当前位置:文档之家› SCD-EM-6电能质量在线监测装置

SCD-EM-6电能质量在线监测装置

SCD-EM-6电能质量在线监测装置
SCD-EM-6电能质量在线监测装置

目录

开箱确认 (1)

安全警告 (1)

第一章.仪器概要 (2)

1.仪器特点 (2)

2.主要用途 (2)

3.测试量程及指标 (3)

第二章.设备布局 (3)

1.面板正面图 (3)

2.按键操作 (4)

3.LED指示 (4)

4.后面板布置说明 (4)

第三章.开始运行 (5)

1.参数设置 (5)

公共参数设置 (6)

基本参数设置 (7)

基本报警设置 (7)

电压谐波报警设置 (8)

电流谐波报警设置 (9)

2.查看基本电参量 (9)

3.查看不平衡及偏差 (10)

4.查看各通道电流电压波形图 (10)

5.查看各通道三相电压谐波 (11)

6.查看各通道三相电流谐波 (11)

7.查看报警记录 (12)

8.设置时间日期 (12)

产品保证 (12)

开箱确认:

非常感谢购买我公司的SCD-EM-6型电能质量在线监测装置,请先确认箱中产品配件。

箱包内容:

1仪器主机(SCD-EM-6)1台

2电源线1条(用于连接电源)

3RS232-RS485转换模块1个

4检测报告1份

5说明书1本

安全警告:

使用说明书中说明了避免危险和使仪器能在长期良好状态下使用的注意事项,使用前请务必仔细阅读。

一、仪器概要

1.仪器特点:

n安全可靠

电压输入采用高电压隔离模块,电流输入采用高精度电流变器使输入信号和测量系统安全隔离。大大提高了SCD-EM-6的抗干扰能力。

n使用方便

采用中文界面,简洁的按键操作,用户使用更方便。

n精度高

符合国标A级仪器要求。对谐波、三相不平衡度均采用基准算法,无近似计算,采用高精度A/D(16位),同时采样,采集速率12.8kHz。

n软件功能强

采用DSP+ARM+CPLD内核,处理速度快,软件功能丰富,使SCD-EM-6适用于复杂的测试工作和数据处理工作,大大提高了测试效率和水平。

n通讯接口(RS-232/485,网口)

SCD-EM-6电能质量在线监测装置通常采用RS232转RS485通讯。如需通过以太网通讯,需要合同中另行规定。

针2:RS232的发送端

针3:RS232的接收端

针5:RS232的接地端

n测试参数多

系统频率、电网谐波、三相电压不平衡度、电压偏差、电压基波有效值和真有效值、电流基波有效值和真有效值、基波有功功率、有功功率、基波视在功率、2-50

次谐波、真功率因数等电能质量国标规定的参数。电网谐波、电压、电流基波有效

值和真有效值、2-50次谐波等电能质量国标规定的参数。

n大容量存储

在线式电能质量监测装置内置512M内存,以5分钟为单位存储数据,每通道可以连续存储4个月的历史数据。

2.主要用途

n测量分析公用电网供到用户端的交流电能质量,其测量分析:频率偏差、电压偏差、三相电压允许不平衡度、电网谐波。

n应用小波变换测量分析非平稳时变信号的谐波。

n测量分析各种用电设备在不同运行状态下对公用电网电能质量。

n负荷波动监视:定时记录和存储电压、电流、有功功率、无功功率、频率、相位等

电力参数的变化趋势。

n电力设备调整及运行过程动态监视,帮助用户解决电力设备调整及投运过程中出现的问题。

n测试分析电力系统中断路器动作、变压器过热、电机烧毁、自动装置误动作等故障原因。

n测试分析电力系统中无功补偿及滤波装置动态参数并对其功能和技术指标作出定量评价。

n在线式、多参数、大容量、高精度及近代信号分析理论的应用等特点,使SCD-EM-6可广泛地应用于输配电、电力电子、电机拖动等领域。

3.测试量程及技术指标

n频率测量

测量范围:45~55Hz,中心频率50Hz,测量条件:信号基波分量不小于80%F.S.

测量误差:≤0.02Hz

n输入电压量程:10-120V

n输入电流量程:5A

n基波电压和电流幅值:基波电压允许误差≤0.5%F.S.;基波电流允许误差≤1%F.S.

n基波电压和电流之间相位差的测量误差:≤0.5°

n谐波电压含有率测量误差:≤0.1%

n谐波电流含有率测量误差:≤0.2%

n三相电压不平衡度误差:≤0.2%

n电压偏差误差:≤0.2%

n功率偏差:≤0.5%

二、设备布局

1.面板正面图:

按键操作::

2.按键操作

递增键用于更改数字,数字递增

递减键用于更改数字,数字递减

上翻键光标向上移动,选择条目

下翻键光标向下移动,选择条目

返回键返回上一层菜单

确定键确认操作命令

3.LED指示

面板上共有4个LED指示:从上至下,依次为:

“电源”指示灯亮,表示设备工作电源正常。

“运行”指示灯亮,表示设备运行正常。

“越限”指示灯亮,表示有越限报警。

“通讯”指示灯亮灭交替,表示正在通讯。

4.后面板布置说明

串口

U n 6U c 6U b 6K 1-

K 1+I c 1*I c 1I b 1*I b 1I a 1*I a 1U n 1U c 1U b 1U a 6U a 1网口

*I b 2I b 2*I c 2I c 2K 2+K 2-

U a 2U b 2U c 2U n 2*I a 2I a 2U a 3U b 3U c 3U n 3*I a 3I a 3*I b 3I b 3*I c 3I c 3K 3+K 3-

U a 4U b 4U c 4U n 4*I a 4I a 4*I b 4I b 4*I c 4I c 4K 4+K 4-

U a 5U b 5U c 5U n 5*I a 5I a 5*I b 5I b 5*I c 5I c 5K 5+K 5-

*I a 6I a 6*I b 6I b 6*I c 6I c 6K 6+K 6-

L N

N C

保险

n 电源插座为设备电源输入口。工作电压:220V ±15%,50Hz 。n 开关为设备电源开关。

n RS232口:用于与后台软件联机通讯。(本机基本配置为RS232转RS485通讯,如需以太网通讯,需在合同中另行规定。)n

本设备可测试1通道线路。有两种接线方式:

三元件接线(三相四线):仪器的后端子Ua、Ub、Uc、N分别接现场A、B、C三相

电压和零线UN上。

*Ia *Ib,*Ic,为电流的输入端,Ia Ib Ic为电流的输出端。

两元件接线(三相三线):仪器的后端子Ua、Uc、分别接现场A、C电压B相电压

接后端子N上,Ub不接。*Ia *Ic,为电流的输入端,Ia Ic为电流的输出端,

*Ib、Ib不接。

三、开机运行

开机进入主菜单,按照说明书中说明的接线方法进行接线,确认无误后方可接通电源。打开

电源进入主菜单画面(如图):

主菜单用“上翻”“下翻”键上下移动光标,选择要操作的子菜单条,按确认键进入该菜单。

1.参数设置

当设备第一次开机运行时,需要进行一次参数设置。

n公共参数设置

进入主菜单,选择“公共参数”项,按“确认”键进入公共参数菜单。如下图:

设置密码00000

波特率19200

站号000

本机号000

规约103规约15

用“”“”键左、右、上、下移动光标,点亮要修改的参数数字项,按“”“”键更改数字。

“设置密码”本设备出厂时默认设置为00001,不能修改成其他数字。

“波特率”设有19200、9600、4800、2400、1200几种选项,按“”“”键

选择合适的波特率。

“站号”和“本机号”可以根据用户需要修改数字。“规约”设有内部规约,103规约15和103规约25。按“”键保存设置按“

”键返回主菜单。

n

基本参数设置

点亮12基本参数设置,按“”进入此项设置,用于设置不同通道的基本

参数设置。出现如下画面:

用“

”“

”键左、

右、上、下移动光标,点亮要修改的参数数字项,按“”“

”键更改

数字。

注:报警的设置数字

表示在连续数据采集周期

内连续越限次数,超过此次数报警。

按“

”键返回主菜单。

n

基本报警设置

用“”“

”键左、右、上、下移动光标,点亮13基本报警设置,

按“

”进入此项设置,出现如下画面:

名称参数[1]

接线方式三元件(Y)额定电压57.7额定电流5PT 变比001CT 变比001报警阀值001母线登记6KV 是否报警

用“”“”键左、右、上、下移动光标,点亮要修改的参数数字项,

按“”“”键更改数字和参数。

注:不报警表示报警信号不输出,但是有记录。可以用“”切换成报警,表示报警信号输出,继电器常开点输出报警信号。

按“”保存设置,按“”键返回主菜单。

n电压谐波报警设置

用“”“”键左、右、上、下移动光标,点亮14电压谐波报警,按“”进入此项设置,出现如下画面:

[1]

20.00%不报警130.00%不报警

30.00%不报警140.00%不报警

40.00%不报警150.00%不报警

50.00%不报警160.00%不报警

60.00%不报警170.00%不报警

70.00%不报警180.00%不报警

80.00%不报警190.00%不报警

90.00%不报警200.00%不报警

100.00%不报警210.00%不报警

110.00%不报警220.00%不报警

120.00%不报警230.00%不报警

用“”“”键左、右、上、下移动光标,点亮要修改的参数数字项,按“”“”键更改数字和参数。

注:不报警表示报警信号不输出,但是有记录。可以用“”切换成报警,表示报警信号输出,进行线路开关的控制。

按“”键返回主菜单。

n电流谐波报警设置

用“”“”键左、右、上、下移动光标,点亮15电流谐波报警,按“进入此项设置,出现如下画面:

[1]

20.000A不报警130.000A不报警

30.000A不报警140.000A不报警

40.000A不报警150.000A不报警

50.000A不报警160.000A不报警

60.000A不报警170.000A不报警

70.000A不报警180.000A不报警

80.000A不报警190.000A不报警

90.000A不报警200.000A不报警

100.000A不报警210.000A不报警

110.000A不报警220.000A不报警

120.000A不报警230.000A不报警

用“”“”键左、右、上、下移动光标,点亮要修改的参数数字项,按“”“”键更改数字和参数。

注:不报警表示报警信号不输出到继电器,但是有记录。可以用“”切换成报警,表示报警信号输出到继电器,进行线路开关的控制。

按“”保存设置,按“”键返回主菜单。

2.基本电参量

主要测量现场的三相电压、电流、功率、功率因数和频率等电参量。其中P表示有功

功率,Q 表示无功功率。

名称实测值相角[1]

Ua 100.02V 0.0°Ub 100.01V 240.0°Uc 100.02V 120.0°Ia 5.000A 0.1°Ib 5.000A 0.1°Ic 5.000A 0.1°

F 50.00Hz P 1500.0W Q 0.1Var CosΦ

1.000

按“返回”键退出此画面。

3.不平衡及偏差

不平衡度指三相电力系统中三相不平衡的程度用电压和电流负序分量与正序分量得方均根百分比表示,分为电压不平衡和电流不平衡。偏差指三相电压和频率的偏差,表示测量值和额定值的差与额定值的百分比。各通道可分别显示

点亮所要选择的子菜单2不平衡及偏差,按“

”键进入该菜单,可直观查看

主菜单下显示的通道的电压、电流的不平衡度及偏差。画面表示如下图:

按“返回”键退出此画面。

名称实测值[1]

U00.10V U1100.01V U20.20V du 0.01%I00.006A I1 5.001A I20.007A di 0.06%⊿ua 0.02%⊿ub 0.01%⊿uc

0.02%

4.波形图

波形显示,实时显示三路电压和三路电流的波形,以A相电压为基准通道,显示一个完整周期。为了获得好的显示效果,波形的偏移和跨距都作了调整。

三元件(Y)接线方式的波形图

5.UA、UB、UC电压谐波

测量和记录50次谐波,并计算A、B、C三相电压总谐波畸变率。如图所示,以表格的形式显示2-50次谐波的含量,数值以基波的百分比形式表示,排列顺序从上到下,从左至右2-50次。

A相电压总谐波畸变率0.10%[1]

01-1011-2021-3031-4041-50

0.00V0.00%0.00%0.00%0.00%

0.01%0.00%0.00%0.00%0.00%

0.03%0.00%0.00%0.00%0.00%

0.01%0.00%0.00%0.00%0.00%

0.05%0.00%0.00%0.00%0.00%

0.01%0.00%0.00%0.00%0.00%

0.06%0.00%0.00%0.00%0.00%

0.00%0.00%0.00%0.00%0.00%

0.00%0.00%0.00%0.00%0.00%

0.00%0.00%0.00%0.00%0.00%

按“返回”键退出此画面。

6.IA IB IC电流谐波

测量和记录50次谐波,并计算A、B、C三相电流总谐波畸变率。如图所示,以表格的形式显示2-50次谐波的含量,电流谐波的数值以有效值形式表示,排列顺序从上到下,从左至右2-50次。

A相电流总谐波畸变率0.01%[1]

01-1011-2021-3031-4041-50

5.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

0.000A0.000A0.000A0.000A0.000A

按“返回”键退出此画面。

7.报警记录

某一越线定值设为非零值时,出现越线时,显示越线情况。无越线时显示无报警记录。

无报警记录

按“返回”键退出此画面。

8.时钟设置

用“”“”键左、右、上、下移动光标,点亮要修改的参数数字项,按“”“”键更改数字和参数。

四、产品保证

n本产品自售出之日起一年之内,由于产品质量问题而出现的故障负责免费维修。

n本公司对售出仪器终身负责维修,只收成本费。

电能质量在线监测仪

电能质量在线监测仪 K-DNZ91 产品说明 产品概述: 随着我国国民经济的蓬勃发展,电力负荷急剧加大,特别是冲击性和非线性负荷容量的不断增长,使得电网发生波形畸变、电压波动与闪变和三相不平衡等电能质量问题。公司推出的K-DNZ91电能质量在线监测仪,是一台高性能的多功能电能质量测试分析仪器。采DSP+ARM+CPLD 内核,5.7” 大屏幕液晶(320×240点阵)显示屏,使结构更紧凑,功能更强大。 主要用途: 测量分析公用电网供到用户端的交流电能质量,其测量分析: 1. 实时电参量:包括三相电压,三相电流,电网频率,有功功率,无功功率,功率因数等。 2. 三相电压偏差。 3. 频率偏差。 4. 三相电压不平衡度。 5. 电压正序,负序,零序分量,电流正序,负序,零序分量。 6. 三相电压波动和闪变。 7. 三相电压总畸变率,2-50次电压谐波。 8. 三相电流总畸变率,2-50次电流谐波。 主要特点: 1.应用小波变换测量分析非平稳时变信号的谐波。 2.测量分析各种用电设备在不同运行状态下对公用电网电能质量。 3.负荷波动监视:定时记录和存储电压、电流、有功功率、无功功率、视在功率、频率、相位等电力 参数的变化趋势。 4.电力设备调整及运行过程动态监视,帮助用户解决电力设备调整及投运过程中的问题。 5.测试分析电力系统中断路器动作、变压器过热、电机烧毁、自动装置误动作等故障原因。 6.测试分析电力系统中无功补偿及滤波装置动态参数并对其功能和技术指标作出定量评价。 7.便携式、多参数、大容量、高精度及近代信号分析理论的应用等特点,使K-DNZ91可广泛地应用 于输配电、电力电子、电机拖动等领域。 技术参数: 1.频率测量 测量范围:45~55Hz,中心频率50Hz,测量条件:信号基波分量不小于80%F.S. 测量误差:≤0.02Hz 2.输入电压量程:10-120V 3.输入电流量程:5A 4.基波电压和电流幅值:基波电压允许误差≤0.5%F.S.;基波电流允许误差≤1%F.S. 5.基波电压和电流之间相位差的测量误差:≤0.5° 6.谐波电压含有率测量误差:≤0.1% 7.谐波电流含有率测量误差:≤0.2% 8.三相电压不平衡度误差:≤0.2% 9.电压偏差误差:≤0.2%

电能质量在线监测系统立项报告解析

计量电能质量产品检测系统 立项报告 上海电气自动化设计研究所有限公司

目录 1、立项根据 2、立题拟采用的法规和标准 3、科研项目 4、技术路线 5、关键技术 6、项目进度 7、费用估算 8、市场前景 9、经济分析 10、团队建设

1、立项背景和依据 电力供应是现代化社会赖以生存的重要支柱。电能质量历来是发、供、用电部门十分关心并且刻意完善的重要指标。过去,电能质量通常是指供电的可靠性、稳定性以及供电电压的幅值、频率、波形等参数与规定值的偏差。近十多年来,随着高新技术尤其是信息技术的发展,众多基于计算机、微处理器、电力电子装置控制或管理的现代化工业与民用用电设备,对电能质量更加敏感,受电能质量影响所造成的经济和社会损失问题日趋突出,因而对电能质量提出了新的更高的要求,同时也使电力系统面对着空前广泛的谐波、闪变、不对称的污染。 不同于一般商品的是,电能是由供、用电双方共同保证质量的特殊产品。在某些质量问题的起因上,电能质量的下降更多的是受到使用者的影响,而不在于电力生产者。因此要保证电能质量,必须由电力部门和广大用户共同维护。再则,由于电能质量问题的特殊性,电力系统的电能质量始终是处在动态变化之中,即不同时刻、不同公共连接点,电能质量现象和指标往往是不同的。且电力系统是一个整体,其电能质量状况相互影响。因此,要想加强对电能质量的管理,必须建立一个实时在线的监测系统。 进入20世纪90年代以来、随着半导体、计算机产业迅速发展,一批高新技术企业应运而生,出现大量的微机控制装置和生产线,从而对电能质量提出了新的要求。在这样的背景下,电能质量的各种仪器和装置的研发迫切需要一些新技术来推动,通过这些新技术的应用,从而使电能质量从检测、分析和监控等方面得到提高。随着电能质量逐步列入电网安全运行考核指标,市场上出现不同型号、原理的电能质量检测终端(分析仪),对于这类产品目前主要用6100系列仪器,用标准源法测试,且测试精度相对与直接比较法有不足之处,且适用于实验室使用。 鉴于上述状况,用类似6100系列产品在生产线上使用,已不能满足用户要求,更不能满足市场要求,本科目就是立足上述状况而立项研究。 本科研项目的计量体系按直接比较法设计。 2、立题拟采用的法规和标准 GB/T11150-2001《电能表检定装置》 JJG307-2006《机电交流电能表》 GB/T14549-1993《电能质量公用电网谐波》 GB/T12326-2000《电能质量电压波动和闪变》 GB/T15543-1995《电能质量三相电压不平衡》 GB/T18481-2001《电能质量暂时过电压和瞬态过电压》 GB/T15945-1995《电力系统频率允许偏差》 GB/T 19862-2005《电能质量监测设备通用要求》

电能质量在线监测系统方案设计分析

电能质量在线监测系统方案设计分析 发表时间:2019-03-13T14:35:13.890Z 来源:《河南电力》2018年18期作者:王旭马柠韩芳冰李源舟赵健男 [导读] 本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 (大连供电公司辽宁省大连市 116001) 摘要:随着社会的发展,电能质量问题越来越受到社会的关注,其取决于发电、输电、供电和用电方,关系到各方的利益,电能质量在线监测的网络化是一种必然趋势。本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 关键词:电能质量;在线监测系统;方案设计 引言 随着社会的快速发展,电能的使用面临着一种新的问题:一方面是电能需求量在不断增加;另一方面是社会对电能质量的要求也越来越高,要求在电能使用中实现质和量的统一。电能质量的问题,取决于发电、输电、供电和用电方,要保证电力系统电网的电能质量,必须由电力部门和接入电网的广大电力用户来共同维护,因此为了切实维护电力部门和用户的合法利益,保证电网的安全运行,净化电气环境,必须加强对电力系统电网电能质量的监测和管理。 1力系统电能质量问题的产生的主要原因 电力系统元件存在的非线性问题包括同步发电机运行中感应电动势不理想;变压器励磁回路非线性特性;直流输电等。还有变电站并联电容器补偿装置等因素对谐波的影响。在工业和生活用电负载中,非线性负载是电力系统谐波问题的主要来源。各种自然灾害、误操作、电网故障时、发电机及励磁系统的工作状态的改变、故障保护装置中的电力电子设备的启动等都将造成各种电能质量问题。 2基于虚拟仪器技术的电能质量在线监测系统 2.1方案目的 由于用电科普知识不能有效普及,新增大量用户并未充分考虑电能质量的相关问题;加之配网中补偿电容器的设计大多未考虑谐波问题,更有许多用户不投或过投补偿装置,使谐波处于难以控制的状态,是造成配网中谐波滋长的主要原因,若不加以控制,这种趋势将处于增无减的状态,最终出现难以预料的实际问题。因此,建立长期有效的电网电能质量在线监测点、并辅以机动灵活的临时监测点相互配合,用于监测、分析某供电公司电能质量问题,并根据分析结果加以治理,意义重大。 2.2某供电公司电能质量在线监测布点选择 某供电公司主干线路为220kV供电,因此布点选择在各个220kV枢纽变电站中,接入所有等级母线电压,主变低压侧开关电流,及110kV重点用户及联络线路电流。以实时监测该变电站的电能质量情况,通过对变电站的电能质量监测,能判断与该站相接的其他110kV、35kV变电站是否可能存在电能质量超标情况。并通过临时时监测点的建立现场测试各重点用户电能质量情况。 2.3某供电公司电能质量在线监测总体设计实施方案 (1)电能质量监测仪工作原理。本项目的设计的电能质量监测仪,电压和电流信号经过传感器、高精度放大电路、抗混叠滤波器、A /D模数转换电路转换成数字信号,GPS的分脉冲信号和触发录波的开关量经光电隔离后送DSP进行分析及相关数据处理(开关量触发录波和精确对时),然后将测试结果通过PCI总线送工控机。工控机可将这些结果显示、存储、远传。(2)电能质量在线监测系统工作原理。由多台电能质量监测仪(下位机),通讯网络和电能质量分析系统(上位机)构成电能质量动态监测系统,上位机通过通讯网络对下位机进行参数设置、进行远程录波,从下位机获取电能质量测量数据并导入数据库。通过数据库查询,得到所需的测试报表,实时报表,统计报表,趋势图,波形图,频谱图等等,并可显示,打印,保存。上位机还能通过局域网与多用户进行数据共享。(3)某供电公司电能质量在线监测系统实现技术关键点。本项目的测量的间隔时间等于3S,即相邻两次测量之间没有缝隙。其采用的是TI公司的6000系列DSP,主频高,内建八个数据处理单元,可并行数据处理。其硬件结构和软件指令集,适合用来作频谱分析。并有高速PCI接口,方便与工控机进行大量的数据传输,为电能质量谐波无缝监测提供了物质保障。由于采用了高速DSP,因此采用非整数点的频谱分析方法,提高了谐波的分析精度;根据国标,严格采用闪变量值判定的基准方法计算闪变和变动;采用对称分量法计算零序分量、正序分量、负序分量和三相不平衡度,频率的测量精度主要取决于采样频率,与算法的合理性也有直接的关系。本项目A/D采样率为12.8kHz/通道,即:每周波采样256点,加上合理的算法,使得频率误差≤0.002Hz,远优于国标的0.01Hz。 2.4电能质量管理软件 监测中心的电能质量管理软件是在Linux操作系统下,采用面向对象的语言编写,全中文操作,人机界面友好,软件实现了如下功能:(l)可对系统内所有监测终端参数进行远程设定。(2)对监测终端进行网络化管理,管理员可以按照不同用户、不同电压等级、甚至行业等不同分类方式分别管理,这样在同一个界面下就可以设置大量的终端,同时这种管理方式,也方便日后终端的扩展,适应系统配置的变更。(3)可对电能质量的各项指标进行统计、处理、显示和存储,并可对记录的各种事件和波形再现。(4)对监测的数据具有数据库管理功能,从而实现了长期数据的存储与处理、分析大规模数据、对不同类别的数据进行分区管理、快捷的数据查询等。(5)可自动生成所需的图形和报表,其中包括:电能质量总览图、参数记录曲线图、电压谐波频谱图、电流谐波频谱图和电能质量综合统计报表等。 2.5方案评价 对于某供电公司建立电能质量监测网,利用监测数据分析用户对电力系统电能质量产生的污染及危害程度,采取针对性的措施实现电网及用户的电能质量监测和综合治理,改善现有供电系统的供电质量、降低电能损耗、保证电网的安全、可靠、经济运行起到积极作用。通过论述发现,今后研究电能质量问题的首要任务,是建立高效标准的电能质量监测系统,要继续增加监测点,建立网络化、信息化和标准化的电能质量监测系统,保障电网安全运行和为电力用户提供安全可靠和优质服务。 结束语 总而言之,电能质量在线监测技术,是一种可以更科学、更全面监测、分析和研究电能质量的方法。最大的功能特征是就是,电能质量监测装置长时间不间断对监测点进行收集、记录和存储电力系统各种稳态、暂态信息,能实时、精确地测量电能质量,可以为分析电能

电能质量在线监测系统技术规范书

八钢焦煤集团供电系统安全改造艾维尔沟110kV 变电站增容改造工程电能质量在线监测装置 技术规范 (通用部分) 设计单位:新疆电力设计院 2011年12月

1总则 1.1引言 提供设备的厂家、投标企业应具有ISO 9001质量保证体系认证证书,宜具有ISO 14001环境管理体系认证证书和OHSAS 18001职业健康安全管理体系认证证书及年检记录,宜具有AAA级资信等级证书、重合同守信用企业证书并具备良好的财务状况和商业信誉。提供的电能质量在线监测装置应在国家或电力行业级检验检测机构通过型式试验。 投标方提供的产品应有部级鉴定文件或等同有效的证明文件。 投标方应提供国家或电力行业级检验检测机构提供的有效期内的检测报告。 1.1.1本规范提出了电能质量在线监测装置的功能设计、结构、性能、安装和试验等方面的技术要求。 1.1.2本规范提出的是最低限度的要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,投标方应提供符合本规范和工业标准的优质产品。 1.1.3如果投标方没有以书面形式对本规范的条文提出异议,则表示投标方提供的设备完全符合本规范的要求;如有异议,应在报价书中以“对规范的意见和同规范的差异”为标题的专门章节中加以详细描述。 1.1.4本规范所使用的标准如遇与投标方所执行的标准不一致按较高的标准执行。 1.1.5本规范经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等效力。 1.2供方职责 供方的工作范围将包括下列内容,但不仅仅限于此内容: 1)提供标书内所有设备及设计说明书及制造方面的说明。 2)提供国家或电力行业级检验检测机构出具的型式试验报告,以便确认供货设备能否满足所有的性能要求。 3)提供设备安装、使用的说明书。 4)提供试验和检验的标准,包括试验报告和试验数据。 5)提供图纸、制造和质量保证过程的一览表以及标书规定的其他资料。 6)提供设备管理和运行所需有关资料。 7)所提供设备应发运到规定的目的地。 8)如标准、规范与本规范有明显的冲突,则供方应在制造设备前,用书面形式将冲突和解决办法告知需方,并经需方确认后,才能进行设备制造。 9)在更换所用的准则、标准、规程或修改设备技术数据时,供方有责任接受需方的选择。 10)现场服务。 2技术规范要求 2.1规范性引用文件 装置至少应满足最新版本的表1所列规定、规范和标准的要求,但不限于表1所列规范和标准。 表1规范性引用文件

C题 简易电能质量监测装置

简易电能质量监测装置(C题) 【本科组】 一.任务 设计并制作一个能同时对一路工频交流电的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数、谐波等进行测量的数字式电能质量监测装置(图C-1虚线框内电路)。为便于本试题的设计与制作,设定待测的100~500V交流输入电压、10~50A交流输入电流均经由相应的变换器转换为对应的1~5V交流电压。 图C-1 二.要求 2.1 基本部分 (1)测量交流输入电压有效值。 频率:50Hz;测量范围:100~500V;准确度:±1%。 (2)测量交流输入电流有效值。 频率:50Hz;测量范围:10~50A;准确度:±1%。 (3)测量并显示有功功率P、无功功率Q、视在功率S及功率因数PF。 (4)在测试5组交流电压、交流电流有效值过程中,能显示它们的最大值和最小值。 (5)自制直流电源。 2.2 发挥部分

(1)测量交流输入电压频率,精度为±0.5%。 (2)采用LCD显示,能够同时显示一个周期的输入电压、输入电流曲线。 (3)测量电压和电流的各次谐波含量 以N次电压谐波含有率为例,N次谐波含有率为N次谐波电压的均方根值与基波电压有效值之比,电流谐波含有率计算方法同电压谐波含有率。测量至5次谐波,采用列表和百分数形式显示,测量误差<1%。 (4)各次电流谐波含有率在列表显示方式中除了能够以百分比显示外,还能够显示各次谐波的有效值。 (5)其他 三、说明 1.调试时可用函数发生器输出的正弦信号电压作为一路交流电压信号;再经移相输出代表同一路的电流信号,移相网络自制。 2.检查交流电压、交流电流有效值、电压和电流谐波时,可采用函数发生器输出的对称方波信号。电压基波、谐波的测试可用函数发生器输出的对称方波作为标准信号。 3.本题目不得采用电能计量专用芯片实现。 四.评分标准 内容 得分 设计报告 20分 基本部分 50分 发挥部分 50分

电能质量监测系统标准技术方案

供电局电能质量实时监测系统 技术方案 南京华瑞杰科技有限公司 二OO九年四月

目录 第一部分前言 (1) 第二部分主站系统技术规范 (2) 1、系统设计目标 (2) 3、系统平台设计 (4) 3.1、系统总体设计思想 (4) 3.2、系统总体设计原则 (5) 3.3、系统逻辑结构 (6) 3.4、系统硬件拓扑结构 (7) 3.5、系统软件平台 (8) 4、系统功能组成 (8) 4.1、维护工作站子系统 (9) 4.2、前置采集子系统 (9) 4.3、数据处理子系统 (9) 4.4、数据分析应用子系统 (9) 4.5、报表管理功能 (12) 4.6、二次安防子系统 (12) 4.7、W EB浏览 (13) 4.8、PQDIF接口 (13) 第三部分装置技术规范 (14) 3、监测装置的功能 (16) 3.1监测功能 (16) 3.2显示功能 (17) 3.3通讯接口 (17) 3.4设置功能 (18) 3.5统计功能 (18) 3.6记录存储功能 (18) 3.7触发功能 (19) 3.8对时功能 (19) 3.9 报警功能 (19) 4、监测装置性能及技术指标 (19)

4.1电能质量数据处理 (19) 4.1.2分析数据 (19) 4.1.3统计数据 (20) 4.1.4日报数据 (20) 4.1.5事件数据 (20) 4.1.6允许误差限 (20) 4.2电气性能要求 (21) 4.2.1电源电压 (21) 4.2.2电压信号输入回路 (21) 4.2.3电流信号输入回路 (21) 4.2.4功率消耗 (21) 4.2.5停电数据保持 (21) 4.2.6气候环境条件 (21) 4.2.7可靠性 (22) 4.3结构、机械性能 (22) 4.3.1结构 (22) 4.3.2机械性能 (22) 4.4电磁兼容性 (22) 4.5绝缘耐压性能 (23) 5、功能表 (24) 附件:HRJ704终端物理结构及面板定义 (25) HRJ703终端物理结构及面板定义 (30)

电能质量在线监测装置

电能质量在线监测装置使用说明书 保定市华航电气有限公司

第一章概述 1.1 综述 理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,而随着电力电子技术的发展,直流输电、大功率单相整流技术在工业部门和用电设备上被广泛应用,如大功率可控硅器件、开关电源、变频调速等,这些典型非线性负荷将从电网吸入或注入谐波电流,从而引起电网电压畸变,使电网波形受到污染,供电质量恶化,附加损失增加,传输能力下降,成为影响电能质量的重要因素。 在电网中,三相负荷不平衡、电力系统谐振接地等会产生负序,大功率整流和非线性设备等会产生谐波。负序和谐波严重影响了供电质量,它们首先影响了电力设备安全运行。谐波可能引起谐振,谐振高压加在电容器两端,因为高次谐波对电容器阻抗很小,所以电容器易过负荷而击穿;高次谐波电流流入变压器,铁芯损耗增加;高次谐波电流流入电动机,不仅铁芯损耗增加,而且使转子发生振动,严重影响加工质量;高次谐波使保护设备误动作,使系统损失加大;高次谐波使电力系统发生电压谐振,在线路上引起过电压,会击穿设备绝缘。负序和谐波对发电机不仅有热效应,产生局部发热,而且会使发电机组产生振动,并伴有噪音,严重威胁机组的安全稳定运行。 电能质量监测装置采用先进的32位DSP处理器,是具有高速采样、计算、分析、统计、通讯和显示等功能相结合的电能质量监测设备。可实时监测电网的高达63次的谐波含有率、谐波总畸变率、三相电压不平衡度、闪变、电压偏差、电压波动、频率、各次谐波有功功率、无功功率、功率因数、相移功率因数、有效值、正负序等电能质量指标。 1.2 装置功能特点 电能质量在线监测装置,是我公司在研究总结国内外电能质量监测装置特点和实践经验基础上,严格按照国家颁布的相关技术标准,自主设计开发的新一代嵌入式电能质量在线监测产品。 1.2.1 装置特点

电能质量在线监测系统的设计和实现

电能质量在线监测系统的设计和实现 孙毅,唐良瑞,龚钢军 (华北电力大学信息工程系,北京102206) 摘要:随着社会的发展,电能质量问题越来越受到社会的关注,其取决于发电、输电、供电和用电方,关系到各方的利益,电能质量在线监测的网络化是一种必然趋势。该文给出一种电能质量在线监测系统的设计实现方案,使得电力部门可以及时、详细、精确地掌握电力系统电网的电能质量状况,正确、合理地评估电网的电能质量水平。 关键词:电能质量; 虚拟仪器; 在线监测 中图分类号:T M764 文献标识码:A 文章编号:100324897(2004)1720060204 0 引言 随着社会的快速发展,电能的使用面临着一种新的问题:一方面是电能需求量在不断增加;另一方面是社会对电能质量的要求也越来越高,要求在电能使用中实现质和量的统一。电能质量的问题,取决于发电、输电、供电和用电方,要保证电力系统电网的电能质量,必须由电力部门和接入电网的广大电力用户来共同维护,因此为了切实维护电力部门和用户的合法利益,保证电网的安全运行,净化电气环境,必须加强对电力系统电网电能质量的监测和管理。 目前,电能质量的监测方式主要有三种:设备入网前的专门检测、设备使用中的定期或不定期检测和在线监测。由于电能质量问题的特殊性,前两种监测方式的监测数据不能全面和准确地反映出电力系统电网的电能质量信息,因此电能质量监测应该采用在线监测。电能质量在线监测技术是严格按照《电能质量供电电压允许偏差》、 《电能质量公用电网谐波》、 《电能质量电压波动和闪变》、 《电能质量三相允许不平衡度》、 《电能质量电力系统频率偏差》和《电能质量暂时过电压和瞬时过电压》等六项电能质量国家标准,通过利用电能质量在线监测设备对电力系统电网进行在线监测,从而连续收集、记录和存储电力系统电网的频率偏差、电压偏差、电压波动与闪变、谐波、三相不平衡等稳态信息,以及电压跌落、电压骤升和电压中断等暂态信息。 随着对电能质量问题的日益重视,电力部门希望通过在电力系统电网中的各等级变电站和特殊点安装专门的电能质量在线监测装置,并且组建电能质量在线监测系统,力求实时、精确地测量电力系统电网的电能质量 ,分析电能质量问题产生的原因,及时采取技术措施来改善电力系统电网的电能质量。为了适应电力部门的需求,本文给出一种电能质量在线监测系统的设计和实现方案,以供参考。 1 基于虚拟仪器技术的电能质量在线监测系统 1.1 系统简介 本电能质量在线监测系统为分层分布式系统,以计算机技术、虚拟仪器技术和网络通信技术为依托,通过将电网中的各监测站点连成整体,实现了电能质量在线监测的网络化。电能质量在线监测系统提供给电力部门大量实时、精确的电能质量数据信息,为电力部门的安全生产提供了保证[1]。由于目前大量变电站已经接入本地局域网,而且通过局域网通信可以保证数据传输的实时性、可靠性,本系统利用现有的局域网来组建电能质量在线监测系统,当然,也可选用串口或调制解调器的方式组建监测系统。 电能质量在线监测系统由数据监测子系统、通信子系统、服务器子系统三部分构成。系统结构如图1所示。 图1 电能质量在线监测系统 Fig.1 On2line m onitoring system of power quality 06第32卷 第17期 2004年9月1日 继电器 RE LAY V ol.32N o.17 Sep.1,2004

电能质量在线监测系统

一、 二、 三、目录 一、目录 (1) 二、QPQM-2006电能质量在线监测系统简介 (4) 主要功能 (5) 1、电能质量指标监测功能 (5) 2、全电量监测功能 (5) 3、电压扰动监测与分析功能 (6) 4、电压瞬变监测与分析功能 (6) 5、谐波监测与分析功能 (6) 6、综合分析功能 (6) 7、WEB分析功能 (6) 8、基于地理信息支持的WEB应用功能 (6) 9、基于地图回放电能质量事件功能 (6) 10、PQDIF格式支持功能 (7) 11、支持插件式通讯规约 (7) 12、支持模版数据配置功能 (7) 13、其它功能 (7) 应用模块能 (7) 三、QPQM-2006安装说明 (7) (1)WEB服务器软件支持平台和发布平台的安装 (7) (2)WEB应用程序发布 (9) 系统登录 (11) 四、系统界面分布 (13) (1)上端的功能按钮区 (13) (2)左侧折叠式菜单区 (13) (3)右侧数据浏览区 (14) 五、系统界面共性操作 (16) (1)所有查询报表左下角三个图标的解释 (16) (2)所有趋势曲线图整体缩放图标的解释。 (16) (3)查询时间的选择解释。 (17) (4)相位选择的解释。 (19) (5)谐波次数选择的解释。 (19) (6)查询参数选定后三按钮的解释。 (20) (7)快捷键的对应菜单项解释。 (20)

(8)实时界面图形图标相关属性的解释。 (21) 六、地理图实时监测 (21) 七、监测点实时监测 (23) 八、最新PQM SOE事件报告 (27) 站级操作 (28) 局级操作 (29) 变电站级快捷键是:CTRL+D (29) 九、电能质量事件列表报告 (29) 站级操作 (30) 局级操作 (30) 十、电压质量事件 (30) 监测点级的操作 (30) 站级操作 (31) 局级操作 (31) 电压质量事件快捷键是:CTRL+ I (32) 十一、UNIPEDE(电压跌落) (32) 监测点级的操作 (32) 站级操作 (33) 局级操作 (33) 变电站级快捷键是:CTRL+ U (34) 十二、电能质量事件 (34) 监测点级的操作 (34) 站级操作 (35) 局级操作 (35) 变电站级快捷键是:CTRL+ T (35) 十三、SARFI(x)(电压跌落) (36) 监测点级的操作 (36) 站级操作 (36) 局级操作 (37) 十四、系统异常事件 (37) 监测点级的操作 (37) 站级操作 (38) 局级操作 (39) 十五、电压及合格率 (39) 监测点级的操作 (39) 十六、电压合格率(固定时段) (41) 监测点级的操作 (41) 站级操作 (41) 局级操作 (42) 十七、闪变合格率 (42) 监测点级的操作 (42) 站级操作 (43) 局级操作 (44) 十八、电流(间)谐波数据分析 (44)

电能质量检测装置技术要求

技术规范

一、前言 1、本招标文件提供的要求是最低限度的技术要求,所使用的标准和规范如与卖方所执行的标准发生矛盾时,按较高标准执行。 2、卖方所提供“大中型光伏电站移动检测平台电能质量监测装置”及内部元器件应符合国家相关标准及安全规范,卖方所提供的所有产品及技术文件除非在技术规格中另做规定外,均应使用相应的国际标准化组织标准/或其它先进国际标准。 3、如果卖方没有以书面形式对本技术规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,应在投标文件中以“对技术规范书的意见同规范书的差异”为标题的专门章节加以详细描述,并按附录A的格式填写。 二、项目介绍 本装置应用于大中型光伏电站移动检测平台,满足大中型光伏电站现场检测的要求,可安装在光伏电站各监测点,组成区域电能质量监控网络,实时采集、监测、分析、输出监测点的所有电能质量参数,并以此为依据分析被测光伏电站电能质量是否达标。检测平台的原理框图如下: 图1大中型光伏电站移动检测平台电气框图 此招标设备为电能质量监测装置及电能质量监测系统软件。 三、供货的相关要求 1、供货范围:电能质量监测装置6台、电能质量监测系统软件一套,并包括相应辅助设备,由电能质量监测装置厂家负责调试后,整体交付。

2、要求卖方准时发货,货物在2010年月日前发到买方单位(南京市浦口高新技术开发区创业路1号),在买方单位检验合格后,买方出具验收报告。 3、要求供货商在提交投标文件时,提供设备的安装和电气接线图纸,并加以详细说明,以便买方单位进行装置的电气、配线设计工作。 4、要求设备满足长时间连续工作的检测要求。 5、设备的所有部件应是全新的、高质量的、没有缺陷的、并具有合理的设计和制造。使用的材料应是适用的、长寿命、高可靠性、低损耗、少磨损和易调整的。 四、电能质量监测装置的要求 4.1技术要求 1)采样率:每周波512点及以上; 2)数据存储深度能够达到一个月以上,无记录事件被遗忘; 3)数据通信协议公开,在线实时监测数据满足刷新要求;离线存储数据带时间戳,存储格式开放,支持按时间段和数据类型的快速查询和提取 4)支持GPS同步对时功能,典型同步精度为0.1ms; 5)仪器回路数可以灵活配置,单台仪器能够提供对多个回路(每路至少包括3相电压和3相电流)的监测。 4.2主要功能 1)参数测量功能:在线实时监测被测光伏电站的电能质量参数,包括:电压、电流、功率、电量、频率、电压暂降、骤升、中断、闪变、浪涌、三相不对称、谐波THD、TDD、直流分量等。 2)数据与波形处理功能:具备16/20* bit的实时波形和故障录波功能,时间标精度为0.001ms;能够将各监测点的数据,根据选定的时间段或测试数据筛选条件进行进一步分析处理。 3) 图形输出功能:能够输出功率变化曲线、电网频率变化曲线、基波电压/基波电流长期变化曲线、电压/电流总畸变率长期变化曲线、电压/电流各次谐波长期变化曲线、长期/短期闪变值变化曲线、指标越界波形曲线、频谱曲线等。 4)报表输出功能:能够对历史数据调用分析,并对各监测点的电能质量数值分别产生分钟-小时-日以及自定义时间段报表;能够产生越界参数分析结果报表,并最终生成综合电能质量报告和数据分析文档。 5)通讯功能:装置必须具备与车载集控系统通讯的功能;通讯方式包括RS232/485、Ethernet;通讯协议公开,能够接收来自车载集控系统的指令并反馈信息。

电网电能质量监测系统的设计与实现

电网电能质量监测系统的设计与实现 发表时间:2018-06-19T10:45:57.313Z 来源:《电力设备》2018年第4期作者:李娟 [导读] 摘要:对于当前电网电能质量监测出现的问题,设计了一种针对DSP和ARM以及ZigBee无线传感网络技术的电网电能质量的监测系统,并且对当前系统架构进行了建立,硬件方案以及软件设计。 (国网清徐县供电公司山西太原 030400) 摘要:对于当前电网电能质量监测出现的问题,设计了一种针对DSP和ARM以及ZigBee无线传感网络技术的电网电能质量的监测系统,并且对当前系统架构进行了建立,硬件方案以及软件设计。 关键词:DSP ZigBee 电能监测 伴随着工农业生产的飞速发展,多种非线性的负荷和非对称性以及冲击性用电设备得到了多方面的使用,这种情况出现了很多的谐波干扰,严重的对于电网电能自身的质量受到了严重的影响。所以,实时有效的去对电网自身的电能质量给予监测,其对于确保电力系统自身的安全和稳定运行有着一定的意义。当前的电网电能质量监测系统都是使用有线形式去对监测数据进行传输,其使得在一些比较特殊的环境条件下去进行布线产生了极大的困难, 并不容易进行需要的维护。对于上述产生的问题, 设计了将DSP和ARM与ZigBee无线传感网络技术作为基础的一种电网电能质量的监测系统,其能够对电网电能自身质量其智能的在线监测给予有效的实现。 1 系统架构 1.1 ZigBee技术 ZigBee技术可以说属于一种近距离和较低复杂度,还有低数据速率以及低功耗和低成本的一种双向的无线通信技术,其主要是使用IEEE802.15.4无线标准的新一代无线传感器的网络系统。ZigBee网络自身有着自动的组网和自动路由以及自愈的功能,其自身能够在工作在2.4GHz的免执照的频段,使用调频以及扩频技术有着时延短和节点容量比较大的优点。并且2.4GHz无线信号其自身在强磁场和高电压环境里的传播有着较强的性能,数据的传输能力非常强大的,自身有着较高的可靠性,可以说其实对电网电能质量无线组网监测给予实现的一种有效的处置方案。 1.2 系统原理 通过电压和电流传感器构成的电压电流的检测电路,把被检测的高电压和大电流信号去转变为适宜的A/D变换的小信号,其自身景观滤波之后将其送到A/D转换器完成模数的转换。DSP数字信号处置器去对A/D转换结果进行读取并同时去对有关电能的质量参数进行有效的分析,完成运算以及处理,处理的具体结果使用ZigBee无线传感网络去将其传送到ARM的控制模块中,使其能够完成对数据进行的处理存储以及显示,使得电能质量参数能够实时的被监测到。电网其自身的电能质量监测系统架构示意图。 图1 电网电能质量监测系统架构示意图 2 硬件设计 2.1 信号采集处理模块 信号采集的处理模块主要是通过电压电流去对电路和滤波电路以及A/D转换器电路与DSP数字信号处理器以及外围电路共同构成的。 SP数字信号处理器采用TI的TMS320F2812芯片,这是一款高性能,低功耗,32位定点数字信号处理器。最高150MHz的工作频率为在短时间内实时控制和完成复杂算法提供了充足的条件。高性能的32位CPU包括16×16位和32×32位乘法累加器操作。,16×16位双乘累加器,可完成64位数据处理,高精度处理任务。具有丰富的硬件资源,片上Flash,ROM,RAM,定时器,多用途通用输入输出接口GPIO和仿真接口JTAG。支持TI的eX-pressDSPTM实时开发技术,TMS320DSP算法标准和CCS集成开发环境,为软件开发提供便利的环境。凭借其强大的数据处理能力,算法优化可以提高测量精度,并且使用外设接口资源可以有效降低电路的复杂性。 电压电流检测电路采用南京奇华公司生产的VSM025A电压传感器和CS040G电流传感器。传感器产生的噪声干扰由一个二阶巴特沃斯低通滤波器进行滤波。 A / D转换器选用TI高性能模数转换器ADS8364,具有6通道同步采样的16位高速并行接口,具有2.5V基准电压,低功耗和高采样率。 ADS8364的6个通道用于采样三相交流电压和电流。 ADS8364的数据端口D0-15和EOC分别连接到DSP的数据端口D0-15和外部中断INT1。 ADS8364的时钟信号由DSP控制。 DSP响应ARM控制模块的指令,控制ADS8364执行A / D转换,读取转换数据,执行快速傅里叶变换(FFT)和相关的电能质量参数计算,实现电压和电流信号的采集和处理。 2.2 ZigBee无线收发器模块 ZigBee无线收发器得模块主要使用的是ZigBee芯片CC2530和CC2530其属于TI公司支持ZigBee协议的一种系统芯片,集微处理器以及无线收发器是融合在一体的,可以说其属于业界标准非常标准的一种增强型的8051MCU内核还有与IEEE802.15.4规范相一致的2.4GHz的无线收发器。其中还包含了定时器以及可选32/64/128/256KB的Flash存储单元,并且还对于串行通信的接口以及UART接口还有21个可编程I/O引脚给予了丰富,并对于硬件资源简化了电路设计给予了丰富,CC2530和DSP主要是通过其自身的不同的串口去完成所需要的数据传输。无线收发器电路主要使用的是CC2530数据手册里所提供的一种比较典型的应用电路,天线主要是选择PCB天线[2]。 2.3 ARM控制模块 ARM控制模块主要是通过键盘和LCD显示,以及存储器还有ARM芯片以及外围的电路共同的构成。其自身应该进行实现的功能主要有:使用ZigBee网络使其能够对DSP发送控制的指令,接收并且对DSP中进行传送的数据给予保存,同时还需要对于其自身接收到的电能质量的相关参数还有电能参数给予有效的显示。 系统使用三星公司进行生产的ARM9系列的S3C2440处置器芯片,S3C2440主要使用的是16/32位RISC的处理器,其自身主要有外部的存储器与控制器和LCD控制器,以及USB的控制器,还有SD接口,以及4通道DMA与3通道UART、2通道SPI和24个外部中断源以及超过130个

电能质量在线监测装置专用技术规范

达子泉变110kV间隔扩建工程 电能质量在线监测装置 (技术规范专用部分) (编号:1102007-0000-01) 购买单位:哈密润达嘉能发电有限公司 设计单位:哈密新东源电力设计咨询有限公司 2016年08月

1 标准技术参数 供方应认真逐项填写电能质量在线监测装置标准技术参数表(见表1、表2)中“供方保证值”,不能空格,也不能以“响应”两字代替,不允许改动需方要求值。如有差异,请填写表9供方技术偏差表。 表1电能质量在线监测装置标准技术参数表 表2可选择的技术参数表

2 图纸资料提交 经确认的图纸资料应由供方提交表5所列单位。 表5 供方提交的须经确认的图纸资料及其接收单位 3 工程概况 3.1 项目名称:哈密达子泉110kV变电站110kV间隔扩建工程 3.2 项目单位:哈密润达嘉能发电有限公司 3.3 工程规模:本期110kV扩建2回110kV出线间隔(智能变电站)。 3.4 工程地址:哈密达子泉110kV变电站内 3.5 交通、运输:汽车、火车运输 3.6 电力系统情况: a.系统标称电压:110kV b.系统最高电压:126 kV c.系统额定频率:50 Hz d.系统中性点接地方式:直接接地 4 使用条件 表6 使用环境条件表

说明:1.直流电源:220V; 2.交流电源:220V; 3.交流电流:1A; 4.屏体尺寸:800×600×2260; 5.屏体颜色:77# GY09 冰灰桔纹; 6.门轴:右门轴内嵌式。 7.达子泉变电站为智能变电站,微机综合自动化系统为南京南瑞继保电气有限公司产品,本期工程需可靠接入。模拟量输入方式:采用交流采样1A制。

最新简易电能质量监测装置报告

题目: 简易电能质量监测装置 论文编号: 参赛学校: 参赛学生: 指导教师:

目录 引言 (1) 1方案论证与设计 (1) 2原理分析与硬件电路图 (2) 2.1升压部分电路图 (2) 2.2整形部分电路图 (3) 3软件设计与流程 (4) 3.1理论分析与计算: (4) 3.2程序流程图: (5) 3.3主要程序分析: (6) 3.3.1频率测量函数: (6) 3.3.2相位差测量函数: (6) 3.3.3ADC采集函数: (7) 3.3.4计算函数:.............................. 错误!未定义书签。 4系统测试与误差分析 (10) 4.1测试环境 (10) 4.2测试仪器 (10) 4.3测试方法.................................. 错误!未定义书签。 4.4测试结果和分析............................ 错误!未定义书签。 4.5误差产生原因分析 (11) 5总结 (12) 参考文献 (12)

简易电能质量监测装置 摘要:本简易电能质量监测装置由单片机主控制模块,电源模块、信号变换与处理模块和数据转换模块等构成,由c8051f020为主控单片机,它能准确的完成对一路交流工频电(有失真的正弦波)的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数和谐波占有率的进行测量。系统调试时,用函数信号发生器输出正弦电压信号作为交流信号的电压信号输入,此电压信号经过自制的移相电路移相后代表同一路信号的电流信号输入。 关键字:电能质量单片机工频交流电移相电路 引言 随着相位测量技术广泛应用于国防、科研、生产等各个领域,对相位测量的要求也逐步向高精度、高智能化方向发展,在低频范围内,相位测量在电力、机械等部门有着尤其重要的意义,对于电能质量监测,用传统的模拟指针式仪表显然不能够满足所需的精度要求,随着电子技术以及微机技术的发展,数字式仪表因其高精度的测量分辨率以及高度的智能化、直观化的特点得到越来越广泛的应用。基于这些要求,我们设计并制作了基于c8051f020单片机为核心的简易电能质量监测装置。 1方案论证与设计 全系统用c8051f020单片机作全局控制,从信号发生器模拟工频交流电(正弦波信号),通过硬件比较器,模拟出方波电压、电流信号,再通过PCA捕捉两个波形,计算出两波形的相位差以及频率。同时,另输出电压和电流的正弦信号,通过PCA 捕捉波形计算电压、电流有效值以及在lcd12864上显示出电压和电流的波形曲线。然后再根据有效值和相位再进行计算有功功率P、无功功率Q、视在功率S及功率因数PF。在lcd1602上显示。本系统的优点在于成本低廉,减少硬件,并满足电压输出精度。

电能质量在线监测系统

电力系统电能质量在线监测系统 概述 电网由“发、输、变、配、用”五个环节组成,作为用户侧的“配、用”电环节消耗着总电能的80%。随着社会经济发展,电气化铁路、电弧炉、变频器等冲击性、非线性、不平衡度负载在电力应用中越来越多,谐波、负序、闪变、电压暂态等电能质量问题直接影响着电力系统的供电安全。电能是一种商品,其质量问题是供应商和客户共同关注的问题。用电企业有必要建立电能质量监测系统,实现对整个配电电网电能质量的实时监控。 产品特点 电能质量监测系统GDDN-500C具有485总线传输功能和以太网远程传输功能,可随时随地得知各个监测点的实时数据,并能通过远程控制技术,做到随时对任意一个监测点进行修改设置和做特殊检测。可以在任何地方任何时间查看GDDN-500C所记录的数据,并在上位机上进行细致深入地分析。如有异常电力事件发生,GDDN-500C能够以最快的速度进行报警提示,并且通过原始资料,可以在电脑进行分析处理越限故障及事件。公司不断优化监控终端的程序,轻松实现远程监控。内置大容量Flash存储盘,可保证记录时间的长度和记录数据的完整性。 产品功能 2~50次谐波分析;通过多种通讯方式实现远程数据采集(远动103规约、局域网通讯、RS232/ RS485通讯);可切换至被监测的任一变电站的任一条线路,显示现场数据;对历史数据调用分析;存贮发送来的数据,并根据选定的时间段或测试数据筛选条件进行进一步分析处理;对现场发来的数据,按照统计、分析条件定时形成综合统计报表;输出多种趋势曲线和波形曲线;输出多种数据报表;可当地或远程任意设置仪器测量参数,如:电压变比、电流变比、越限定值可任意设定电压、电流各次谐波的报警和跳闸限值。可任意设置连续越限次数(为避免干扰和暂态谐波造成的误判断,当连续越限次数超过设定值时为一次真实的越限)。当测量值超过所设定的报警限值时,仪器提供报警继电器的闭合结点。具有谐波超值报警和跳闸功能。 系统组成 1、系统组成电能质量在线监测系统主要有现场监测层,通讯传输层和数据管理层组成,系统拓扑结构见图1。 1.1现场监测层 现场安装各类电能质量监测设备,要求具有通讯功能。可以选择国电中科的GDDN-500 C、GDDN-500B、GDDN-500E、GDDN-500A等电能质量仪表,主要功能: LCD显示、电参量测量(U、I、P、Q、PF、F、S);THDu,THDi、2-50次各次谐波分量;电压波动、电压波形、

电能质量在线监测对电网的重大意义

电能质量监测全年无间断运行,根本停不下来! 据统计,美国因电能质量问题每年损失260亿美元。随着我国工业科技现代化快速发展,因电能质量造成的损失问题日益严峻。包括金融、通信、数据中心、半导体、精密加工、电子和现代服务企业都对电能质量提出了很高的要求。 监测电能质量是分析与解决电能质量问题的前提,也是电力公司和电力用户是否按照协议要求承担电能质量问题责任的依据,加强电网电能质量的监测有着重要意义。 产品概况: PQS电能质量监测系统是广州致远电子通过多年的技术积累,自主研发的一款专业化电能质量监测、分析、管理系统。可帮助用户长期监测电网环境,实时了解电能质量状况,发现电网异常,尽早定位问题,为解决问题提供依据。 应用领域: 新能源发电站,用于测试并网电能质量,保证供电可靠性; 高低压变电站,用于实时监测电力系统运行状况和可靠性分析; A类负荷用户,用于分析暂态、瞬态等电能质量问题对系统设备的影响; 工业用户及冶炼企业,用于功率因素控制及电能质量治理; 其他对供电系统及供电质量有特殊要求的单位。 系统功能: PQS可实时读取所有设备采集的电能质量数据,并保存到数据库中。客户端软件和Web页面操作简便,分析功能强大,使用曲线,表格,报表和ITIC图等综合工具帮助用户迅速查找到影响电能质量的原因,为电能质量治理提供充足、直观的数据基础。PQS提供丰富的维护管理功能、报表预导出功能,用户可配置符合自身使用习惯的电能质量监测系统。 产品特色: 实时告警:PQS实时获知线路上的稳态、暂态等各类告警事件,及时把事件信息显示在软件界面上,如果您不在电脑前,“报警方案”功能会在第一时间将事件以邮件的形式告知给您。用户及时了解电网异常,尽早定位问题,彻底杜绝严重电力事故的产生。 标准支持:PQS使用IEC61850协议与设备通信,为支持其他厂商的设备提供了标准的通

相关主题
相关文档 最新文档