://www.doczj.com/doc/b7310752.html,/journal/ssc https://https://www.doczj.com/doc/b7310752.html,/10.12677/ssc.2018.62004 Synthesis of SiO2 Nanorodes by One-Step Hydrothermal Process Shuhong Sun, Yin He, Yongmao Hu, Yan Zhu* Kunming University of Science and Technology, Kunming Yunnan Received: Mar. 20th, 2018; accepted: May 2nd, 2018; published: May 10th, 2018 Abstract SiO2 nanorodes were successfully synthesized by a simple low-cost one-step alkaline hydrother-mal process using commercial silicate glass at 170?C. The SEM results show that ammonia concen-tration and holding time play an important role in the formation of SiO2nanorods. XRD results confirmed that the synthesized SiO2nanorods were amorphous. Photoluminescence results showed that the synthesized nanorodes exhibited a strong, sharp photoluminescence emission peak, centered at 410 nm. Keywords SiO2 Nanorode, Hydrothermal Process, Silicate Glass 一步水热法合成SiO2纳米棒 孙淑红,贺胤,胡永茂,朱艳* 昆明理工大学,云南昆明 收稿日期:2018年3月20日;录用日期:2018年5月2日;发布日期:2018年5月10日 摘要 以商业硅酸盐玻璃为原材料,在170?C下,通过简单的低成本一步水热法成功制备了SiO2纳米棒。SEM 结果显示,氨水浓度和保温时间在SiO2纳米棒的形成中都起着重要的作用。XRD结果证实了合成的SiO2纳米棒为非晶结构。光致发光结果表明合成的纳米棒在410 nm表现出强烈尖锐的发射峰。 *通讯作者。

合成宝石

宝石的合成、仿制品及优化处理 要求: 1.合成品、仿制品的有关概念 2.★合成宝石的方法:合成方法和原理,合成材料名称、性质及特征 3.★优化处理:各种优化处理方法、原理和名称 一、基本概念 ?人工宝石artificial products ?定义:完全或部分由人工生产或制造用作首饰及装饰品的材料统称为人工宝石。包括合成宝石、 人造宝石、拼合宝石和再造宝石。 ?合成宝石synthetic stones ?定义:完全或部分由人工制造且自然界有已知对应物的晶质或非晶质体,其物理性质,化学成分 和晶体结构与所对应的天然珠宝玉石基本相同。 ?例如,合成红宝石具有与天然红宝石基本相似的物理性质(颜色、RI、DR等)、化学成分(Al2O3) 及晶体结构。 二、发展简史 ?1902 维尔纳叶法合成红宝石的商业生产 ?1920 维尔纳叶法合成尖晶石 ?1928 助熔剂法合成祖母绿 ?1943 水热法合成水晶 ?1955 合成工业级钻石出现 ?1960 水热法合成祖母绿 ?1970 合成宝石级钻石 ?1976 合成立方氧化锆 ?1995 合成SiC(莫伊桑石) (一)、焰熔法合成宝石及鉴定 ?焰熔法(flame fusion technique)——19世纪(1877)由E.弗雷米发明,19世纪末(1890)由 其助手维尔纳叶推向市场,故又称维尔纳叶法(V erneuil furnace)。 ?该方法可以生产各种品种的刚玉、尖晶石、金红石、钛酸锶、白钨矿等宝石晶体。 ?基本原理: 从熔体中生长单晶体的方法。原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落的过程中冷却并在籽晶上固结逐渐生长形成晶体。 合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉 中进行的

水热法

什么叫做超临界水? 超临界流体 任何物质,随着温度、压力的变化,都会相应地呈现为固态、液态和气态这三种物相状态,即所谓的物质三态。三态之间互相转化的温度和压力值叫做三相点。除了三相点外,每种分子量不太大的稳定的物质都具有一个固定的临界点(Critical point)。严密意义上,临界点由临界温度、临界压力、临界密度构成。当把处于汽液平衡的物质升温升压时,热膨胀引起液体密度减少,而压力的升高又使汽相两相的相界面消失,成为一均相体系,这一点即为临界点。当物质的温度、压力分别高于临界温度和临界压力时就处于超临界状态。在超临界状态下,流体的物理性质处于气体和液体之间,既具有与气体相当的扩散系数和较低的粘度,又具有与液体相近的密度和对物质良好的溶解能力。因此可以说,超临界流体是存在于气、液这两种流体状态以外的第三流体。 近几年,超临界流体技术引起了人们的广泛关注,主要是因为它具有许多诱人的特性。例如,超临界流体分子的扩散系数比一般液体高10~100倍,有利于传质和热交换。超临界流体的另一重要特点是可压缩性,温度或压力较小的变化可引起超临界流体的密度发生较大的变化。大量的研究表明,超临界流体的密度是决定其溶解能力的关键因素,改变超临界流体的密度可以改变超临界流体的溶解能力。 在超临界流体技术应用研究方面,首先要求选择适当的化学物质作为超临界流体。它必须具备以下几个条件:①化学性质稳定,对装置没有腐蚀性;②临界温度接近于室温或者接近于反应操作温度,太低和太高都不合适;③操作温度要低于被萃取物质的分解、变性温度;④临界压力要低,以便减少动力费,使成本尽可能降低;⑤要有较高的选择性,以便能够制得高纯度产品;⑥要有较高的溶解度,以便减少溶解循环量;⑦价格便宜,来源方便。 在环境保护中,常用的超临界流体有水、二氧化碳、氨、乙烯、丙烷、丙烯等,由于水的化学性质稳定,且无毒、无臭、无色、无腐蚀性,因此得到了最为广泛的应用。 (2)超临界水及其特征 在通常条件下,水始终以蒸汽、液态水和冰这三种常见的状态之一存在,且是极性溶剂,可以溶解包括盐类在内的大多数电解质,对气体和大多数有机物则微溶或不溶,水的密度几乎不随压力而改变。但是如果将水的温度和压力升高到临界点(Tc=374.3℃,pc=22.05Mpa)以上,则就会处于一种既不同于气态也不同于液态和固态的新的流体态--超临界态,该状态的水即称之为超临界水。水的存在状态如图11-4所示。在超临界条件下,水的性质发生了极大的变化,其

109 一步水热法合成聚苯胺二氧化钛纳米复合物及其电化学性能

一步水热法合成聚苯胺/二氧化钛纳米复合物及其电化学性能 赖超,李国然,高学平* (南开大学新能源材料化学研究所,天津,300071, E-mail: xpgao@https://www.doczj.com/doc/b7310752.html, ) 纳米电极材料,由于其独特的物理化学性质,受到了人们越来越多的关注;比如当把电极材料的粒径减少到纳米尺度时,可以有效的减少锂离子和电子的扩散距离,增加电极材料和电解质的接触面积,进而提高电极材料的放电容量和循环性能等[1-2];但是在充放电过程中,纳米电极材料也存在一些问题,比如粒子间的团聚,这往往会影响其电化学性能[1-3]。因而在本文中,我们尝试合成聚苯胺/二氧化钛的纳米复合材料,聚苯胺基质的存在有利于保持二氧化钛颗粒的分散和结构的稳定。 通常合成聚苯胺/锐钛矿二氧化钛要经过两个步骤:纳米二氧化钛的制备和聚苯胺的复合;但是在这样的合成过程中,由于纳米粒子较高的表面能,很难避免二氧化钛粒子间的团聚[4-5]。因而,我们设计了一步水热合成路线,成功制备出了二氧化钛粒子高度分散的纳米复合材料,并且获得了规整的介孔。图1 为可能的生成机理示意图。纳米结晶的二氧化钛在产生后立即被限制在聚苯胺基质中,继而避免了粒子间的团聚。电化学研究显示,在50 mA/g 的电流密度下,首周放电容量为324 mAh/g,循环60周后仍能保持在151 mAh/g.图2 为复合材料的放电容量随循环次数的变化曲线。 图1 聚苯胺/二氧化钛生成机理示意图 Figure 1. Schematic representation of the formation of polyaniline/anatase TiO 2 nanocomposite via a hydrothermal process 050 100 150 200 250 300350 D i s c h a r g e C a p a c i t y (m A h /g )Cycling number 图2 复合材料的放电容量随循环次数变化曲线 Fig.2 Cycle performance of polyaniline/anatase TiO 2 nanocomposite at the current density of 50 mA/g

合成宝石

班级姓名成绩 一、名词解释。(3×5=15分) 人造宝石助熔剂法临界晶核装满度籽晶 二、填空题。(0.5×30=15分) 1、合成宝石指其加工的全部或部分工艺过程是由人工控制进行的它们的、和 与它们所对应的天然宝石基本相同。 2、紫晶用法合成后,还需要经处理。 3、合成蓝宝石的主要方法有、、。 4、CZ的中文名称应当是。 5、助熔剂法合成祖母绿的特征包裹体常为、、。 6、冷坩埚法合成立方氧化锆所需的热来自。 7、焰熔法合成尖晶石的密度常为,折射率值常为,往往比天然的宝石级尖晶石的 密度及折射率。 8、红、蓝、黄色、变色合成刚玉中的致色元素分别是、、、。 9、水热法合成宝石晶体的四个阶段、、、。 10、水热法合成水晶的温度,压力。 11、焰熔法合成宝石的主要设备有、、、。 三、判断改错题。(2×5=10分,对者打“√”,错者打“×”并改正) 1、助熔剂法合成宝石中的水滴状包裹体是捕掳来的原生液体。() 2、用气相沉淀法合成的镀膜钻石,外观常显云雾状、粉状等特征。() 3、由于刚玉的熔点很高,焰熔法合成红宝石是采用铂坩埚。() 4、白色的合成立方氧化锆在贸易中作为钻石的代用品使用时,应称为仿钻石。() 5、区分祖母绿与合成祖母绿时,有无弧形生长纹是一项重要判别依据。() 四、简述题。(简明扼要,重点突出。6×5=30分) 1、绘图说明熔体中晶核形成与晶体生长的关系。 2、水热法合成的宝石通常具有什么特征? 3、人工宝石中不参与定名的因素有哪些? 4、高温高压合成钻石的鉴定特征。 5、简述冷坩埚法生长宝石晶体的原理。 五、论述题。(详细论述,全面分析。2×15=30分) 1、玻璃作为宝石仿制品的鉴定特征。 2、如何鉴别合成红宝石。

合成宝石毕业论文

百度文库- 让每个人平等地提升自我 2013—2014学年第二学期 《合成宝石》课程期末大作业(论文) 班级:11工商(珠宝鉴定)本 学号: 姓名:李晶 任课教师:张晓晖 分数:____________________ 评语:____________________ __________________________ __________________________ __________________________ __________________________

教师签名:_______________ 批阅日期:__________ 我看合成红宝石工艺及鉴别 摘要:合成红宝石的方法多种多样,常见的有助溶剂法、水热法和提拉法,但在生产中广泛采用的是焰熔法。 关键词:合成红宝石助溶剂生长法水热法焰熔法提拉法 前言合成红宝石(Synthetic ruby)通常呈现鲜亮的红色,与天然红宝石区别甚小,物理性质也相同。除像天然红宝石一样被加工成椭圆形、圆形或梨形的混合刻面琢型以及腰圆型外,有时还被加工成—些特殊琢型,如上部为中凸的弧形面,而下部为刻面的长方形或椭圆形混合琢型;或者上部为中凸的弧形面和刻面,而下部为刻面的长方形混合琢型。这些特殊琢型是合成红宝石特有的,其粒重多在5~15克拉。也有用合成红宝石加工珠形项链和手镯的。合成红宝石是按工业规模生产的第一种合成宝石。 一、合成红宝石的技术与方法 (一)助溶剂生长法合成红宝石 助溶剂生长法合成红宝石晶体[1]是在自发成核缓冷法合成无色蓝宝石晶体的基础上发展而来。无色合成蓝宝石晶体的助溶剂生长法首次由德国人实现于1837年,方法较简单,是用PbF?-PbO作助溶剂,Al?O?作原料,将其混合后放入铂金坩埚中,加热至1350℃,经数小时后,使Al?O?完全熔融,之后按照1℃/h的冷却速度冷却至900-1000℃,倒出残余助溶剂熔融液,冷却至室温后,用硝酸溶液溶去助溶剂,由此得到无色蓝宝石晶体位错密度较低。1969年,市场上出现了“卡善”助溶剂法合成的红宝石,该合成的红宝石内部不但添加了铬元素,而且还添加了铁元素作为致色元素,使其与天然红宝石难以辨别。另外,美国的C·卡塔姆也用助溶剂法合成了红宝石和蓝宝石晶体,而拉马拉(Ramaura)公司在用助溶剂法合成的红宝石中添加了一种可以发荧光的成分,使得这种合成红宝石很容易被鉴别。而我国在1990年后由国家建材局人工晶体研究所采用助溶剂法成功合成出红宝石晶体。此次晶体生长使用了籽晶,但合成的红宝石晶体没有进行商业化生产。助溶剂法合成红宝石晶体的具体工艺步骤如下:

水热法和溶剂热法的区别

溶剂热法是在水热法的基础上发展起来的,指密闭体系如高压釜内,以有机物或非水溶媒为溶剂,在一定的温度和溶液的自生压力下,原始混合物进行反应的一种合成方法。它与水热反应的不同之处在于所使用的溶剂为有机物而不是水。水热法往往只适用于氧化物功能材料或少数一些对水不敏感的硫属化合物的制备与处理,涉及到一些对水敏感(与水反应、水解、分解或不稳定)的化合物如Ⅲ一V族半导体、碳化物、氟化物、新型磷(砷)酸盐分子筛三维骨架结构材料的制备与处理就不适用,这也就促进了溶剂热法的产生和发展。 另外,物相的形成、粒径的大小、形态也能够控制,而且,产物的分散性较好。在溶剂热条件下,溶剂的性质(密度、粘度、分散作用)相互影响,变化很大,且其性质与通常条件下相差很大,相应的,反应物(通常是固体)的溶解、分散过及化学反应活性大大的提高或增强。这就使得反应能够在较低的温度下发生。 水热法(Hydrothermal)是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。1900 年后科学家们建立了水热合成理水热法论,以后又开始转向功能材料的研究。目前用水热法已制备出百余种晶体。水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。 溶剂热法(Solvothermal)是将反应物按一定比例加入溶剂,然后放到高压釜中以相对较低的温度反应。在这种方法中,溶剂处在高于其临界点的温度和压力下,可以溶解绝大多数物质,从而使常规条件下不能发生的反应可以进行,或加速进行。溶剂的作用还在于它可以在反应过程中控制晶体的生长,实验证明使用不同的溶剂可以得到不同形貌的产品。另外此方法还具有能耗低、团聚少、颗粒形状可控等优点。该方法的不足之处是产率较低、产品的纯度不够,并且在产品尺寸和形貌的均一程度上不尽如人意。 水热一般对材料的性能不会造成负面的影响,但溶剂热由于溶剂的不同,对材料性能的影响一般来说比较大。不过溶剂热做出的材料得到更好的形貌的可能性要比水热大一些! 水热是的溶剂是水,而溶剂热的溶剂是甲醇,乙醇等非水类的

水热法

高质量氧化锌晶体的水热法合成及其光电性能研究 目前尺寸较大的ZnO单晶的生长方法主要有助溶剂法、水热法、气相生长法和柑锅下降法。 1、助溶剂法 助溶剂法是利用助溶剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发溶剂,使熔体过饱和而结晶的方法。 2、气相法 气相法是利用蒸汽压较大的材料,在适当的条件下,使蒸汽凝结成晶体的方法,气相法适合于生长板状晶体。 3、坩埚下降法 坩埚下降法是让熔体在柑锅中冷却而凝固,凝固过程从钳锅的一端开始逐渐扩散到整个熔体。 4、水热法 水热法又称高温溶液法,其中包括温差法、降温法(或升温法)及等温法。为了提高晶体的生长速度,水热法一般采用双温区高压反应釜,主要依靠容器内的溶液维持温差对流形成过饱和状态(通过隔板和加热来调整温差)。 水热法需要选择合适的矿化剂,并控制好矿化剂浓度,溶解区和生长区的温度和温度差、填充度(控制生长压力)、生长区的预饱和、合理的元素掺杂、升温恒温程序、籽晶的质量以及营养料的纯度等工艺要素,优化各个工艺条件。 微波辅助加热法制备纳米材料研究进展 一、微波及其特征 与常规加热不同,微波加热是以体加热的方式进行,反应物对微波能量的吸收与分子的极性有关。微波加热是通过微波与物质相互作用而转变的。在电磁场的作用下,物质中微观粒子能产生极化。极性介质在微波场作用下随其高速旋转从而被均匀地加热;对于许多不能直接明显地吸收微波的物质,可选用适当的能强烈吸收微波的催化剂,通过在其表面形成比周围温度更高的“热点”(hotsPot)而加速反应。利用微波加热,许多反应的速度往往是常规加热的数十倍,甚至数千倍。微波能在很短的时间内均匀加热,大大消除了温度梯度,使沉淀相瞬间成核,从而获得均匀的超细粉体。微波辅助加热对化学反应非常复杂的,除了具有热效应外(tharmal effects),还存在一种不是由温度引起的非热效应(加nontharmal effects),它能改变反应的动力学性质,降低反应的活化能,即微波对化学反应存在着选择性加热的影响(物质分子结构与微波频率的匹配关系),存在着某些特定的非热效应的影响。不同的材料对微波的吸收能力不同,目前的一些实验研究也揭示了这一现象,即微波选择性加热。大家普遍认为,微波辅助加热存在两种效应:热效应和非热效应。正是这些效应导致不同形态和尺寸的纳米结构的合成。 微波辅助加热法又可以分为微波水溶液法、微波辅助多元醇法、微波辅助离子液体法、微波层状前驱物转化法制备纳米片、微波液相同步法制备聚合物基无机纳米复合材料、微波一水热/溶剂热法。

宝石合成方法及原理汇总

宝石合成原理与方法(汇总) 第一章绪论 要点 人造宝石材料的重要性 人造宝石材料的发展 基本概念 晶体生长基本理论 一、人造宝石材料的重要性 随着科学技术的发展,人民生活水平不断提高,人类对宝石的需求也逐渐增加。然而天然宝石材料的资源毕竟是有限的,而人工宝石材料能够大批量生产,且价格低廉,故人工宝石材料在市场上占有较大的份额。随着科学技术的发展,人工宝石材料的品种日益繁多,合成宝石的特性也越来越接近天然品种。宝石学家不断面临鉴别新的人造宝石材料的挑战。 某些人工的晶体材料也用于工业产品及设备的制造及生产中。例如,人造钇铝榴石被广泛用于激光工业,合成水晶是用作控制和稳定无线电频率的振荡片和有线电话多路通讯滤波元件及雷达、声纳发射元件等最理想的材料。 二、人造宝石材料的发展 人工制造宝石的历史可追溯到1500年埃及人用玻璃模仿祖母绿、青金石和绿松石等。人工合成宝石始于18世纪中期和19世纪,由于矿物学研究的发展以及化学分析方法取得的进展,使人们逐渐掌握了宝石的化学成分及性质,加上化学工业的发展以及对结晶过程的认识,人工合成宝石才变为现实。1892年出现了闻名的“日内瓦红宝石”,这是用氢氧火焰使品质差的红宝石粉末及添加的致色剂铬熔融,再重结晶形成优质红宝石的方法。随后,这种方法经改进并得以商业化。1890年,助熔剂法合成红宝石获得成功;1900年助熔剂法合成祖母绿成功。从此,宝石合成业飞速地发展起来。合成尖晶石、蓝宝石、金红石、钛酸锶等逐渐面市。1953年合成工业级钻石、1960年水热法合成祖母绿及1970年宝石级合成钻石也相继获得成功。我国的人工宝石材料的生产起步较晚。五十年代末,为了发展我国的精密仪器仪表工业,从原苏联引进了焰熔法合成刚玉的设备和技术,六十年代投产后,主要用于手表轴承材料的生产。后来发展到有20多家焰熔法合成宝石的工厂,能生长出各种品种的刚玉宝石、尖晶石、金红石和钛酸锶等。我国进行水热法生长水晶的研究工作,始于1958年。目前几乎全国各省都建立了合成水晶厂。我国的彩色石英从1992年开始生产,现在市场上能见到的各种颜色品种的合成石英。 七十年代,由于工业和军事的需要,尤其是激光研究的需要,我国先后用提拉法生产了人造钇铝榴石(YAG)和钆镓榴石(GGG)晶体,它们曾一度被用于仿钻石。 1982年,我国开始研究合成立方氧化锆的生产技术,1983年投产。由于合成立方氧化锆的折射率高、硬度高、产量大、成本低,很快取代了其它仿钻石的晶体材料。广西宝石研究所1993年成功生产水热法合成祖母绿,现已能生产水热法合成其它颜色的绿柱石及红、蓝宝石。合成工业用钻石在我国是l963年投

水热法及其合成宝石的鉴定

早在1882年人们就开始了水热法合成晶体的研究。最早获得成功的是合成水晶。二十世纪上叶,由于军工产品的需要,水热法合成水晶投入了大批量的生产。随后,水热法合成红宝石于1943年由Laubengayer和Weitz首先获得成功,Ervin和Osborn进一步完善了这一技术。祖母绿的水热法合成是由澳大利亚的Johann Lechleitner在1960年研究成功的。到九十年代,原苏联新西伯利亚合成出了海蓝宝石。随后,红色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 一、水热法的原理、合成装置和方法特点: 1、基本原理 水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。 自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。 2、合成装置 水热法合成宝石采用的主要装置为高压釜,在高压釜内悬挂种晶,并充填矿化剂。 高压釜为可承高温高压的钢制釜体。水热法采用的高压釜一般可承受11000C的温度和109Pa 的压力,具有可靠的密封系统和防爆装置。因为具潜在的爆炸危险,故又名“炸弹”(bomb)。高压釜的直径与高度比有一定的要求,对内径为100-120mm的高压釜来说,内径与高度比以1:16为宜。高度太小或太大都不便控制温度的分布。由于内部要装酸、碱性的强腐蚀性溶液,当温度和压力较高时,在高压釜内要装有耐腐蚀的贵金属内衬,如铂金或黄金内衬,以防矿化剂与釜体材料发生反应。也可利用在晶体生长过程中釜壁上自然形成的保护层来防止进一步的腐蚀和污染。如合成水晶时,由于溶液中的SiO2与Na2O和釜体中的铁能反应生成一种在该体系内稳定的化合物,即硅酸铁钠(锥辉石NaFeSi2O6 acmite)附着于容器内壁,从而起到保护层的作用。矿化剂指的是水热法生长晶体时采用的溶剂。 矿化剂通常可分为以下五类: 1) 碱金属及铵的卤化物, 2) 碱金属的氢氧化物, 3)弱酸与碱金属形成的盐类, 4)强酸, 5)酸类(一般为无机酸)。 其中碱金属的卤化物及氢氧化物是最为有效且广泛应用的矿化剂。矿化剂的化学性质和浓度影响物质在其中的溶解度与生长速率。合成红宝石时可采用的矿化剂有NaOH,Na2CO3,NaHCO3+KHCO3,K2CO3等多种。Al2O3在NaOH中溶解度很小,而在Na2CO3中生长较慢,采用NaHCO3+KHCO3混合液则效果较好。

宝石合成与优化

人工宝石指完全或部分由人工生产或制造的、用于制作首饰及装饰品的材料,分为合成宝石、人造宝石、拼合宝石、再造宝石。合成宝石指部分或完全由人工制造的晶质或非晶质材料,这些材料的物理性质、化学成分及晶体结构和与其对应的天然宝石基本相同。必须在其所对应天然珠宝玉石名称前加“合成”二字,禁止使用生产厂、制造商的名称直接定名,禁止使用易混淆或含混不清的名词定名。人造宝石指由人工制造的晶质或非晶质材料,然而这些材料没有天然对应物。定名必须在材料名称前加“人造”二字,禁止使用生产厂、制造商的名称直接定名。禁止使用易混淆或含混不清的名词定名,不允许用生产方法参与定名。拼合宝石指两种或两种以上材料经人工方法拼合在一起,在外形上给人以整体琢磨印象的宝石。逐层写出组成材料名称,在组成材料名称之后加“拼合石”三字或以顶层材料名称加“拼合石”三字,由同种材料组成的拼合石,在组成材料名称之后加“拼合石”三字,对于分别用天然珍珠、珍珠、欧泊或合成欧泊为主要材料组成的拼合石,分别用拼合天然珍珠、拼合珍珠、拼合欧泊或拼合合成欧泊的名称即可,不必逐层写出材料名称。再造宝石指将一些天然宝石的碎块、碎屑经人工熔结后制成。在所组成天然珠宝玉石名称前加“再造”二字。人工晶体的共性1、颜色均一、内部缺陷少;2、原料和成品均较大;3、常见单相气态包体(水热法产品除外),它们多呈圆形或拉长的水滴形; 4、常见未熔融之熔质包体(水热法产品除外),其常呈不透明的白色面包渣状;5、由Cr致色的任何品种,在紫外线下均呈鲜明的红色荧光;6、绿色品种在查尔斯镜下常呈红色。 合成宝石的研究思路(1)从熔体中结晶的主要有焰熔法、提拉法和冷坩埚法。(2)从溶液中结晶的主要有水热法和助熔剂法。(3)固相生长:高温高压法合成钻石·其它方法: 化学沉淀法合成欧泊、绿松石、孔雀石、青金岩等。 1.为什么焰熔法生长出的宝石晶体要进行退火处理?焰熔法生长宝石因为温度不很稳定,使晶体位错密度较高,为消除热应力带来的晶体缺陷,必须进行高温退火处理 2焰熔法晶体生长过程分哪几个阶段?(1) 接籽晶,用晶种法代替晶芽的自发生长。(2) 扩大放肩,扩大晶种的面积或称扩大晶种的直径。(3) 等径生长,其生长直径虽不完全相同,但基本上最后成为倒梨形,即梨晶。 2.如何鉴别焰熔法生长的刚玉类宝石?合成红、蓝宝石中常可见气泡和未熔粉末出现,一般气泡小而圆,或似蝌蚪状;可单独或成群出现;红宝石中常常为细密的弧形生长纹,类似唱片纹;蓝宝石中色带较粗而不连续;黄色蓝宝石很少含有气泡,也难见色带。天然红宝石和蓝宝石都显示直或角状或六方色带。合成蓝宝石的光谱见不到天然蓝宝石通常可以见到的蓝区的吸收,或450nm的吸收带十分模糊。合成蓝宝石有时显示蓝白色或绿白色荧光,天然的为惰性;合成红宝石通常比天然红宝石的红色荧光明显强。 3.如何鉴别焰熔法生长的尖晶石类宝石?合成尖晶石中气泡和未熔粉末较少出现,偶尔出现的气泡多为异形。合成尖晶石很少显示色带。合成蓝色尖晶石显示典型的钴谱(分别位于540、580、635nm的三条吸收带),天然蓝色尖晶石显示的是蓝区的吸收带,为铁谱。合成蓝色尖晶石为强的红色荧光,而天然的也为惰性 4.焰熔法生长星光宝石时,产生星光效应的关键步骤是什么?过多的氧化铝未熔形成无数细小针状包体导致月光效应,有时甚至形成星光。 水热法固有鉴定特征①生长条纹②特殊包体合成祖母绿中可能形成的硅铍石包体呈针状或钉状,且出现多个时呈平行排列。③晶种片 焰熔法①原始晶形,焰熔法合成的宝石原始晶形都是梨形。而天然宝石的晶体形态为一定的几何多面体。2包裹体3未熔粉末4色带5弧形生长纹(唱片纹)6吸收光谱7荧光 助熔剂法固有鉴定特征①贵金属碎片包体②助熔剂包体 助熔剂法是将组成宝石的原料在高温下溶解于低熔点的助熔剂中,使之形成饱和溶液,然后通过缓慢降温或在恒定温度下蒸发熔剂等方法,使熔融液处于过饱和熔法或熔剂法。

相关主题
相关文档 最新文档