当前位置:文档之家› 项目2-3鉴频器

项目2-3鉴频器

项目2-3鉴频器
项目2-3鉴频器

项目2-3 鉴频器

1.实验目的

(1)进一步熟悉仿真电路的绘制及仪器的连接方法;

(2)学会利用仿真仪器测量高频功率放大器的电路参数、性能指标;

(3)了解鉴频的实现方法及鉴频电路的主要性能指标。

(4)了解斜率鉴频器的工作原理。

2.实验内容及步骤

一、斜率鉴频器的实现方法

鉴频器就是从FM信号中恢复出原调制信号的过程,又称频率检波。鉴频的方法很多,本实验主要以斜率鉴频器为例,该鉴频电路主要是利用失谐的LC谐振回路实现振幅鉴频。它利用LC谐振回路构成频幅变换网络,将等幅的FM信号变换为FM—AM信号,然后利用包络检波电路恢复出原调制信号。其波形变化如图2所示。

图1斜率鉴频器实现方法框图

(1)斜率鉴频器工作原理

LC并联谐振回路谐振频率f0调离调频波的中心fc。当加到LC并联回路的调频信号频率随时间变化时,回路两端电压的振幅也随时间产生相应的变化。利用LC并联回路谐振曲线的下降(上升)部分,使等幅的调频信号变成调幅-调频信号。采用振幅检波器,可得到原调制信号uo(t)。

图(a)频率—振幅变换图(b)调频变为调幅-调频图(c)单失谐回路鉴频器

图2 斜率鉴频器工作原理图

二、斜率鉴频器仿真验证

(1)利用multisim软件绘制斜率鉴频器如图3所示的实验电路。按照电路所示,设置各元器件参数。

图3斜率鉴频器电路原理图

(2)按下仿真电源开关,双击示波器,按图4所示的示波器参数设置,即可观察到图示的调频—调幅波和电路检波输出电压波形,由电路图说明电路的工作原理。

图4 斜率鉴频器输入、输出波形图

高频小信号调谐放大器的电路设计与仿真

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目:1.高频小信号调谐放大器的电路设计与仿真 2. 乘积型相位鉴频设计与仿真 3. 高频谐振功率放大器设计与制作 初始条件: 对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.谐振频率:o f =10.7MHz ;谐振电压放大倍数:dB A VO 20≥,;通频带:MHz B w 17.0=;矩形系数:101.0≤r K 。要求:放大器电路工作稳定,采用自耦变压器谐振输出回路 2.电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz , >65%, 已知:电源供电为12V ,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。 时间安排: 第15周,安排任务(鉴3-204) 第16周,仿真、实物设计(鉴主实验室) 第17周,完成(答辩,提交报告,演示) 指导教师签名: 年 月 日

系主任(或责任教师)签名:年月日 高频小信号谐振放大器 (3) 1.设计任务 (3) 2 .总体电路方框图 (3) 3 单元电路设计 (4) 3.1小信号放大电路 (4) 3.2 选频网络 (5) 4仿真结果 (6) 5 实物制作与测试 (7) 乘积型相位鉴频设计与仿真 (8) 1.鉴频器概述 (8) 2.鉴频器的主要参数 (8) 2.1鉴频特性(曲线) (8) 2.2鉴频器的主要参数 (9) 3.鉴频方法 (9) 3.1直接鉴频法 (9) 3.2间接鉴频法 (10) 3.2乘积型相位鉴频器原理说明 (10) 4.乘积型相位鉴频器实验电路说明及仿真设计 (11) 4.1乘积型相位鉴频器电路 (11) 4.2仿真电路设计及结果分析 (12) 5.MC1496鉴频电路的鉴频实物实验 (14) 5.1鉴频电路的鉴频操作过程 (14) 5.2鉴频特性曲线(S曲线)的测量方法 (14) 高频功率放大器 (15) 1.放大器电路分析 (15) 2 谐振功率放大器的动态特性 (16) 2.1谐振功放的三种工作状态 (16) 2.2 谐振功率放大器的外部特性 (17) 3单元电路的设计 (19) 3.1确定功放的工作状态 (19) 3.2基极偏置电路计算 (20) 3.3计算谐振回路与耦合线圈的参数 (21) 3.4电源去耦滤波元件选择 (21) 4电路的安装与调试 (22) 总结 (23) 参考文献 (24)

鉴相器原理与分类

鉴相器原理及分类更新于2010-05-13 03:52:41 文章出处:与非网 鉴相器取样鉴频 鉴相器-原理特性 使输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器特性用ud(t)=kdf【θe(t)】表示。式中kd为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。函数f【·】表示鉴相特性,它反映鉴相器的输出电压ud(t)与相位差的关系。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器-分类 鉴相器可以分为模拟鉴相器和数字鉴相器两种。 二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器 二极管平衡鉴相器 这是一种模拟鉴相器,原理电路如图1。二极管D1、D2和C1R1、C2R2构成两个峰值检波器。两个输入的正弦信号u1(t)=U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2)的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压ud。当U2U1时,ud∝U1cos(θ1-θ2)。在这种情况下,它的鉴相特性是余弦型的(图2a)。 鉴频鉴相器 这是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。图3是一种鉴频鉴相器的框图。比相器可由触发器构成。当两个输入信号u1和u2同频同相时,触发器没有输出,充电电流等于零。当u1脉冲序列超前于u2时,触发器产生一个其宽度与相位差成正比的正脉冲,充电电路被充电,其输出电压为正值,大小与充电脉冲宽度成正比。若u1落后于u2,则触发器输出一个负脉冲,充电电路的输出为负值。这种鉴相器的鉴相特性为锯齿形(图2b)。这种鉴相器兼具鉴频作用,故称鉴频鉴相器。

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

正交鉴频器实验报告

正交鉴相鉴频器 实验报告 一. 设计方案: 1. 实验原理: 先将调频波经过一个移相网络变换成调相调频波,然后再与原调频波一起加到一个相位检波器进行鉴频。 利用模拟乘法器的相乘原理可以实现乘积型相位检波: 输入信号 ()cos(sin )s sm c f v t V t m t ω=+Ω 移相后的信号为: ''' ()cos{sin [ ()]} 2 sin[sin ()] s sm c f sm c f v t V t m t V t m t π ω?ωω?ω=+Ω++=+Ω+ 得到的输出信号 '' 1()KV sin[2(sin )()] 2 1 V sin () 2 o sm sm c F sm sm v t V t m t K V ω?ω?ω=+Ω++ 其中第一项为高频分量,可以用滤波器滤掉,第二项是所需的频率分量。只要线性移相网络的相频特性()?ω在调频波的频率变化范围内是线性的,当 ()0.4rad ?ω≤时,sin ()()?ω?ω≈。因此,鉴频器的输出电压()o v t 的变化规 律与调频波瞬时频率的变化规律相同,从而实现了相位鉴频。 2. 各部分电路具体实现: 鉴相鉴频器主要由三部分组成:移相网络,模拟相乘器和低频放大器。具体电路实现如下: (1) 移相网络: v D (t)

用LC 谐振回路实现移相网络,使输入信号移相90°。谐振回路的谐振频率为中频频率2.455MHz 。 (2) 模拟相乘器 用MC1496构成相乘器,使输入的两路正交信号相乘。1,4管脚和8,10管脚间分别接有电位器R2和R5用来调节输入直流平衡。电源处C7,C8和L2构成 型滤波网络,R12和C9起级间去耦作用。 (3) 低频放大器: 用LM741运放来放大输入调制信号,同时运放还能起到低通滤波以及隔离的作用。通过调节相应的电阻值可以改变放大的倍数。在运放的两个输入端2脚和3脚加上两个隔直电容,可以滤去直流分量,以保证运放的工作点正确。R21和C15构成低通滤波器。 L2 R13R12

高频课程2设计

目录 摘要............................................................... I Abstract........................................................... I I 1绪论. (1) 2 鉴频及方法原理 (2) 2.1 鉴频 (2) 2.2 鉴频方法 (3) 2.3 乘积型相位鉴频器 (4) 2.3.1 移相网络 (5) 2.3.2 低通滤波器 (5) 3 MC1496芯片的介绍 (7) 3.1 内部结构 (7) 3.2 静态工作点设置 (8) 3.2.1 静态偏置电压的设置 (8) 3.2.3 静态偏置电流的确定 (8) 4 设计内容 (9) 4.1总体设计电路 (9) 4.2电路图 (12) 4.3鉴频特性曲线的测量方法 (13) 4.3静态工作点测量 (13) 5心得体会 (16) 参考文献 (17)

摘要 鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频。其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此实现鉴频的核心部件是相位检波器。相位检波器又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。 乘积型相位鉴频器实际上是一种正交鉴频器,它由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。这个设计采用乘积型相位鉴频器 MC1496芯片完成一个相位鉴频器的设计。 关键词:鉴频、调频、乘积型相位鉴频器、MC1496芯片

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

任务4-6 鉴频与鉴相

任务4-7 鉴频与鉴相 4-6-1资讯准备 任务描述 1.了解鉴频的概念、方法及鉴频的主要技术要求; 2.理解各类鉴频电路的组成、工作原理、分析方法及主要特点。 资讯指南 导学材料 一、鉴频方法综述 调频信号解调又称为频率检波,是从调频波中取出原调制信号,即输出电压与输入信号的瞬时频率偏移成正比,又称为鉴频器,简称鉴频。它是把调频信号的频率 )()(t t c ωωω?+=与载波频率c ω比较,得到频差)()(t f t m ωω?=?,从而实现频率检波。 1.鉴频的方法 鉴频的方法很多,其工作原理都是将输入的调频信号进行特定的变换,使变换后的波形包含反映瞬时频率变化的量,再通过低通滤波器滤波就可以得到原调制信号。常用的鉴频方法有以下几种: (1)斜率鉴频器 它先将输入等幅的调频波通过线性网络进行频率-幅度变换,得到振幅随瞬时频率变化的调频波,然后用包络检波器将信号的振幅变化取出来;其输出信号就是原调制信号。 (2)相位鉴频器 它先将输入等幅的调频波通过线性网络进行频率-相位变换,得到附加相位随瞬时频率变化的调频波,然后用鉴相器将它的附加相移变化取出来,其输出信号就是原调制信号。

(3)脉冲计数式鉴频器 它先将输入等幅的调频波通过非线性变换网络进行波形变换,得到数目与瞬时频率成正比、但幅度和形状相同的调频脉冲序列,然后将信号通过低通滤波器,其输出信号就是原调制信号。 2.鉴频器的主要技术要求 鉴频器的输出电压u o随输入调频的瞬时频率f的变化特性称为鉴频特性。为了实现不失真的解调,u o应与f成线性关系,即鉴频特性曲线应为一条直线。但是,实际的鉴频特性往往是一条曲线,所以它只能在有限频率范围内实现线性鉴频。图4-6-1为一典型的鉴频特性曲线,由于该曲线与英文字母“S”相似,故又称为S曲线。由图可以看出,对应于调频波的中心频率f c,输出电压u o=0;当信号频率向左右偏离时,u o分别为正负值。 图4-6-1 鉴频特性曲线 对鉴频器主要技术要求有: (1)鉴频特性为线性 鉴频电路输出低频解调电压与输入调频信号瞬时频偏的关系称为鉴频特性,理想的鉴频特性应是线性的。实际电路的非线性失真应该尽量减小。 (2)鉴频线性范围要宽 由于输入调频信号的瞬时频率是在载频附近变化,故鉴频特性曲线位于载频附近,其中线性部分称为鉴频线性范围。要求其鉴频线性范围足够宽。 (3)鉴频灵敏度要高 在鉴频线性范围内,单位频偏产生的解调信号电压的大小称为鉴频灵敏度S d。S d越大,鉴频效率就越高。 二、鉴频电路 1.斜率鉴频器 斜率鉴频器是利用频幅转换网络将调频信号转换成调频-调幅信号,然后再经过检波电路取出原调制信号,这种方法称为斜率鉴频,因为在线性解调范围内,解调信号电压与调频信号瞬时频率之间的比值和频幅转换网络特性曲线的斜率成正比。斜率鉴频的电路模型如图4-6-2所示。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

相位鉴频器

课程名称通信电子线路 实验项目相位鉴频器成绩 学院信息专业通信工程学号20141060149姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二级管调频器和相位鉴频器电路原理及构成。 2.了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。 3.将变容二极管调频器与相位鉴频器两实验板进行联机试验,进一步了解调 频和解调全过程及整机调试方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.扫频仪(BT3C宽带扫频仪)

5.清华科教TPE-GP2型高频电路实验箱及G4实验板 6.高频信号发生器(前锋QF1055A/1056A信号发生器) 3.实验电路及基本原理分析 从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原出调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度变化。 本实验所用电路如图,该电路为电容耦合回路叠加型相位鉴频器。电路中V1/V2构成差分对振幅限幅电路,对输入信号进行去干扰限幅。同时在V2的集电极负载回路中设置了由CT1、C6、L1组成的并联谐振回路,与由CT2、C10、i 为调幅调频波。再通过后面两只检波二极管D1、D2组成的对称幅度检波器分别对上下两个调幅包络进行检波,最后得到调制信号。 4.实验步骤及内容记录(包括数据、图表、波形、程序设计等) 1.用扫频仪调整相位鉴频器的S型鉴频特性。 将实验电路中E、F、G三个接点分别与半可调电容C T1、C T2、C T3连接。

乘积型相位鉴频器的设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:乘积型相位鉴频器的设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式有一定的了解;具备晶体管电路的基本设计及基本调试能力;能够正确使用实验仪器进行电路的调试与检测;使用适当的软件进行仿真和制作PCB板图。 主要内容: 本题目为集成模拟乘法器应用设计之一,即设计一个乘积型相位鉴频器。通过本次电路设计,掌握集成模拟乘法器的基本原理及其所构成的相位鉴频电路的设计方法、电路调整及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 基本要求: (1) 采用集成模拟乘法器设计乘积型相位鉴频器,电路的工作中心频率 为f=6.5MHz。 (2) 绘制电路原理图,并给出鉴频特性曲线。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 原理说明与电路分析 (3) 1.1电路原理及用途.........................................................................................错误!未 定义书签。 2.2 模拟乘法器MC1496 (4) 2.3 低通滤波器 (5) 2.4主要技术指标 (5) 3 乘积型相位鉴频器 (8) 3.1 乘积型相位鉴频器的原理图....................................................................错误!未 定义书签。 3.2电路工作状态或元件参数的确定 (9) 3.3仿真结果 (11) 3.4 调试及静态工作点的测量 (14) 4 元件清单 (16) 5 心得体会 (17) 6参考文献 (18)

高频实验九 电容耦合相位鉴频器实验报告

实验九 电容耦合相位鉴频器实验 一.实验目的 1. 进一步学习掌握频率解调相关理论。 1. 了解电容耦合回路相位鉴频器的工作原理。 3. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.电容耦合相位鉴频器实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 三、实验基本原理与电路 1. 实验基本原理 从调频波中取出原来的调制信号,称为频率检波,又称鉴频。完成鉴频功能的电路,称为鉴频器。在调频波中,调制信息包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 鉴相器采用两个并联二极管检波电路。假设二极管D3的检波电路和二极管D4的检波电路完全对称,两个检波电路的电压传输系数完全相等,检波后的输出信号为两个检波电路的输出电压差。即034D D U U U =- 当瞬时频率0f f =时, 2U 比1U 滞后90°,但|3D U |=|4D U |,这时,鉴频器输出为零。当0f f >时, 2U 滞后于1U 的相角小于90°,|3D U |>|4D U |,鉴频器的输出大于零。当0f f <时,2U 滞后于1U 的相角大于90°,

|3D U |<|4D U |,鉴频器的输出小于零。相位鉴频器鉴频特性的线性较好,鉴频灵敏度也较高。 图9-1频率电压转换原理图。 (ω<ω0)U 2(ω=ω0) (ω>ω0) . U 1.. U 2 .2U 2. 2 .. U 1 .U 2 .2 U 2. 2 . . U 2 .2 U 2. 2 (a) (b)(ω=ω0)(c)(ω>ω0) (d)(ω<ω0) 图9-1频率电压转换原理图。 鉴频器的主要参数: (1) 鉴频跨导 鉴频器的输出电压与输入调频波的瞬时频率偏移成正比,其比例系数称为鉴频跨导。图9-3为鉴频器输出电压V 与调频波的瞬时频偏f ?之间的关系曲线,称为鉴频特性曲线。它的中部接近直线部分的斜率即为鉴频跨导。它代表每单位频偏所产生的输出电压的大小,希望鉴频器的鉴频跨导应该尽可能的大。 (2)鉴频灵敏度 指鉴频器正常工作时,所需要输入调频波的最小幅度。其值越小,鉴频器灵敏度越高。 (3)鉴频器频带宽度 从上图的鉴频特性曲线中可以看出,只有特性曲线中间一部分的线性度较好,我们称2m f ?为频带宽度。一般,要求2m f ?大于输入调频波频偏的两倍,并

实验十二 斜率鉴频与相位鉴频器

实验十二斜率鉴频与相位鉴频器 一、实验目的 1. 了解调频波产生和解调的全过程以及整机调试方式,建立起调频系统的初步概念; 2. 了解斜率鉴频与相位鉴频器的工作原理 3. 熟悉初、次级回路电容、耦合电容变化对FM波解调的影响。 二、实验项目 1. 调频—鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2. 观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 三、实验步骤 1.模块上电 插装好斜率鉴频与相位鉴频、变容二极管调频器模块,接通电源,即可开始实验。 2.相位鉴频实验(该实验与实验11的内容有部分重复) (1)以实验10中的方法产生FM波,即音频调制信号频率为1KHZ,电压峰—峰值500mv,加到1P01音频输入端,并将调频输出中心频率调至8.2MHZ左右,然后将其输出连接到鉴频单元的输入端1P01,将鉴频器单元开关1K01拨向相位鉴频。 用示波器观察鉴频输出1TP02波形,此时可观察到频率为1KHZ的正弦波。如果没有波形或波形不好,应调整调频单元1W01和鉴频单元1W01。建议采用示波器作双线观察:CH1接调频器输入端1TP01,CH2接鉴频器输出端1TP02,并作比较。 (2)若改变调制信号幅度,则鉴频器输出信号幅度,则鉴频器输出信号幅度亦会随之变大,但信号幅度过大时,输出将会出现失真。 (3)改变调制信号的频率,鉴频器输出频率应随之变化,将调制信号改成三角波和方波,再观察鉴频输出。 3.斜率鉴频实验 (1)将鉴频单元开关1K01拨向斜率鉴频。 (2)信号连接和测试方法与相位鉴频完全相同。 四、实验报告要求 1.画出调频—鉴频系统正常工作时的调频器输入、输出波形和鉴频器输入、输出波形。

鉴相器

数字鉴相器电路(图1) 鉴相器,使输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数成称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。鉴相器可以分为模拟鉴相器和数字鉴相器两种。二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器。 PLL的概念 我们所说的PLL。其实就是锁相环路,简称为锁相环。许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。 PLL的组成 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成。

锁相环组成的原理框图 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 编辑本段原理 使输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器特性用ud(t)=kdf【θe(t)】表示。式中kd为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。函数f【·】表示鉴相特性,它反映鉴相器的输出电压ud(t)与相位差的关系。常见的鉴相特性有余弦型、锯齿型与三角型等。编辑本段分类 模拟鉴相器 二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器 二极管平衡鉴相器 这是一种模拟鉴相器。二极管D1、D2和C1R1、C2R2构成两个峰值检波器。两个输入的正弦信号u1(t)=U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2)的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压ud。当U2U1时,ud∝U1cos(θ1-θ2)。在这种情况下,它的鉴相特性是余弦型的(图2a)。 频鉴相器 数字鉴相器 这是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。比相器可由触发器构成。当两个输入信号u1和u2同频同相时,触发器没有输出,充电电流等于零。当u1脉冲序列超前于u2时,触发器产生一个其宽度与相位差成正比的正脉冲,充电电路被充电,其输出电压为正值,大小与充电脉冲宽度成正比。若u1落后于u2,则触发器输出一个负脉冲,充电电路的输出为负值。这种鉴相器的鉴相特性为锯齿形。这种鉴相器兼具鉴频作用,故称鉴频鉴相器。 样鉴相器 由取样器和保持电路两部分组成。图4是原理电路,4个二极管构成取样器,电容器Cd构成保持电路。当被鉴相信号u0(f0,θ0)的频率f0正好等于取样脉冲ui(fi,θi)的频率fi的整数倍时,每次取样的电压值相等。鉴相器的输出电压ud为保持电容器Cd上的直流电压。当f0厵nfi时,每次取样的电压值不等,输出电压ud为阶梯形的交流电压。取样鉴相器输出的电压和相位差成正弦关系。

基于MC1496的相位鉴频器电路设计与仿真

课程设计报告 题目:基于MC1496的相位鉴频器电路 设计与仿真 学生姓名:薛瑞 学生学号: 1008030313 系别:电气信息工程学院 专业:电子信息工程 届别: 2014届 指导教师:马立宪 电气信息工程学院制 2013年5月

基于MC1496的相位鉴频器电路设计与仿真 学生:薛瑞 指导教师:马立宪 电气信息工程学院电子信息工程专业

1 设计任务及要求 1.1设计任务 本设计是通过模拟乘法器MC1496和低通滤波器组成的乘积型相位鉴频器,通过电路设计,能够实现仿真波形,将仿真波形与理论比较,分析出设计中的误差。 1.2 设计要求 (1)乘积性的相位鉴频器中心频率10.7MHz。 (2)调制信号频率500kHz,用MC1496设计频相转换网络和低通滤波器。 (3)输出波形无显著失真。 1.3设计研究基础 1.3.1鉴频器概述 鉴频器使输出电压和输入信号频率相对应的电路。按用途可以分为两类:第一类用于调频信号的解调。常见的有斜率鉴频器、相位鉴频器、比例鉴频器等。对这类电路的要求主要是非线性失真小,噪声门限低。第二类用于频率误差测量,如用在自动频率控制环路中产生误差信号的鉴频器。对于这类电路的零点漂移限制较严,对非线性失真和噪声门限则要求不高。 实现调频信号解调的鉴频电路可分为三类,第一类是调频——调幅变换型。第二类是相依乘法鉴频型,这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化呈线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号,因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频;第三类是脉冲均值型。 1.3.2鉴频器的主要参数 1.3. 2.1鉴频特性(曲线) 鉴频特性曲线指鉴频器的输出电压u0与输入电压瞬时频率f 或频偏Δf 之间的关系曲线。 理想鉴频特性曲线应是一条直线,但实际上往往有弯曲,呈S形,如下图所示。

13.鉴频器实验

鉴频器实验 学号:200800120228 姓名:辛义磊 仪器编号:30 一、 实验目的 1、 进一步理解鉴频的基本原理及实现方法 2、 掌握乘积型相位鉴频器的工作原理、实现电路与测量方法 3、 进一步掌握频率特性测量仪的使用方法 二、 实验器材 高频电路试验箱 数字示波器 直流稳压电源 数字万用表 三、 实验原理 能够完成对调频信号解调的电路称为鉴频器,它是从频率已调波中不失真地还原出原调制信号的过程,它们的任务是把载波频率的变化变换成电压的变化。其基本方法是将调频波进行特定的波形变换,使变换后的波形中包含有反映调频波瞬时频率变化规律的某种参量,如幅度、相位或平均分量,然后设法检测出这个参量,即得到原始调制信号。 就其功能而言,尽管鉴频器的输出V o (t)是在输入信号V i (t)作用下产生的,但二者却是截然不同的两种信号。显然,鉴频器将输入调频波的瞬时频率)(t f (或频偏)(t f )的变化变换成了输出电压)(t V o 的变化,这种变换特性称为鉴频特性,它是鉴

频器的主要特性。输出电压与瞬时频率)(t f (或频偏)(t f ?)之间的关系曲线,称为鉴频特性曲线。在线性解调的理想情况下,此曲线为直线,但实际上往往有弯曲,呈S 形,简称S 曲线。 鉴频器的主要指标有鉴频特性范围2max f ?和鉴频灵敏度 d S 。 鉴频线性范围是指鉴频特性曲线中近似直线段的频率范 围,用2max f ?表示。它表明了鉴频器不失真的解调时所允许的频率变化范围,因此要求2max f ?应大于输入调频波最大频偏的两倍,即m f ?>?2f 2max 。2max f ?也称为鉴频器的带宽。鉴频灵敏 度d S 是指在中心频率c f t f =)((0 ) (=?t f )附近曲线的斜率, 即c f t f d f v S =???=)(0|。 显然,鉴频灵敏度越高,意味着鉴频特性曲线越陡峭,鉴频能力越强。 鉴频器的类型和电路很多,如斜率鉴频器、相位鉴频器、脉冲计数式鉴频器、锁相鉴频器。 乘积型相位鉴频器的框图如图所示,相移网络一般采用单谐振回路或耦合回路,乘法器一般采用模拟乘法器,低通滤波

锁相环用CMOS鉴频鉴相器及电荷泵的实现

文章编号:046527942(2004)0420118205 研究简报 锁相环用C MOS 鉴频鉴相器及电荷泵的实现 α 黄 瑞 戴宇杰 卢桂章 (南开大学机器人与信息自动化研究所,天津300071) 摘要:锁相环(PLL )是一个闭环相位自动控制系统,能够利用一个精确且稳定的频率产生一系列频率准确的信号,为系统内部的其它模块提供稳定的高频时钟.鉴相器是锁相环路中不可缺少的重要组成部分.为了改善传统鉴相器捕获范围小、捕获时间长的问题,本文介绍一种增加频率检测的鉴相器及电荷泵的设计方法. 关键词:C M O S ;锁相环;电荷泵;鉴频鉴相器 中图分类号:TN 43 文献标识码:A 近年来,随着半导体集成电路技术的迅速发展,集成锁相环路以其体积小、使用方便的优势,广泛应用于各种数模混合信号集成电路、系统集成芯片(SO C )以及各种电子系统中.锁相环(PLL )是一个闭环相位自动控制系统,能够利用一个精确且稳定的频率产生一系列频率准确的信号,为系统内部和其它模块提供稳定的高频时钟. 同时,C M O S 工艺具有工作电压范围宽、静态功耗低、抗干扰能力强等优点,是现今集成电路制造业的主流工艺.因此,使用C M O S 工艺设计的锁相环路应用范围越来越广,极具开发潜力. 传统锁相环主要由鉴相器(PD )、环路滤波器(L PF )和压控振荡器(V CO )三部分组成.锁相的目的在于通过反馈调节使输出信号相位锁定或跟踪输入信号的相位变化,其结果是使相位误差尽量地小.根据频率与相位的交换关系,在相位差固定的情况下,频率差为零,因此锁相环可以实现两个信号的相位同步,频率相同.其中鉴相器是相位比较装置,比较参考信号和压控振荡器输出信号的相位并产生对应于两信号相位差的误差信号,以控制环路滤波器以及压控振荡器.所以鉴相器的精度将决定环路的捕获范围以及捕获时间等,对锁相环整体性能具有非常重要的意义. 本文的鉴频鉴相器在传统锁相环鉴相器相位检测的基础上加入频率检测,可以扩大锁相环捕获范围并且缩短捕获时间.其后端的电荷泵将PED 的输出电压信号转化为电流,用以控制环路滤波器的充放电. 鉴频鉴相器(PFD )的设计及实现 鉴频鉴相器工作原理 图1 PF D 示意图F ig 1 The sche ma tic of PF D 鉴频鉴相器是相位及频率比较装置,比较参考信号Ξin 和压控振荡器 输出信号Ξou t 的频率和相位并产生对应于两信号差的误差信号,经过电荷 泵转化为电流信号后,对环路滤波器的电容进行充放电. 当环路开始工作时,Ξin 可能离Ξou t 很远,PFD 改变控制电压,使Ξou t 逼 近Ξin .当输入和输出频率足够接近时,PFD 就当作鉴相器,进行相位锁定. 使用PFD 的锁相环既可检测相位差又可检测频率差.第37卷 第4期 2004年12月南开大学学报(自然科学版) A cta S cien tia rum N a tu ra lium U n iversita tis N anka iensis V o l .37 №4 D ec .2004 α收稿日期:2004204210  基金项目:天津科技发展计划科技攻关SOC 用锁相环IP 的开发资助项目(043182111)  作者简介:黄 瑞(1978-),女,天津人,博士研究生,主要从事集成电路锁相环技术研究.

频率解调(相位鉴频器)电路实验

实验九频率解调(相位鉴频器)电路实验 一、实验目的: 1. 掌握乘积型相位鉴频器电路的基本工作原理和电路结构;; 2. 熟悉相位鉴频器的和其特性曲线的测量方法; 3. 观察移相网络参数变化对鉴频特性的影响; 4. 通过将变容二极管调频器与相位鉴频器进行联机实验,了解调频和解调的全过程。 二、预习要求: 1. 复习相位鉴频的基本工作原理和电路组成; 2. 认真阅读实验内容,了解实验电路中各元件的作用 三、实验电路说明: 本实验电路如图9-1所示。 图9-1 四、实验仪器: 1. 双踪示波器 2. 万用表 3. 实验箱及频率调制、解调模块 五、实验内容及步骤: 1.用逐点描绘法测绘乘积型相位鉴频器的静态鉴频特性: 1)用高频信号源从P1端输入一幅度适中、6.5MHz的的正弦信号; 2)将开关K1拨至R5档; 3)用万用表测鉴频器的输出电压:在5—8MHz的范围内(以6.5MHz为基准),以每格0.02 MHz的间隔测量相应的输出电压,记录下来并绘制出静态鉴频特性曲线(注意:当6.5MHz 相位鉴频时,应使输出电压为零;如果不为零,可以调可变电容C5,归零后再进行实验); 4)将开关K1拨至R6档,重复第2)步的工作,并与之比较; 2.观察调频信号解调的电压波形: 1)将调频电路中心频率调为6.5MHz; 2)将鉴频电路的中心频率也调谐为6.5MHz;

3)将调频输出信号(调频电路中的TP1端)送入相位鉴频器的输入端P1,将F=2KHz 的调制信号加至调频电路的输入端进行调频; 4)用双踪示波器同时观测调制信号和解调信号,比较二者的异同。将调制信号的幅度改变,观察波形变化,分析原因。 六、实验报告要求: 1、整理各项实验所得的数据和波形,绘制出曲线; 2、分析回路参数对鉴频特性的影响; 3、分析讨论各项实验结果。

相位鉴频器

相位鉴频器 一、相位鉴频原理 鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频器。调频波的特点是振 幅保持不变,而瞬时频率随调制信号的大小线形变化,调制信号代表所要传送的信息。鉴频的目的就是从调频波中检出低频调制信号,即完成频率—电压的变换作用,能完成这种作用的电路被称为鉴频器。 相位鉴频器是利用双耦合回路的相位-频率特性将调频波变成调幅调频波,通过振幅检波器实现鉴频的一种鉴频器。常用的相位鉴频器根据其耦合方式可分为互感耦合和电容耦合两种鉴频器。 相位鉴频器鉴频方式是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此实现鉴频的核心部件是相位检波器。 二、设计方案 (一)应用软件:本次设计是在Multisim 软件下进行的,Multisim 软件是一个专门用于电子线路仿真与设计的 EDA 工具软件,具有很强大的功能,Multisim 计算机仿真与虚拟仪器技术可以很好的解决理论教学与实际动手实验相脱节的这一问题。学员可以很好、很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来。Multisim 仿真软件具有以下特点,直观的图形界面,丰富的元器件库,丰富的测试仪器,强大的仿真能力。 (二)工作原理及定性分析 1、相位鉴频器原理 图1 互感耦合相位鉴频器的基本电路 如图1所示是互感耦合相位鉴频器的基本电路,由调频-调幅调频变换电路和振幅检波器两部分组成。调频-调幅调频变换电路是由双耦合回路组成,其初级11C L 和次级22C L 都调谐于输入调频波的中心频率c f ,为了实现调频-调幅调频变换,初级和次级之间采用两种耦合方式,一种是互感M 的耦合,即由1U 通过互感M 在次级产生ab U ,另一是通过电容c C 将1U 耦合到高频扼流圈L 上,因为4C 、c C 对高频可认为短路,这样就可以认为1U 全加在L 上。另外,c 点为2L 的中心抽头,故变换电路送给检波器电压为 2/11ab D U U U +=

相关主题
文本预览
相关文档 最新文档