当前位置:文档之家› 各种物质饱和蒸汽压的算法

各种物质饱和蒸汽压的算法

各种物质饱和蒸汽压的算法
各种物质饱和蒸汽压的算法

在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压

的常数A、B、C。其公式如下

lgP=A-B/(t+C)(1)

式中:P—物质的蒸气压,毫米汞柱;

t—温度,℃

公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采

用(2)公式进行计算

lgP=-52.23B/T+C (2)

式中:P—物质的蒸气压,毫米汞柱;

表1 不同物质的蒸气压

名称分子式范围(℃) A B C

1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000 1,3一丁二烯C4H6 -80~+65 6.85941 935.531 239.554 2-甲基丙烯-1 C4H8 \ 6.84134 923.200 240.000 2-甲基丁二烯-1,3 C5H8 -50~+95 6.90334 1080.966 234.668 α-甲基綦C11H10 \ 7.06899 1852.674 197.716 α-萘酚C10H8O \ 7.28421 2077.560 184.000 β-甲基萘C11H10 \ 7.06850 1840.268 198.395 β-萘酚C10H8O \ 7.34714 2135.000 183.000 氨NH3 -83~+60 7.55466 1002.711 247.885 氨基甲酸乙酯C3H7O2N \ 7.42164 1758.210 205.000 钡Ba 930~1130 公式(2) 350.000 15.765 苯C6H6 \ 6.90565 1211.033 220.790 苯胺C6H7N \ 7.24179 1675.300 200.000 苯酚C6H6O \ 7.13617 1518.100 175.000 苯甲醇C7H8O 20~113 7.81844 1950.300 194.360 苯甲醇C7H8O 113~300 6.95916 1461.640 153.000 苯甲醚C7H8O \ 6.98926 1453.600 200.000 苯甲酸C7H6O2 60~110 公式(2) 63.820 9.033

苯甲酸甲酯C8H8O2 25~100 7.43120 1871.500 213.900 苯甲酸甲酯C8H8O2 100~260 7.07832 1656.250 95.230 苯乙烯C8H8 \ 6.92409 1420.000 206.000 铋Bi 1210~1420 公式(2) 200.000 8.876 蓖C14H10 100~160 公式(2) 72.000 8.910 蓖C14H10 223~342 公式(2) 59.219 7.910 蓖醌C14H3O2 224~286 公式(2) 110.050 12.305 蓖醌C14H3O2 285~370 公式(2) 63.985 8.002 丙酸C3H6O2 0~60 7.71553 1690.000 210.000 丙酸C3H6O2 60~185 7.35027 1497.775 194.120 丙酮C3H6O \ 7.02447 1161.000 224.000 丙烷C3H8 \ 6.82973 813.200 248.000 丙烯C3H6 \ 6.81960 785.000 247.000 丙烯腈C3H3N -20~+140 7.03855 1232.530 222.470 铂Pt 1425~1765 公式(2) 486.000 7.786 草酸C2H2O4 55~105 公式(2) 90.503 12.223 臭氧O3 \ 6.72602 566.950 260.000 醋酸甲酯C3H6O2 \ 7.20211 1232.830 228.000 氮N2 -210~-180 6.86606 308.365 273.200 碲化氢H2Te -46~0 公式(2) 22.760 7.260 碘I2 \ 7.26304 1697.870 204.000 碘化钾KI 843~1028 公式(2) 157.600 8.096 碘化钾KI 1063~1333 公式(2) 155.700 7.949 碘化钠NaI 1063~1307 公式(2) 165.100 8.371 碘化氢HI -97~-51 公式(2) 24.160 8.259 碘化氢HI -50~-34 公式(2) 21.580 7.630 丁烯-1 C4H8 \ 6.84290 926.100 240.000 氡Rn \ 6.69640 717.986 250.000 对二甲苯C8H10 \ 6.99052 1453.43000 215.307 对甲酚C7H8O \ 7.00592 1493.000 160.000 对硝基苯胺C6H6O2N2 190~260 公式(2) 77.345 9.560 对硝基甲苯C7H7O2N 80~240 公式(2) 49.950 7.982

二苯胺C12H11N 278~284 公式(2) 57.350 8.008 二苯基甲烷C13H12 217~283 公式(2) 52.360 7.967 二苯醚C12H10O 25~147 7.45310 2115.200 206.800 二苯醚C12H10O 147~325 7.09894 1871.920 185.840 二甲胺C2H7N -80~-30 7.42061 1085.700 233.000 二甲胺C2H7N -30~+65 7.18553 1008.400 227.353 二甲替甲酰胺C3H7ON 15~60 7.34380 1624.700 216.200 二甲替酰胺C3H7ON 60~350 6.99608 1437.840 199.830 二硫化碳CS2 -10~+160 6.85145 1122.500 236.460 二氧化硅SiO2 1860~2230 公式(2) 506.000 13.430 二氧化硫SO2 \ 7.32776 1022.800 240.000 二氧化氯ClO2 -59~+11 公式(2) 27.260 7.893 二氧化碳CO2 \ 9.64177 1284.070 268.432 二氧化硒SeO2 \ 6.57781 1879.810 179.000 二乙胺C4H11N -30~+100 6.83188 1057.200 212.000 二乙基酮C5H10O \ 6.85791 1216.300 204.000 顺-2-丁烯C4H8 \ 6.86926 960.100 237.000 反-2-丁烯C4H8 \ 6.86952 960.800 240.000 菲C14H10 203~347 公式(2) 57.247 7.771 呋喃C4H4O -35~+90 6.97533 1010.851 227.740 氟苯C6H5F -40~+180 6.93667 1736.350 220.000 氟化钾KF 1278~1500 公式(2) 207.500 9.000 氟化锂LiF 1398~1666 公式(2) 218.400 8.753 氟化钠NaF 1562~1701 公式(2) 218.200 8.640 氟化氢HF -55~+105 8.38036 1952.550 335.520 钙Ca 500~700 公式(2) 195.000 9.697 钙Ca 960~1100 公式(2) 370.000 16.240 镉Cd 150~320.9 公式(2) 109.000 8.564 镉Cd 500~840 公式(2) 99.900 7.897 汞Hg 100~200 7.46905 1771.898 244.831 汞Hg 200~300 7.73240 3003.680 262.482 汞Hg 300~400 7.69059 2958.841 258.460

汞Hg 400~800 7.75310 3068.195 273.438 钴Co 2374 公式(2) 309.000 7.571 光气COCl2 -68~+68 6.84297 941.250 230.000 硅Si 1200~1320 公式(2) 170.000 5.950 过氧化氢H2O2 10~90 公式(2) 48.530 8.853 氦He \ 16.13130 282.126 290.000 环戊烷C5H10 \ 6.88676 1124.162 231.361 环氧丙烷(1,2) C3H6O -35~+130 7.06492 1113.600 232.000 环氧乙烷C2H4O -70~+100 7.40783 1181.310 250.600 环已烷C6H12 -50~200 6.84498 1203.526 222.863 甲胺CH5N -93~-45 6.91831 883.054 223.122 甲胺CH5N -45~+50 6.91205 838.116 224.267 甲苯C7H8 \ 6.95464 1341.800 219.482 甲醇CH4O -20~+140 7.87863 1473.110 230.000 甲硅烷SiH4 -160~112 公式(2) 12.690 6.996 甲醚C2H6O \ 6.73669 791.184 230.000 甲酸CH2O2 \ 6.94459 1295.260 218.000 甲酸甲酯C2H4O2 \ 7.13623 1111.000 229.200 甲酸乙酯C3H6O2 -30~+235 7.11700 1176.600 223.400 甲烷CH4 \ 7.69540 532.200 275.000 甲烷液体 6.61184 339.93000 266.000

甲乙醚C3H8O 0~25 公式(2) 26.262 7.769 甲乙酮C4H3O \ 6.97421 1209.600 216.000 钾K 260~760 公式(2) 84.900 7.183 间二甲苯C8H10 7.00908 1462.26600 215.105

间甲酚C7H8O \ 7.62336 1907.240 201.000 间硝基苯胺C6H6O2N2 190~260 公式(2) 77.345 9.560 间硝基甲苯C7H7O2N 55~235 公式(2) 50.128 8.066 金Au 2315~2500 公式(2) 385.000 9.853 肼N2H4 -10~+39 8.26230 1881.600 238.000 肼N2H4 39~250 7.77306 1620.000 218.000 均二氯乙烷C2H4Cl2 \ 7.18431 1358.460 232.200

均二溴乙烷C2H4Br2 \ 7.06245 1469.700 220.100 咔唑C12H9N 244~352 公式(2) 64.715 8.280 氪Kr -188.7~-169 公式(2) 10.065 7.177 酷酸乙醋C4H8 -20~+150 7.09808 1238.710 217.000 喹啉C9H7N 180~240 公式(2) 49.720 7.969 邻苯二甲酸酐C3H4O3 160~285 公式(2) 54.920 8.022 邻二甲苯C8H10 \ 6.99891 1474.679 213.686 邻二氯苯C6H4Cl2 \ 6.92400 1538.300 200.000 邻甲酚C7H8O \ 6.97943 1479.400 170.000 邻硝基苯胺C6H5O2N2 150~260 公式(2) 63.881 8.868 邻硝基甲苯C7H7O2N 50~225 公式(2) 48.114 7.973 磷(白磷) P 20~44.1 公式(2) 63.123 9.651 磷(紫磷) P 380~590 公式(2) 108.510 11.084 磷化氢PH3 \ 6.70101 643.720 256.000 硫S \ 6.69535 2285.370 155.000 硫化氢H2S -110~83 公式(2) 20.690 7.880 氯Cl2 \ 6.86773 821.107 240.000 氯苯C6H5Cl 0~42 7.10690 1500.000 224.000 氯苯C6H5Cl 42~230 6.94594 1413.120 216.000 氯化铵NH4Cl 100~400 公式(2) 83.486 10.016 氯化汞HgCl2 60~130 公式(2) 85.030 10.888 氯化汞HgCl2 275~309 公式(2) 61.020 8.409 氯化汞HgCl2 130~270 公式(2) 78.850 10.094 氯化钾KCl 690~1105 公式(2) 174.500 8.353 氯化钾KCl 1116~1418 公式(2) 169.700 8.130 氯化钠NaCl 976~1155 公式(2) 180.300 8.330 氯化钠NaCl 1562~1430 公式(2) 185.800 8.548 氯化铅PbCl2 500~950 公式(2) 141.900 8.961 氯化氢HCl -127~-60 7.06145 710.584 255.000 氯化亚汞Hg2Cl2 \ 8.52151 3110.960 168.000 氯化亚铁FeCl2 700~930 公式(2) 135.200 8.330 氯化亚铜Cu2Cl2 878~1369 公式(2) 80.700 5.454

氯化亚硝酰NOCl -61.5~-5.4 公式(2) 25.500 7.870 氯化银AgCl 1255~1442 公式(2) 185.500 8.179 氯甲烷CH3Cl -47~-10 公式(2) 21.988 7.481 氯溴甲烷CH2ClBr -10~+155 6.92776 1165.590 220.000 氯乙烷C2H5Cl 65~+70 6.80270 949.620 230.000 氯乙烯C2H3Cl -11~+50 6.49712 783.400 230.000 吗啉C4H9ON 0~44 7.71813 1745.800 235.000 吗啉C4H9ON 44~170 7.16030 1447.700 210.000 镁Mg 900~1070 公式(2) 260.000 12.993 锰Mn 1510~1900 公式(2) 267.000 9.300 钼Mo 1800~2240 公式(2) 680.000 10.844 钠Na 180~883 公式(2) 103.300 7.553 氖Ne \ 7.57352 183.340 285.000 萘C10H8 \ 6.84577 1606.529 187.227 镍Ni 2360 公式(2) 309.000 7.600 偏二氯乙烷C2H2Cl2 0~30 公式(2) 31.706 7.909 铅Pb 525~1325 公式(2) 188.500 7.827 氢H2 -259.2~-248 5.92088 71.615 276.337 氢氧化钾KOH 1170~1327 公式(2) 136.000 7.330 氢氧化钠NaOH 1010~1402 公式(2) 132.000 7.030 氰C2N2 -72~-28 公式(2) 32.437 9.654 氰C2N2 -36~-6 公式(2) 23.750 7.808 氰化铵NH4CN 7~17 公式(2) 41.481 9.978 氰化钠NaCN 800~1360 公式(2) 155.520 7.472 氰化氢HCN -85~-40 7.80196 1425.000 265.000 氰化氢HCN -40~+70 7.29761 1206.790 247.532 铷Rb 250~370 公式(2) 76.000 6.976 噻吩C4H4S -10~180 6.95926 1246.038 221.354 三甲胺C3H9N -90~-40 7.01174 1014.200 243.100 三甲胺C3H9N -60~+850 6.81628 937.490 235.350 三氯化铝AlCl3 70~190 公式(2) 115.000 16.240 三氯化硼BCl3 \ 6.18811 756.890 214.000

三氯化锑SbCl3 170~253 公式(2) 49.440 8.090 三氯甲烷CHCl3 -30~+150 6.90328 1163.030 227.400 三硝基甲苯C7H5O6N3 \ 3.86730 1259.406 160.000 三氧化二氮N2O3 -25~0 公式(2) 39.400 10.300 三氧化二砷As2O3 100~310 公式(2) 111.350 12.127 三氧化二砷As2O3 315~490 公式(2) 52.120 6.513 三氧化硫SO3 24~48 公式(2) 43.450 10.022 三乙胺C6H15N 0~130 6.82640 1161.400 205.000 铯Cs 200~230 公式(2) 73.400 6.949 砷As 440~815 公式(2) 133.000 10.800 砷As 800~860 公式(2) 47.100 6.692 十四烷酸C14H28O2 190~224 公式(2) 75.783 9.541 水H2O 60~150 7.96681 1668.210 228.000 水H2O 0~60 8.10765 1750.286 235.000 水杨酸甲酯C8H8O3 175~215 公式(2) 48.670 8.008 顺丁烯二酸酐C4H2O3 60~160 公式(2) 46.340 7.825 锶Sr 940~1140 公式(2) 360.000 16.056 四氯化硅SiCl4 -70~+5 公式(2) 30.100 7.644 四氯化碳CCl4 \ 6.93390 1242.430 230.000 四氯化锡SnCl4 -52~-38 公式(2) 46.740 9.824 四羰基镍Ni(CO)4 2~40 公式(2) 29.800 7.780 四氧化二氮N2O4 -100~-40 公式(2) 55.160 13.400 四氧化二氮N2O4 -40~-10 公式(2) 45.440 11.214 铊Tl 950~1200 公式(2) 120.000 6.140 碳 C 3880~4430 公式(2) 540.000 9.596 特丁醇C4H10 \ 8.13596 1582.400 218.900 锑Sb 1070~1325 公式(2) 189.000 9.051 铁Fe 2220~2450 公式(2) 309.000 7.482 铜Cu 2100~2310 公式(2) 468.000 12.344 钨W 2230~2770 公式(2) 897.000 9.920 五氧化二氮N2O5 -30~+30 公式(2) 57.180 12.647 芴C13H10 161~300 公式(2) 56.615 8.059

硒Se \ 6.96158 3256.550 110.000 硒化氢H2Se 66~-26 公式(2) 20.210 7.431 锡Sn 1950~2270 公式(2) 328.000 9.643 氙Ke \ 6.67880 573.480 260.000 硝基苯C6H6O2N 112~209 公式(2) 48.955 8.192 硝基甲烷CH3O2N 47~100 公式(2) 39.914 8.033 锌Zn 250~419.4 公式(2) 133.000 9.200 溴Br2 \ 6.83298 113.000 228.000 溴化钾KBr 906~1063 公式(2) 168.100 8.247 溴化钾KBr 1095~1375 公式(2) 163.800 7.936 溴化钠NaBr 1138~1394 公式(2) 161.600 4.948 溴化氢HBr -120~-87 8.46220 1112.400 270.000 溴化氢HBr -120~-60 6.88059 732.680 250.000 溴乙烷C2H5Br -50~+130 6.89285 1083.800 231.700 氩Ar -207.62~-189.19 公式(2) 7.815 7.574 氧O2 -210~-160 6.98983 370.757 273.200 氧化铝Al2O3 1840~2200 公式(2) 540.000 14.220 一氧化氮NO -200~161 公式(2) 16.423 10.084 一氧化氮NO -163.7~148 公式(2) 13.040 8.440 一氧化碳CO -210~-160 6.24020 230.274 260.000 乙胺C2H7N -70~-20 7.09137 1019.700 225.000 乙胺C2H7N -20~+90 7.05413 987.310 220.000 乙苯C8H10 \ 6.95719 1424.255 213.206 乙醇C2H6O \ 8.04494 1554.300 222.650 乙二醇C2H6O2 25~112 8.26210 2197.000 212.000 乙二醇C2H6O2 112~340 7.88080 1957.000 193.800 乙酐C4H6O3 100~140 公式(2) 45.585 8.688 乙腈C2H3N \ 7.11988 1314.400 230.000 乙醚C4H10O \ 6.78574 994.195 210.200 乙醛C2H4OO2 -75~-45 7.38390 1216.800 250.000 乙醛C2H4OO2 -45~+70 6.81089 992.000 230.000 乙炔C2H2 -140~-82 公式(2) 21.914 8.933

乙酸C2H4O2 0~36 7.80307 1651.200 225.000 乙酸C2H4O2 36~170 7.18807 1416.700 211.000 乙烷C2H6 \ 6.80266 656.400 256.000 乙烯C2H4 \ 6.74756 585.000 255.000 乙酰苯C8H8O 30~100 公式(2) 55.117 9.135 异丙醇C3H8O 0~113 6.66040 813.055 132.930 异丁烷C4H10 \ 6.74808 882.800 240.000 异戊烷C5H12 \ 6.78967 1020.012 233.097 异辛烷(2-甲基庚烷) C8H18 \ 6.91735 1337.468 213.963 银Ag 1650~1950 公式(2) 250.000 8.760 月硅酸C12H24O2 164~205 公式(2) 74.386 9.768 樟脑C10H16O 0~18 公式(2) 53.559 8.799 正丙醇C3H8O \ 7.99733 1569.700 209.500 正丁醇C4H10 75~117.5 公式(2) 46.774 9.136 正丁酸C4H8O2 0~82 7.85941 1800.700 200.000 正丁酸C4H8O2 82~210 7.38423 1542.600 179.000 正丁烷C4H10 \ 6.83029 945.900 240.000 正二十烷C20H42 25~223 8.76030 3113.000 204.070 正二十烷C20H42 223~420 7.02250 1948.700 127.800 正庚烷C7H16 \ 6.90240 1268.115 216.900 正癸烷C10H22 10~80 7.31509 1705.600 212.590 正癸烷C10H22 70~260 6.95367 1501.268 194.480 正己烷C6H14 \ 6.87776 1171.530 224.366 正氯丙烷C3H7Cl 0~50 公式(2) 28.894 7.593 正壬烷C9H20 -10~+60 7.26430 1607.120 217.540 正壬烷C9H20 60~230 6.93513 1428.811 201.619 正十八烷C18H38 20~200 7.91170 2542.000 193.400 正十八烷C18H38 200~350 7.01560 1883.730 139.460 正十二烷C12H26 5~120 7.35518 1867.550 202.590 正十二烷C12H26 115~320 6.98059 1625.928 180.311 正十九烷C19H40 20~40 8.72620 3041.100 207.300 正十九烷C19H40 160~410 7.01920 1916.960 131.660

正十六烷C16H34 \ 7.03044 1831.317 154.528 正十七烷C17H36 20~190 7.83690 2440.200 194.590 正十七烷C17H36 190~320 7.01150 1847.120 145.520 正十三烷C13H28 15~132 7.53600 2016.190 203.020 正十三烷C13H28 132~330 6.98870 1677.430 172.900 正十四烷C14H30 15~145 7.61330 2133.750 200.800 正十四烷C14H30 145~340 6.99570 1725.460 165.750 正十五烷C15H32 15~160 7.69910 2242.420 198.720 正十五烷C15H32 160~350 7.00170 1768.420 158.490 正十一烷C11H24 15~100 7.36850 1803.900 208.320 正十一烷C11H24 100~310 6.97674 1566.650 187.480 正戊烷C5H12 \ 6.85221 1064.630 232.000 正辛烷C8H18 -20~+40 7.37200 1587.810 230.070 正辛烷C8H18 20~200 6.92374 1355.126 209.517 水在不同温度下的饱和蒸气压

Saturated Water Vapor Pressures at Different Temperatures

温度t/℃饱和蒸气压

(kPa)

温度

t/℃

饱和蒸气压

(kPa)

温度

t/℃

饱和蒸气压

(kPa)

00.61129125232.012503973.6 10.65716126239.242514041.2 20.70605127246.662524109.6 30.75813128254.252534178.9 40.81359129262.042544249.1 50.87260130270.022554320.2 60.93537131278.202564392.2

7 1.0021132286.572574465.1

8 1.0730133295.152584539.0

9 1.1482134303.932594613.7

10 1.2281135312.932604689.4

11 1.3129136322.142614766.1

12 1.4027137331.572624843.7

13 1.4979138341.222634922.3

14 1.5988139351.092645001.8

15 1.7056140361.192655082.3

16 1.8185141371.532665163.8

17 1.9380142382.112675246.3

18 2.0644143392.922685329.8

19 2.1978144403.982695414.3

20 2.3388145415.292705499.9

21 2.4877146426.852715586.4

22 2.6447147438.672725674.0

23 2.8104148450.752735762.7

24 2.9850149463.102745852.4

25 3.1690150475.722755943.1

26 3.3629151488.612766035.0

27 3.5670152501.782776127.9

28 3.7818153515.232786221.9

29 4.0078154528.962796317.2

30 4.2455155542.992806413.2

31 4.4953156557.322816510.5

32 4.7578157571.942826608.9

33 5.0335158586.872836708.5

34 5.3229159602.112846809.2

35 5.6267160617.662856911.1

36 5.9453161633.532867014.1

37 6.2795162649.732877118.3

38 6.6298163666.252887223.7

39 6.9969164683.102897330.2 407.3814165700.292907438.0 417.7840166717.832917547.0 428.2054167735.702927657.2 438.6463168753.942937768.6 449.1075169772.522947881.3 459.5898170791.472957995.2

4610.094171810.782968110.3 4710.620172830.472978226.8 4811.171173850.532988344.5 4911.745174870.982998463.5 5012.344175891.803008583.8 5112.970176913.033018705.4 5213.623177934.643028828.3 5314.303178956.663038952.6 5415.012179979.093049078.2 5515.7521801001.93059205.1 5616.5221811025.23069333.4 5717.3241821048.93079463.1 5818.1591831073.03089594.2 5919.028*******.53099726.7 6019.9321851122.53109860.5 6120.8731861147.93119995.8 6221.8511871173.831210133 6322.8681881200.131310271 6423.9251891226.131410410 6525.022*******.231510551 6626.1631911281.931610694 6727.3471921310.131710838 6828.5761931338.831810984 6929.852*******.031911131 7031.1761951397.632011279 7132.5491961427.832111429 7233.9721971458.532211581 7335.4481981489.732311734 7436.9781991521.432411889 7538.5632001553.632512046 7640.2052011568.432612204 7741.9052021619.732712364

7843.6652031653.632812525 7945.4872041688.032912688 8047.3732051722.933012852 8149.3242061758.433113019 8251.3422071794.533213187 8353.4282081831.133313357 8455.5852091868.433413528 8557.8152101906.233513701 8660.1192111944.633613876 8762.4992121983.633714053 8864.9582132023.233814232 8967.4962142063.433914412 9070.1172152104.234014594 9172.8232162145.734114778 9275.6142172187.834214964 9378.4942182230.534315152 9481.4652192273.834415342 9584.5292202317.834515533 9687.6882212362.534615727 9790.9452222407.834715922 9894.3012232453.834816120 9997.7592242500.534916320 100101.322252547.935016521 101104.992262595.935116825 102108.772272644.635216932 103112.662282694.135317138 104116.672292744.235417348 105120.792302795.135517561 106125.032312846.735617775 107129.392322899.035717992 108133.882332952.135818211 109138.502343005.935918432

110143.242353060.436018655 111148.122363115.736118881 112153.132373171.836219110 113158.292383288.636319340 114163.582393286.336419574 115169.022403344.736519809 116174.612413403.936620048 117180.342423463.936720289 118186.232433524.736820533 119192.282443586.336920780 120198.482453648.837021030 121204.852463712.137121286 122211.382473776.237221539 123218.092483841.237321803 124224.962493907.0--

mm汞柱化为帕的方法:例如:760mm汞柱化为标准的压力。

760×9.81×13.6=101396.16Pa=101.39616KPa=0.10139616MPa

饱和蒸气压水压力温度密度表

水蒸气是一种离液态较近的气体,在空气处理中应用广泛,易获得污染小。以实践经验总结出的数据图表作为计算依据 饱和水蒸气压力温度密度表 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ) ℃ MPa kg/m3 ℃ MPa kg/m3 100 128 101 129 102 130 103 131 104 132 105 133 106 134 107 135 108 136 109 137 110 138 111 139 112 140 113 141 114 142 115 143 116 144 117 145 118 146 119 147

120 148 121 149 122 150 123 151 124 152 125 153 126 154 127 155 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ)℃ MP a kg/m3 ℃ MPa kg/m3 156 184 157 185 158 186 159 187 160 188 161 189 162 190 163 191 164 192 165 193 166 194 167 195 168 196 169 197 170 198 171 199

174 202 175 203 176 204 177 205 178 206 179 207 180 208 181 209 182 210 183 211 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ)℃ MPa kg/m3 ℃ MPa kg/m3 212 231 213 232 214 233 215 234 216 235 217 236 218 237 219 238 220 239 221 240 222 241 223 242

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速

度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 蒸气压蒸气压指的是在液体(或者固体)的表面存在着该物质的蒸气,这些蒸气对液体表面产生的压强就是该液体的蒸气压。比如,水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥

发。 当气液或气固两相平衡时,气相中A物质的气压,就为液相或固相中A物质的饱和蒸气压,简称蒸气压。下面为影响因素: 1.对于放在真空容器中的液体,由于蒸发,液体分子不断进入气相,使气相压力变大,当两相平衡时气相压强就为该液体饱和蒸汽压,其也等于液相的外压;温度升高,液体分子能量更高,更易脱离液体的束缚进入气相,使饱和蒸气压变大。 2.但是一般液体都暴露在空气中,液相外压=蒸气压力+空气压力=101.325KPa),并假设空气不溶于这种液体,一般情况由于外压的增加,蒸气压变大(不过影响比较小) 3.一般讨论的蒸气压都为大量液体的蒸气压,但是当液体变为很小的液滴是,且液滴尺寸越小,由于表面张力而产生附加压力越大,而使蒸气压变高(这也是形成过热液体,过饱和溶液等亚稳态体系的原因)。所以蒸气压与温度,压力,物质特性,在表面化学中液面的曲率也有影响. 不同物质的蒸气压不同,下面总结给出水在不同温度下的饱和蒸气压:

饱和水蒸气压表

饱和水蒸气压表

二、Wexler的饱和水汽压表 温度℃.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 变化率Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa/度 0 611.213 615.667 610.158 624.662 629.203 633.774 638.373 643.003 647.662 652.350 44.400 1 567.069 661.819 666.598 671.408 676.249 681.121 686.024 690.958 695.923 700.920 47.340 2 705.949 911.010 716.10 3 721.228 726.386 731.576 736.799 742.055 747.34 4 752.667 50.448 3 758.023 763.412 768.836 774.29 4 779.786 785.312 790.873 796.469 802.100 807.766 53.729 4 813.467 819.204 824.977 830.786 836.631 842.512 848.429 854.384 860.37 5 866.403 57.192 5 872.469 878.572 884.713 890.892 897.109 903.364 909.658 915.991 922.362 928.773 60.845 6 935.223 941.712 948.241 954.810 961.419 968.069 974.759 981.490 988.262 995.075 64.969 7 1001.93 1008.83 1005.76 1022.74 1029.77 1036.069 974.759 981.490 988.262 1065.52 68.75 8 1072.80 1080.13 1087.50 1094.91 1102.37 1109.87 1117.42 1125.01 1132.65 1140.33 73.03 9 1148.06 1155.84 1163.66 1171.53 1179.45 1187.41 1195.42 1203.48 1211.58 1219.74 77.53 10 1227.94 1236.19 1244.49 1252.84 1261.24 1269.68 1278.18 1286.73 1295.33 1303.97 82.26 11 1312.67 1321.42 1330.22 1339.08 1347.98 1356.94 1365.95 1375.01 1384.12 1393.29 87.24

各种物质饱和蒸汽压的算法

在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压 的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t —温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用 (2)公式进行计算 lgP=T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表 1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2- 三氯乙烷C2H3Cl3 1,1,2 一三氯乙烯C2HCl3 1,2 一丁二烯C4H6 -60 ~+80 1,3 一丁二烯C4H6 -80 ~+65 2- 甲基丙烯-1 C4H8 2- 甲基丁二烯-1,3 C5H8 -50 ~+95 α - 甲基綦C11H10 α - 萘酚C10H8O β- 甲基萘C11H10 β - 萘酚C10H8O 氨NH3 -83 ~+60 氨基甲酸乙酯C3H7O2N 钡Ba 930~1130 公式(2) 苯C6H6 苯胺C6H7N 苯酚C6H6O 苯甲醇C7H8O 20~113

苯甲醇 C7H8O 113~300 苯甲醚 C7H8O 苯甲酸C7H6O2 60~110 公式(2) 苯甲酸甲酯 C8H8O2 25~100 苯甲酸甲酯 C8H8O2 100~260 苯乙烯 C8H8 铋Bi 1210~1420 公式(2) 蓖C14H10 100~160 公式(2) 蓖 C14H10 223~342 公式(2) 蓖醌C14H3O2 224~286 公式(2) 蓖醌C14H3O2 285~370 公式(2) 丙酸C3H6O2 0~60 丙酸C3H6O2 60~185 丙酮C3H6O 丙烷C3H8 丙烯C3H6 丙烯腈C3H3N -20 ~+140 铂Pt 1425~1765 公式(2) 草酸C2H2O4 55~105 公式(2) 臭氧O3 醋酸甲酯C3H6O2 氮N2 -210 ~-180 碲化氢H2Te -46 ~0 公式(2) 碘I2 碘化钾KI 843~1028 公式(2) 碘化钾KI 1063~1333 公式(2) 碘化钠NaI 1063~1307 公式(2) 碘化氢HI -97 ~-51 公式(2) 碘化氢HI -50 ~-34 公式(2)

水的饱和蒸汽压与温度对应表[1]

水的饱和蒸汽压与温度对应表 饱和蒸汽压力所对应的温度 压力/Mpa l/kg温度/℃汽化潜热 kJ/kg 汽化潜热 kca 0.1 99.634 2257.6 539.32 0.12 104.81 2243.9 536.05 0.14 109.318 2231.8 533.16 0.16 113.326 2220.9 530.55 0.18 116.941 2210.9 528.17 0.2 120.24 2201.7 525.97 0.25 127.444 2181.4 521.12 0.3 133.556 2163.7 516.89 0.35 138.891 2147.9 513.12 0.4 143.642 2133.6 509.7 0.5 151.867 2108.2 503.63 0.6 158.863 2086 498.33 0.7 164.983 2066 493.55 0.8 170.444 2047.7 489.18 0.9 175.389 2030.7 485.12 1 179.916 2014.8 481.32 1.1 184.1 1999.9 477.76 1.2 187.995 1985.7 474.37 1.3 191.644 197 2.1 471.12 1.4 195.078 1959.1 468.01 1.5 198.327 1946.6 465.03 1.6 201.41 1934.6 46 2.16 1.7 204.346 1923 459.39 1.8 207.151 1911.7 456.69 1.9 209.838 1900.7 454.06 2 212.417 1890 451.51 2.2 217.289 1869.4 446.58 2.4 221.829 1849.8 441.9 温度℃压力Kg/cm2 温度℃压力Kg/cm2 温度℃压力Kg/cm2 100 1.0332 118↓ 1.8995 136↓ 3.286 101 1.0707 119 1.9612 137 3.382 102 1.1092 120 2.0245 138 3.481 103 1.1489 121 2.0895 139 3.582 104 1.1898 122 2.1561 140 3.685 105 1.2318 123 2.2245 141 3.790 106 1.2751 124 2.2947 142 3.898 107 1.3196 125 2.3666 143 4.009 108 1.3654 126 2.4404 144 4.122 109 1.4125 127 2.5160 145 4.237

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hé zhēng qì yā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水 的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理 性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程 最简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C) (1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃)A B C 1,1,2-三氯乙烷C2H3Cl3\ 6.851891262.570205.170 1,1,2一三氯乙烯C2HCl3\7.028081315.040230.000 1,2一丁二烯C4H6-60~+807.161901121.000251.000

饱和蒸汽压

饱和蒸汽压

饱和蒸气压 编辑 [b ǎo h ézh ēng q ìy ā] 饱和蒸汽压即饱和蒸气压。 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于液态的饱和蒸气压。 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100 摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态) 处于平衡状态的蒸汽所产生的压 强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1 定义编辑 饱和蒸气压( saturated vapor pressure ) 例如,在30℃时,水的饱和蒸气压为4132.982Pa, 乙醇为10532.438Pa 。而在100 ℃时,水的饱和蒸气压增大到101324.72Pa, 乙醇为222647.74Pa 。饱和蒸气压是液体的一项重要物理性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2 计算公式编辑 (1) Clausius-Claperon 方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p 为蒸气压;H(v) 为蒸发潜热;Z(v) 为饱和蒸汽压缩因子与饱和液体压缩因子之差。该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2) Clapeyron 方程: 若上式中H(v)/(R*Z(v)) 为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v)) 。 (3) Antoine 方程:lg p=A-B/(T+C) 式中,A,B,C 为Antoine 常数,可查数据表。Antoine 方程是对Clausius-Clapeyron 方程最简单的改进,在 1.333~199.98kPa 范围内误差小。 3 附录编辑 计算参数 在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压的常数A、 B 、C 。其公式如下 lgP=A-B/(t+C) ( 1) 式中:P —物质的蒸气压,毫米汞柱; t—温度,℃ 公式( 1)适用于大多数化合物;而对于另外一些只需常数 B 与 C 值的物质,则可采用( 2)公式进行计算 lgP=-52.23B/T+C ( 2 )

液体饱和蒸汽压与温度关系

液体饱和蒸汽压与温度关系 一、实验目的 1.学习动态法测定液体饱和蒸汽压与温度的关系。 2.使用克劳修斯-克拉佩龙关系式计算水的气化热。 3、掌握气压计、U型管压差计夫人使用的方法和蒸空泵的使用。 4、学习excel处理实验数据。 二、实验原理 在一定温度下与液体处于平衡状态时蒸气的压力称为该温度下的饱和蒸汽压。液体的蒸汽压是随着温度的改变而改变的,当温度升高时有更多的高动能的分子能够由液面逸出,因而蒸汽压增大。当蒸汽压与外界压力相等时,液体就沸腾。外压不同时液体的沸点也就不同,把1大气压时的沸腾温度定义为液体的正常沸点。 液体的饱和蒸汽压与温度的关系可用户克劳修斯-克拉佩龙方程式表示: dInp/dT=—ΔH 汽/RT2 在温度较小的变化范围内,H 汽可视为常数,对上式积分得: Inp=—ΔH 汽/RT+B 测定液体饱和蒸汽压的方法主要有: 饱和气流法、静态法、动态法。

本实验用动态法,利用当液体的蒸汽压与外压相等时液体沸腾的原理,测定液体在不同外压时的沸点就可求出不同温度下的蒸汽压。优点是对温度的控制要求不高,对于沸点低于100℃的液体,如四氯化碳、丙酮、氯仿等也可达到一定的精确度。饱和气流法不仅可测液体 三、仪器与试剂 1.仪器: 三颈烧瓶1个冷凝管1只水银温度计1只电热套(300-500W)1个真空泵及附件1套 2.试剂: 蒸馏水 四、主要实验步骤 1、准确读取实验时的大气压,实验结束的时候在读一次,取平均值。 2、先用洗液清洗三颈瓶,再用自来水冲洗,最后用蒸馏水洗两次。瓶内加约的蒸馏水,加入少许沸石。测温的温度计用纱布包裹,部分浸入水中。用橡皮筋将测环境温度的温度计绑在一起,但要能移动,作露茎校正。 3、系统检漏: 启动真空泵,系统减压53-63Kpa后,关闭真空泵,5分钟后系统压力不在发生变化,则属于正常。否则,检查各连接处是否漏气,可用少许真空酯涂在该处。 4、测定水在不同外压下沸腾的温度: 启动真空泵,让体系压力低于环境压力40-53KPa左右。加热,让水平稳的沸腾,调整测露茎的温度计水银球于测体系温度的温度计汞柱露出部分的中部。隔2-3分钟读数,两次读数基本没有变化时,记录t 观和t 环,同时记录压差计的读数。

饱和蒸汽压与温度计算关系.汇总

饱和蒸汽压与温度计算关系.汇总

————————————————————————————————作者:————————————————————————————————日期: 2

在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如lgP=A-B/(t+C) (1)式中:P—物质的蒸气压,毫米汞柱;1mm汞柱=133.3Pa,一个标准大气压约760mm汞柱t—温度,℃。公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C (2)式中:P—物质的蒸气压,毫米汞柱;这是所有单位的换算:1兆帕(MPa)=145磅/英寸 2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm) 1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米2(kg/cm2)=0.987大气压(atm) 1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar) 名称分子式范围(℃) A B C T温度℃ 银Ag 1650~1950 公式(2)250 8.76 氯化银AgCl 1255~1442 公式(2)185.5 8.179 三氯化铝AlCl3 70~190 公式(2)115 16.24 氧化铝Al2O3 1840~2200 公式(2)540 14.22 砷As 440~815 公式(2)133 10.800

常见物质的安托尼常数-计算饱和蒸汽压

http: 一些常见物质的Antoine(安托万)常数(修正) 2007-11-09 09:22 不同物质的蒸气压(摘自http: 在表10中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数 A、B、C。其公式如下 lgP=A-B/(t+C)(7-10) 式中: P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(7—10)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(7—11)公式进行计算 lgP=-52.23B/T+C (7-11) 式中: P—物质的蒸气压,毫米汞柱; T—绝对温度,(t℃+273.1). 表10不同物质的蒸气压 名称分子式范围(℃) A B C 银Ag 1650~1950公式(7-11)250 8.76 氯化银AgCl 1255~1442公式(7-11)185.5 8.179

三氯化铝AlCl3 70~190公式(7-11)115 16.24 氧化铝Al2O3 1840~2200公式(7-11)540 14.22 砷As 440~815公式(7-11)133 10.800 砷As 800~860公式(7-11)47.1 6.692 三氧化二砷As2O3 100~310公式(7-11)111.35 12.127三氧化二砷As2O3 315~490公式(7-11)52.12 6.513 氩Ar -207.62~-189.19公式(7-11)7.8145 7.5741 金Au 2315~2500公式(7-11)385 9.853 三氯化硼BCl3……6.18811 756.89 214.0 钡Ba 930~1130公式(7-11)350 15.765 铋Bi 1210~1420公式(7-11)200 8.876 溴Br2……6.83298 113.0 228.0 碳C 3880~4430公式(7-11)540 9.596 二氧化碳CO2……9.64177 1284.07 268.432 二硫化碳CS2 -10~+160 6.85145 1122.50 236.46 一氧化碳CO -210~-160 6.24020 230.274 260.0 四氯化碳CCl4……6.93390 1242.43 230.0 钙Ca 500~700公式(7-11)195 9.697 钙960~1100公式(7-11)370 16.240 镉Cd 150~320.9公式(7-11)109 8.564 镉500~840公式(7-11)99.9 7.897

水的饱和蒸汽压和温度对应表

水的饱和蒸汽压和温度对应表 来源: 发布时间: 2011-08-18 08:33 3392 次浏览大小: 16px14px12px 温度(Temperature) 饱和蒸气压(Saturated water vapor pressure) 温度(Temperature) 饱和蒸气压(Saturated water vapor pressure) 温度(Temperatu 温度(Temperatu re) 饱和蒸气 压 (Saturated water vapor pressure) 温度 (Temperature) 饱和蒸气 压 (Saturated water vapor pressure) 温度 (Temperatu re) 饱和蒸气 压(Saturated water vapor pressure) t/℃ /(×10^3 Pa)t/℃ /(×10^3 Pa)t/℃ /(×10^3 Pa) 00.61129125232.012503973.6 10.65716126239.242514041.2 20.70605127246.662524109.6 30.75813128254.252534178.9 40.81359129262.042544249.1 50.8726130270.022554320.2 60.93537131278.22564392.2 7 1.0021132286.572574465.1 8 1.073133295.152584539 9 1.1482134303.932594613.7 10 1.2281135312.932604689.4 11 1.3129136322.142614766.1 12 1.4027137331.572624843.7 13 1.4979138341.222634922.3 14 1.5988139351.092645001.8 15 1.7056140361.192655082.3 16 1.8185141371.532665163.8 17 1.938142382.112675246.3

饱和蒸汽压

饱和蒸汽压 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1.蒸汽压是汽体对液体,液体对汽体的相互作用。 2.在某一温度时,可以存在高于或者等于饱和蒸汽压的多种蒸汽压数值,而饱和蒸汽压就有一个数值。 ·说的很清楚了, 1.蒸汽压既是汽体对液体的作用,也是液体对汽体的作用,力的作用是相互的啊。 2.在同一个温度下,可以存在小于或等于饱和蒸汽压的多种蒸汽压,而同一个温度下,只有一种蒸汽压是饱和蒸汽压。 比表面是指单位质量物质的总表面积,其单位为米2/克(M2/g).比表面积是粉体材料,特别是超细粉和纳米粉体材料的重要特征之一,粉体的颗粒越细,其比表面积越大,其表面效应,如表面活性、表面吸附能力、催化能力等越强。 由于粉体材料的颗粒很细,颗粒形状及表面形貌错综复杂,因此直接测量它的表面

水的饱和蒸汽压速查表

不同温度下水的饱和蒸汽压 0.0 0.2 0.4 0.6 0.8 t/℃ mmHg kPa mmHg kPa mmHg kPa mmHg kPa mmHg kPa 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4.579 4.926 5.294 5.685 6.101 6.543 7.013 7.513 8.045 8.609 9.209 9.844 10.518 11.231 11.987 12.788 13.634 14.530 15.477 16.477 17.535 0.6105 0.6567 0.7058 0.7579 0.8134 0.8723 0.9350 1.0017 1.0726 1.1478 1.2278 1.3124 1.4023 1.4973 1.5981 1.7049 1.8177 1.9372 2.0634 2.1967 2.3378 4.647 4.998 5.370 5.766 6.187 6.635 7.111 7.617 8.155 8.727 9.333 9.976 10.658 11.379 12.144 12.953 13.809 14.715 15.673 16.685 17.753 0.6195 0.6663 0.7159 0.7687 0.8249 0.8846 0.9481 1.0155 1.0872 1.1635 1.2443 1.3300 1.4210 1.5171 1.6191 1.7269 1.8410 1.9618 2.0896 2.2245 2.3669 4.715 5.070 5.447 5.848 6.274 6.728 7.209 7.722 8.267 8.845 9.458 10.109 10.799 11.528 12.302 13.121 13.987 14.903 15.871 16.894 17.974 0.6286 0.6759 0.7262 0.7797 0.8365 0.8970 0.9611 1.0295 1.1022 1.1792 1.2610 1.3478 1.4397 1.5370 1.6401 1.7493 1.8648 1.9869 2.1160 2.2523 2.3963 4.785 5.144 5.525 5.931 6.363 6.822 7.309 7.828 8.380 8.965 9.585 10.244 10.941 11.680 12.462 13.290 14.166 15.092 16.071 17.105 18.197 0.6379 0.6858 0.7366 0.7907 0.8483 0.9095 0.9745 1.0436 1.1172 1.1952 1.2779 1.3658 1.4527 1.5572 1.6615 1.7718 1.8886 2.0121 2.1426 2.2805 2.4261 4.855 5.219 5.605 6.015 6.453 6.917 7.411 7.936 8.494 9.086 9.714 10.380 11.085 11.833 12.624 13.461 14.347 15.284 16.272 17.319 18.422 0.6473 0.6958 0.7473 0.8019 0.8603 0.9222 0.9880 1.0580 1.1324 1.2114 1.2951 1.3839 1.4779 1.5776 1.6831 1.7946 1.9128 2.0377 2.1694 2.3090 2.4561

饱和水气压的计算

饱和水气压 饱和是一种动态平衡态,在该状态下,气相中的水汽浓度或密度保持恒定。在整个湿度的换算过程中,对于饱和水蒸气压公式的 选取显得尤为重要,因此下面介绍几种常用的。 (1)、克拉柏龙-克劳修斯方程 该方程是以理论概念为基础的,表示物质相平衡的关系式,它把饱和蒸汽压随温度的变化、容积的变化和过程的热效应三者联系 起来。方程如下: T-为循环的温度;dT-为循环的温差;L-为热量,这里为汽化潜热(相变热);ν-为饱和蒸汽的比容;ν^-为液体的比容;e-为饱和 蒸汽压。 这就是著名的克拉柏龙-克劳修斯方程。该方程不但适用于水的汽化,也适用于冰的升华。当用于升华时,L为升华潜热。 (2)、卡末林-昂尼斯方程 实际的蒸汽和理想气体不同,原因在于气体分子本身具有体积,分子间存在吸引力。卡末林 - 昂尼斯气体状态方程考虑了这种 力的影响。卡末林-昂尼斯于1901年提出了状态方程的维里表达式(e表示水汽压)。 这些维里系数都可以通过实验测定,其中的第二和第三维里系数都已经有了普遍的计算公式。例如接近大气压力,温度在150K 到400K时,第二维里系数计算公式: 一般在我们所讨论的温度范围内,第四维里系数可以不予考虑。

(3)、Goff-Grattch 饱和水汽压公式 从1947年起,世界气象组织就推荐使用 Goff-Grattch 的水汽压方程。该方程是以后多年世界公认的最准确的公式。它包括两 个公式,一个用于液 - 汽平衡,另一个用于固 - 汽平衡。 对于水平面上的饱和水汽压 式中,T0为水三项点温度 273.16 K 对于冰面上的饱和水汽压 以上两式为 1966 年世界气象组织发布的国际气象用表所采用。 (4)、Wexler-Greenspan 水汽压公式 1971年,美国国家标准局的 Wexler 和 Greenspan 根据 25 ~100 ℃范围水面上饱和水汽压的精确测量数据,以克拉柏龙 一克劳修斯方程为基础,结合卡末林 - 昂尼斯方程,经过简单的数学运算并参照试验数据作了部分修正,导出了 0 ~100 ℃ 范 围内水面上的饱和水汽压的计算公式,该式的计算值与实验值基本符合。 式中常数项的个数 n 一般取 4 ~ 8 ,例如 n 为 4 时,各项系数为: C 0 =-0.60436117 × 10 4 、 C 1 =0.1893292601 × 10 2 、 C 2 =-0.28244925 × 10 -1 、C 3 =0.17250331 × 10 -4 、 C 4 =0.2858487 × 10

相关主题
文本预览
相关文档 最新文档