当前位置:文档之家› 填料吸收装置实验指导书

填料吸收装置实验指导书

填料吸收装置实验指导书
填料吸收装置实验指导书

填料吸收装置实验指导书

填料塔吸收传质系数的测定

一、实验目的

1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气相色谱仪和六通阀的使用方法。

二、基本原理

气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。本实验采用水吸收空气中的CO 2组分。一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。因此,本实验主要测定K xa 和H OL 。 1. 计算公式

填料层高度Z 为

OL OL x x

xa

Z

N H x

x dx K L

dZ z ?=?=

=∫∫?

1

2

 

式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K xa 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s);

H OL 液相总传质单元高度,m ;

N OL 液相总传质单元数,无因次。

令:吸收因数A=L/mG

])1ln[(11

1

121A mx y mx y A A N OL +????=

2. 测定方法

(1)空气流量和水流量的测定

本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2;

(4)平衡关系。

本实验的平衡关系可写成

y = mx

式中: m 相平衡常数,m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得;

P 总压,Pa ,取1atm 。

对清水而言,x 2=0,由全塔物料衡算

)()(2121x x L y y G ?=?

可得x 1 。

三、实验装置

1. 装置流程

1-液体出口阀2;2-风机;3-液体出口阀1;4-气体出口阀;5-出塔气体取样口;6-U型压差计;7-填料层;8-塔顶预分布器;9-进塔气体取样口;10-玻璃转子流量计(0.4~4m3/h);11-混合气体进口阀1;12-混合气体进口阀2;13-孔板流量计;14-涡轮流量计;15-水箱;16-水泵

图5-1 吸收装置流程图

本实验装置流程:由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合罐,然后再进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

2.主要设备

(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网波纹规整填料或θ环散装填料,填

料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。

(2)填料规格和特性:金属丝网波纹规整填料:型号JWB—700Y,规格φ100×100mm,比表面积700m2/m3。

(3)转子流量计:

条件

介质

常用流量最小刻度标定介质标定条件

L/min CO220℃ 1.0133×105Pa CO22L/min 0.2

(4)空气风机:型号:旋涡式气机

(5)二氧化碳钢瓶;

(6)气相色谱分析仪。

四、实验步骤与注意事项

1.实验步骤

 (1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;

(2)打开混合罐底部排空阀,排放掉空气混合贮罐中的冷凝水;

(3)打开仪表电源开关及风机电源开关,进行仪表自检;

 (4)开启进水阀门,让水进入填料塔润湿填料,仔细调节玻璃转子流量计,使其流量稳定在某一实验值。(塔底液封控制:仔细调节液体出口阀的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气);

 (5)启动风机,打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀;

 (6)仔细调节风机旁路阀门的开度(并调节CO2调节转子流量计的流量,使其稳定在某一值;)建议气体流量3-5 m3/h;液体流量0.6-0.8 m3/h;CO2流量2-3L/min。

 (7)待塔操作稳定后,读取各流量计的读数及通过温度、压差计、压力表上读取各温度、塔顶塔底压差读数,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气体组成;

(8)实验完毕,关闭CO2钢瓶和转子流量计、水转子流量计、风机出口阀门,再关闭进水阀门,及风机电源开关,(实验完成后我们一般先停止水的流量再停止气体的流量,这样做的目的是为了防止液体从进气口倒压破坏管路及仪器)清理实验仪器和实验场地。

2.注意事项

(1)固定好操作点后,应随时注意调整以保持各量不变。

(2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

五、实验报告

1.将原始数据列表。

2.在双对数坐标纸上绘图表示二氧化碳解吸时体积传质系数、传质单元高度与气体流量的关系。3.列出实验结果与计算示例。

六、思考题

1.本实验中,为什么塔底要有液封?液封高度如何计算?

2.测定K xa有什么工程意义?

3.为什么二氧化碳吸收过程属于液膜控制?

4.当气体温度和液体温度不同时,应用什么温度计算亨利系数?

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀2,后启动鼓风机,用阀2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为

吸收实验实验报告

一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降 Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约—2,当喷淋量为L 1时, Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区, Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 吸收实验

图2-2-7-1 填料塔层的 Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: m Ya A Y H K N ???Ω?= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h]; Ω——塔的截面积[m 2] H ——填料层高度[m] ?Y m ——气相对数平均推动力 K Y a ——气相体积吸收系数[kmolNH 3/m 3 ·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):

填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验 一.实验目的 1.了解填料吸收装置的设备结构及操作。 2.测定填料吸收塔的流体力学特性。 3.测定填料吸收塔的体积吸收总系数K Y α。 4.了解气体空塔流速与压力降的关系。 二.实验原理 1.填料塔流体力学特性 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。 气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。当气速增大到E 点,填料层 持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。 2.传质实验 填料塔与板式塔内气液两相的接触情况有着很大的不同。在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。 本实验是用水吸收空气-氨混合气体中的氨。混合气体中氨的浓度很低。吸收所得的溶液浓度也不高。气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: m p Y A Y V K G ???=α (1) 所以 )/(m p A Y Y V G K ??=α (2) 其中 2 2112211ln ) ()(e e e e m Y Y Y Y Y Y Y Y Y -----= ? (3)

实验四填料塔吸收传质系数的测定

4 填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y = m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 4.3实验装置与流程 1〕装置流程

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学性能。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?P与空塔气速u的关系可用式?P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在?P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与

填料塔吸收过程实验

实验4 填料塔吸收过程实验 一、实验目的 (1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。 (2)掌握产生液泛现象的原因和过程。 (3)明确吸收塔填料层压降ΔP与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。 (4)掌握测定含氨空气-水系统的体积吸收系数Kya的方法。 (5)熟悉分析尾气浓度的方法。 (6)掌握气液体积转子流量计使用方法和安装要求,湿式流量计的使用方法和连接要求。 二、实验任务 (1)观察在一定液体喷淋密度下,当气速增大到一定程度时产生的液泛现象,测得液泛气速,并根据液泛气速确定操作气速。 (2)根据实际测得的原始数据,在双对 数坐标中画出填料层压降ΔP与空塔气速 u的关系曲线。 (3)测定含氨空气-水系统在一定的操 作条件下的体积吸收系数Kya。 (4)根据改变气相流量和改变液相流 量测得不同的Kya的变化值的大小,判断 此吸收过程是属气膜控制还是液膜控制。 (5)讨论影响吸收操作系统稳定的因 素。 三、实验装置 填料塔吸收操作及体积吸收系数的测 定实验装置流程示意图见图1。 本实验装置的主要设备有填料吸收塔 1、旋涡泵 2、空气转子流量计 3、四个U形管差压计(13、1 4、1 5、16)、氨气钢瓶4、氨气压力表5、氨气减压阀 6、氨气稳压罐 7、氨气转子流量计 8、水转子流量计 9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。 本实验物系为水-空气-氨气。由旋涡气泵产生的空气与从液氮钢瓶经过减压阀后的氨气混合后进入填料塔底部。吸收剂水从塔顶喷淋而下,从塔底经液封装置排出。气液在填料层内接触、传质,经吸收后的尾气从塔顶排出。很少量的一小部分尾气通过三通阀引进洗气瓶,洗气瓶内装有已知浓度和一定体积量的稀硫酸,尾气与稀硫酸进行中和反应,经吸收后的尾气通入湿式流量计后放空。从湿式流量计可以测出此小部分尾气经过洗气瓶的空气体积量。 四、实验原理和方法 与空塔气速u的关系 1.填料塔压力降p 填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。气体通过填料层的压力降将

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

填料吸收塔实验报告

填料吸收塔 一、实验目的 1.熟悉填料吸收塔的构造和操作。 2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。3.测定填料吸收塔的吸收传质系数。 二、实验原理 填料吸收塔一般要求控制回收率越高越好。填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。 填料的作用: 1.增加气液接触面积。满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。 2.增加气液接触面的流动。满足(1)合适的气液负荷;(2)气液逆流。 三、实验步骤 (1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。 (2)关闭阀V 3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V 5 。 (3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V 2 , 然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。 (4)打开V 4 ,调节空气流量(400L/H~500L/H); 打开V 6 ,调节空气流量 (5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y 1 在12%~14%mol 左右;若室内温度较低,可预热空气,使y 1 达到要求。 (6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器, 温度t 3 <35℃。

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

填料塔吸收实验数据及处理

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.5 1 1.5 2 空塔气速 单位高度压降 空气流量u(m 3) H1(cm) Ppa P/H 0.375 0.18 17.64 0.027 0.5 0.3 29.4 0.045 0.7 0.45 44.1 0.068 0.9 0.75 73.5 0.113 1.1 1.05 102.9 0.158 1.3 1.3 127.4 0.196 1.5 1.6 156.8 0.241 1.7 1.9 186.2 0.286 1.9 2.2 215.6 0.332

0.000 1.000 2.000 3.000 4.000 5.000 6.000 0.000 0.2000.4000.6000.800 1.000 1.200 1.400 1.600 流量 液体喷淋量20L /h 空气流量u H1 Ppa P/H 0.375 0.550 53.900 0.083 0.500 1.100 107.800 0.166 0.600 1.500 147.000 0.226 0.700 1.850 181.300 0.279 0.800 2.200 215.600 0.332 0.900 2.700 264.600 0.407 1.000 4.100 401.800 0.618 1.100 5.100 499.800 1.428 1.200 6.370 624.260 0.960 1.300 7.150 700.700 1.078 1.400 21.000 2058.000 3.166 1.500 33.000 3234.000 4.975

填料塔吸收实验

实验一填料塔吸收实验 一、实验目的 1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。 2. 在不同空塔气速下,观察填料塔中流体力学状态。测定气体通过填料层的压降与气速的关系曲线。 3. 通过实验了解ΔP—u曲线对工程设计的重要意义。 二、实验原理(填料塔的流体力学特性) 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 它 包括压强降和液泛规律。测定填料塔的流体力学特 性是为了计算填料塔所需动力消耗和确定填料塔 的适宜操作范围,选择适宜的气液负荷,因此填料 塔的流体力学特性是确定最适宜操作气速的依据。 气体通过干填料(L=0)时,其压强降与空塔 气速之间的函数关系在双对数坐标上为一直线,如 图中AB线,其斜率为1.8~2。当有液体喷淋时, 在低气速时,压强降和气速间的关联线与气体通过 AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE段。当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。 三、装置及流程 空气由风机供给进入空气缓冲罐再由阀调节空气流量,经空气转子流量计计量,并在管路中与氨(经转子流量计计量)混合后进入塔底,混合气在塔中经水吸收后,尾气从塔顶排出。出口处有尾气稳压阀,以维持一定的尾气压力(约100-200mmH2O)作为尾气通过分析器的推动力。

自来水经转子流量计计量后,进入塔顶喷淋气喷出,塔底吸收液经排液管证液封。 氨气由氨瓶供给,缓慢开启氨瓶阀,二氨气即进入自动减压阀,稳压0.1Mpa 范围以内。氨压表指示氨瓶内部压力,氨压表指示减压后的压力。 流程图如下所示 1、氨气阀 2、6氨压表 3、减压阀 4、氨瓶 5、11温度计 7、空气缓冲罐 8、氨压表 9、15、28转子流量计 10、氨压计 12、空气缓冲罐 13、放净阀 14、空气调节阀 1 6、塔顶尾气压力计 1 7、填料支撑板 1 8、排液管 1 9、塔压降 20、填料塔 21、喷淋器 22、尾气稳压阀 23、尾气采样管 24、稳压瓶 25、采样考克 26、吸收分析盒 27、湿式体积流量计 29、放净阀 30、进水调节阀 四、操作要点 (1)测定于填料压强降时,塔内填料务必事先吹干,为开空气调解阀,开启气泵,缓慢调解改变空气流量6次左右,测定塔压降,得到ΔP 干—U 关系。 (2)测定式填料压强降。 a 、测定前要进行预液泛时,使填料表面充分润湿。 b 、实验接近液泛时,进塔气体的增长速度要放慢,不然图中泛点不易找到。密切观察填料表面气液接触状况,并注意填料层压降变化幅度, 待各参数稳定后再

填料塔吸收实验

序号:34 化工原理实验报告 实验名称:填料吸收传质系数测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337

同组者姓名:周锃刘翰卿 指导教师:王志强 日期:2011年9月20日 一、实验目的 1.熟悉填料塔的构造与操作。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数Kxa的测定方法并分析影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压 降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为 1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c 点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填 料的压降(图中bc段)。随气速增加,出现载点(图中c点),持 液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两 相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降–空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传

吸收(解吸)实验报告

实验名称:吸收(解吸)实验 一、实验目的 1 了解填料塔吸收装置的基本结构及流程; 2 掌握总体积传质系数的测定方法; 3 测定填料塔的流体力学性能; 4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法; 6 学会化工原理实验软件库的使用。 二、实验装置流程示意图及实验流程简述 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。 (2)填料规格和特性: 金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。 (4)气泵:层叠式风机,风量0~90m3/h,风压40kPa; (5)二氧化碳钢瓶; (6)气相色谱仪(型号:SP6801); (7)色谱工作站:浙大NE2000。 三、简述实验操作步骤及安全注意事项 1 实验步骤 (1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关; (3)开启进水总阀,使水的流量达到400L/h左右。让水进入填料塔润湿填料。 (4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。 (5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右; (6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h; (7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值; (8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成; (9)改变水流量值,重复步骤(6)(7)(8)。 (10)实验完毕,关闭CO2钢瓶总阀,再关闭风机电源开关、关闭仪表电源开关,清理实验仪器和实验场地。 2 注意事项 (1)固定好操作点后,应随时注意调整以保持各量不变。 (2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

四川大学化工原理气体吸收实验

气体吸收实验 1.实验目的 (1)观测气、液在填料塔内的操作状态,掌握吸收操作方法。 (2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。 (3)测定在填料塔内用水吸收CO2的液相体积传质系数K X a。 (4)对不同填料的填料塔进行性能测试比较。 2.实验原理 (1)气体吸收是运用混合气体中各种组分在同一溶液中的溶解度的差异,通过气液充分接触,溶解度较大的气体组分进入液相而与其他组分分离的操作。 气体混合物以一定气速通过填料塔内的填料层时,与吸收剂液相想接触,进行物资传递。气,夜两项在吸收塔内除物质传递外,其流动相互影响,还具有自己的流体力学特征。填料塔的流体力学特征是吸收设备的重要参数,他包括了压降和液泛的重要规律。 填料塔的流体力学特征是以气体通过填料层所产生的压降来表示。该压降在填料因子、填料层高度、液体喷淋密度一定的情况下随气体速度变化而变化,与压降与气速的关系如图。 气体通过干填料层时,其压降与空塔时,其压降与空气塔气速的函数关系在双对数坐标上为一条直线,其斜率为 1.8-2.0.当有液体喷淋时,气体低速流过填料层,压降与气速的关系几乎与L=0的关系线平行,随着气速的增加出现载点B 与B’,填料层内持液量增加,压降与气速的关系关联线向上弯曲,斜率变大,当填料层持液越积越多时,气体的压降几乎是垂直上升,气体以泡状通过液体,出现液泛现象,P-U线出现载点C,称此点为泛点。 (2)反应填料塔性能的主要参数之一是传质系数。影响传质系数的因素很多,对不同系统和不同吸收设备,传质系数各不相同,所以不可能有一个通用的计算式计算传质系数。 本实验采用水来吸收空气中的CO2,常压下CO2在水中的溶解度比较小,用水吸收CO2的操作中是液膜控制吸收的过程,所以在低浓度吸收时填料的计算式

CO2吸收填料塔实验

CO2吸收填料塔实验

实验八 二氧化碳吸收填料塔实验 一、实验目的 ⒈ 了解填料吸收塔的结构和流体力学性能。 ⒉ 学习填料塔的液膜传质膜系数、总传质系数的测定方法,加深对传质过程原理的理解。 二、实验内容 1.测定填料层压强降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速。 2.采用水吸收二氧化碳,测定填料塔的液 膜传质膜系数和总传质系数。 三、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下的填料 层 的压强降ΔP 与气速u 的关系如图8-1所示: ΔP ,

u , m/s 1 2 3 L 3L 2L 1 L 0 = >>0 图8-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L 0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。 2.传质系数 填料塔在传质过程的有关单元操作中,应用十分广泛,实验研究传质过程的控制步骤,测定传质膜系数和总传质系数,尤为重要。 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为

气膜 ) (Ai A g A p p A k G -= (8-1) 液 膜 ) (A Ai l A C C A k G -= (8-2) 式中:A G ——A 组分的传质速率,1 -?s kmoI ; A ——两相接触面积,m 2 ; A P ——气侧A 组分的平均分压,Pa ; Ai P ——相界面上A 组分的平均分压,Pa ; A C ——液侧A 组分的平均浓度,3 -?m kmol Ai C ——相界面上A 组分的浓度3 -?m kmol k g ——以分压表达推动力的气侧传质膜系数,1 12 ---???Pa s m kmol ; k l ——以物质的量浓度表达推动力的液 侧传质膜系数,1 -?s m 。 P 2=P A 。 2 C A2 ,F L P A P Ai C Ai d 相 界 面 距离 液 膜 气 膜 浓度

填料塔吸收传质系数的测定实验doc

填料塔吸收传质系数的测定 一、实验目的 1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 二、基本原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。本实验采用水吸收空气中的CO 2组分。一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。因此,本实验主要测定K x a 和H OL 。 a) 计算公式 填料层高度Z 为: OL OL x x x Z N H x x dx a K L dZ z ?=-= =??*120 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K x a 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 液相总传质单元高度,m ; N OL 液相总传质单元数,无因次。 令:吸收因数A=L/mG ])1ln[(11 1 121A mx y mx y A A N OL +----= b) 测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成 y = mx 式中: m 相平衡常数, m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得; P 总压,Pa ,取1atm 。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 三、实验装置 1〕装置流程 本实验装置(如图1所示)流程:由自来水来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

相关主题
文本预览
相关文档 最新文档