当前位置:文档之家› 温度模糊控制系统设计

温度模糊控制系统设计

温度模糊控制系统设计
温度模糊控制系统设计

温度模糊控制系统

摘要:在冶金、化工、工业炉窑等工业生产中, 温度控制是较普遍且较关键的控制系统, 它具有非线性、强耦合、时变、时滞等特性,采用常规的PID 控制器,一般很难实现对其快速有效地精确控制,而作为非线性控制的一个分支—模糊控制,在温度控制系统中得到了较好的应用。在此次设计中温度控制具有升温单向性、大惯性、大滞后等特点,很难用数学方法建立精确的模型,因此用传统的控制理论和方法很难达到好的控制效果。鉴于此,以模糊控制为基础的温度智能控制系统, 采用人工智能中的模糊控制技术, 用模糊控制器代替传统的PID 控制器, 以闭环控制方式实现对温度的自动控制是很合适的。

关键词智能控制模糊控制温度模糊控制器

一温度模糊控制的资料

模糊逻辑是人工智能的重要组成部分,自从1965年美国控制理论专家L.A.Zadeh提出了用“Fuzzy Sets”(模糊集合)描述Fuzzy(模糊)事物以来,Fuzzy技术获得了广泛的应用,而模糊控制取得的最早应用成果之一是1975年英国P.J.King和E.H.Mamdani将模糊控制系统应用于工业反应过程的温度控制中随后模糊控制成为自动化技术中一个非常活跃的领域。著名的自动控制权威Austrom曾经指出:模糊逻辑控制、神经网络控制与专家系统控制是三种典型的智能控制方法。

模糊控制的基本思想是用机器去模拟人对系统的控制,即在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制的一种方法。模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。模糊控制具有不需要知道被控对象(或过程)的数学模型;易于实现对具有不确定性的对象和具有强非线性的对象进行控制;对被控对象特性参数的变化具有较强的鲁棒性;对于控制系统的干扰具有较强的抑制能力等特点。

传统的自动控制中有一个共同的特点, 即控制器的综合设计都要建立在被控对象准确的数学模型的基础上, 但是在实际工业生产中, 系统影响因素很多, 十分复杂。大多数实际系统都是非线性的, 建立精确的数学模型特别困难。电炉加热器温度对象的数学模型是非线性的, 由于建立的温度对象模型不够精确, 采用此模型整定出的PID 控制器也难以达到理想的控制效果。基于这种情况, 模糊控制就显得意义重大。因为模糊控制不用建立数学模型, 根据实际系统的输入输出的结果数据, 参考现场操作人员的运行经验,就可对系统进行实时控制。因此利用模糊控制思想来设计温度非线性控制系统将更直接、更有效,是非线

性控制的一种更有力的控制手段。

二温度模糊控制系统设计

模糊控制系统主要由被控对象和模糊控制器两部分组成。被控对象可以是一种设备或装置以及它们的群体, 它们在一定的约束条件下工作以实现人们的某种目的 ,这些被控对象可以是确定的或模糊的、单变量或多变量的、有滞后或无滞后的, 也可以是线性的或非线性的、定常的或时变的, 以及具有强耦合和干扰等多种情况。对于那些难以建立精确数学模型的复杂对象, 更适宜采用模糊控制。模糊控制器是模糊控制系统的核心, 它由输入模糊产生器、模糊决策机构(模糊规则库和模糊推理机)、模糊消除器等部分组成。它采用基于模糊知识表示和规则推理等语言性“模糊控制器”,这也是模糊控制系统区别其他自动控制系统的特点所在。

利用MATLAB建立温度箱温度模糊控制器及其系统的模型。采用温度偏差,即实际测量温度与给定温度之差e及偏差变化率ed作为模糊控制器的输入变量,输出p为“PWM波(脉冲宽度调制)”控制发热电阻的功率,来调节温度箱内温度的升降,形成典型的双输入单输出二维模糊控制器。

打开MATlAB,输入fuzzy,运用MATLAB中的FIS编辑器,建立温度箱的Mamdani型模糊控制器。如图所示。温度偏差e、温度偏差变化率ed和输出变量lZ的语言变量E,Ed,P都选择为{NB,NM,NS,Z,PS,PM,PB},其中P和N分别表示正与负,B,M,s分别表示大、中、小,z表示0。

模糊控制决策及解模糊方法采用系统默认值,即极大极小合成运算与重心法解模糊。由模糊控制决策公式可求得输出变量的模糊集合为P =(E ×Ed )×R。

采用三角隶属函数,各变量的隶属函数如下图所示。编辑输入、输出变量的隶属函数:打开隶属函数编辑器窗口Membership Function Editor。选定[Edit]下的[Add MFS],选择隶属函数的类型为三角形隶属函数trimf,数目选7;然后确定输入、输出变量的模糊子集为[NB,NM,NS,Z,PS,PM,PB],选定要编辑变量的图标,确定当前变量的论域,最后对各变量的隶属函数标明其对应模糊子集的模糊语言值如图所示。其中,图A为E和Ed,隶属函数图,E和Ed的量化论域为[-6,6];图b为P隶属函数图,EC的量化论域为[-6,6]。不同的系统, 其模糊集的隶属函数是不同的, 使用时要根据实际情况和实践经验而定。

AE和Ed隶属函数

B P隶属函数图

编辑模糊控制规则在窗口中双击模糊控制规则图标或选中[View]下拉菜单[Edit rides]选项,将打开模糊规则编辑窗口,确定“If...and…Then…and…”形式的模糊控制规则,如图所示,每条规则的加权值都缺省为1,If and then选择框中选中各自的语言变量,然后单击窗口下的Edit rules,按模糊控制规则表中规则添加到规则框中。模糊控制器编辑完成后,将其保存在一个后缀名为FIS的文件中,以备仿真时调用。

建立模糊控制规则,该系统模糊控制规则的基本原则为:当温度偏差较大时,选择控制量以尽快消除误差为主;当温度偏差较小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。

模糊规则三维关系曲面图如下图所示。如图可以清晰地观测到模糊系统基于输入集的输出集的变化范围。

三温度模糊控制系统MATLAB仿真

建立被控对象的数学模型. 通常采用阶跃响应法来获得对象的特性.温度箱温度控制系统的传递函数数学模型, 近似等效为带纯滞后的一阶对象。

G(S)=Ku(e-ts)/85s+1

在进行模糊控制仿真时, 首先利用M atlab的模糊逻辑工具箱建立温度箱模糊控制器, 然后在S imulink环境下把模糊控制器加载进相应模块, 进行仿真,量化因子Kp=2,Kd =1,

Ku =21,模糊控制器的封装以及阶跃响应曲线分别如下图1, 图2所示。

1 系统仿真模型

2 阶跃响应曲线

由图可知,采用模糊控制不仅调节时间短, 系统响应加快, 而且在超调量和抗干扰能力方面均优于PID 控制器, 具有更好的动态性能和稳态精度。

四、结论总结

随着科学技术的发展,智能控制技术必会日趋完善,并且能够在更多的领域上应用。此设计是基于MATLAB的模糊控制系统,通过调试及仿真,可以初步得出温度控制的关系原理,采用模糊控制不仅调节时间短, 系统响应加快, 而且在超调量和抗干扰能力方面均优于PID 控制器, 具有更好的动态性能和稳态精度。从而为在实际应用上提供一个大致上的参考,虽然在实际应用中还应考虑实际的影响因素,例如环境对控制系统的影响、人为因素对控制系统的影响等,但是此次实验所得出的结论还是有很大的参考价值。同时我们也看到了相对比传统控制理论方法,模糊控制机制的一些突出优点,让我们看到了它在未来的发展潜力。

温度模糊控制实验

温度模糊控制实验(选学) 一、实验目的 1.认识Labview 虚拟仪器在测控电路的应用; 2.通过实验,改变P 的参数,观察对整个温度测控系统的影响; 3.进一步认识固态继电器和温度变送器,了解其工作原理; 4.了解什么是模糊控制理论。 二、预习要点 1.了解模糊控制理论的由来及应用; 2.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度还是通过固态继电器的导通关断来实现加热过程的,控制周期即是一个 加热和冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值 的时固态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度 预设值时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通 时间是1/2T)维持温度(假设导通时间是1/4T)。 本实验暂时用的是模糊控制原理中的的比例控制钟摆无限接近的控制理论, 所以温度预设值不能超过(最大温度+实验开始前温度)/2,例如实验开始前温度为25 度,最大为100 度,那么预设最大为62.5 度,当然这样可能几天温度才能被控制好,所以建议温度不超过实验开始温度5 度,同时我们在将来的升级中 会用更好的模糊理论代替现有的较差的控制理论,这里还要指出好的模糊控制理 论在一定程度上比好的PID 控制还要稳定,做的好的模糊控制是经验与理论的最 完美结合。 四、实验项目 用模糊PID 控制水箱温度。 五、实验仪器 ZCK-II 型智能化测控系统。

六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常; 2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2(图见第三章)中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 12 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,也可以单 击冷却中左边的开关按钮进入加热程序,观察温度上升曲线及电流表和电压表变 化,确认传感器正常工作后点击程序结束,等待返回主界面图标出现即可返回温 度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。本 程序界面基本和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温 度计测量加热箱内水温,并用传感器标定控制图标完成精确标定。标定完成后加 热水箱到30 摄氏左右时程序结束,等待返回主界面图标出现即可返回温度控制主界面进入下一步实验; 12.在温度系统控制主界面中,单击模糊PID 系统图标,进入模糊PID 温度控制系统程序。点击控制参数图标,进入控制参数设定界面,按照参数表4 中的小 组1 给定的预设参数填写。确定返回后点击采集参数图标按照参数表4 中的小组

温度控制系统设计毕业设计论文Word版

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

单片机温度控制系统毕业设计论文.doc

题目基于单片机的温度控制系统 英文题目Temperature control system based on single chip 学生姓名: 学号: 专业: 指导老师: 职称 系别:机械与电子工程系 2012年5月1日

摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。 关键字:单片机温度控制继电器

ABSTRACT The temperature is constantly in the daily life of physical and temperature controls in various fields have a positive meaning. A lot of businesses have a lot of power heating equipment, such as that used for the heat treatment furnace, for melting metal crucible resistance heaters and the various uses of temperature bins, SCM using their right to control not only easy to control, simple, such as the characteristics of flexibility, but can also significantly increase the temperature was charged with the technical indicators, which can greatly enhance the quality of the products. Therefore, intelligent temperature control technology is being widely adopted. The temperature was designed with the now popular AT89S51 SCM, and with DS18B20 digital temperature sensor, The temperature sensor can set up their own temperature collars. SCM will detect that the temperature of the input signal and temperature, the lower comparisons this judgment whether to activate the relay to open the equipment. The design also includes commonly used digital display and control state lights commonly used circuit, making the whole design more complete, more flexible. Key words:Single chip microcomputer Temperature control SSR

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

温度的模糊控制

目录 第一章摘要 0 1.1设计任务 0 1.2关键词 (1) 第二章温度模糊控制系统 (1) 2.1温度控制系统 (1) 2.2模糊控制 (1) 2.2.1模糊控制的用途 (1) 2.2.2 模糊控制的概述 (2) 2.2.3 模糊控制的基本原理 (3) 2.2.4模糊控制的基本组成 (4) 第三章单回路控制系统 (5) 3.1系统总体设计方案 (5) 3.1.1工艺流程图 (5) 3.1.2方框图工作流程介绍 (5) 3.2硬件设计和器件选择 (6) 3.2.1电气接线图 (6) 3.2.2器件选择 (6) 第四章控制算法选择及参数整定 (7) 4.1 控制算法选择 (7) 4.2 参数整定 (7) 4.2.1 凑试法 (8) 4.2.2 临界比例法 (8) 4.2.3经验法 (8) 4.3 MATLAB仿真 (9) 第五章系统软件设计 (11) 5.1控制器介绍 (11) 5.2控制器面板说明 (12) 5.3调节器参数设置: (12) 第六章心得体会 (13) 第七章参考文献 (13) 第一章摘要 1.1设计任务 本课程设计的任务是设计一个温度模糊控制系统;确定设计方案,选择检测变送器、控制器、执行器,确定控制器算法,并进行参数整定,以提高综合运用有关专业知识的能力

和实际动手能力。 1.设计组成单回路控制系统的各部分,画出总体框图; 2.能根据单回路温度定值控制系统的特点,确定控制方案; 3.根据所确定的设计方案进行仪表选择、控制器选择、执行器选择; 4.合理设计模糊控制器。 5.系统仿真运行 1.2关键词 关键词:温度控制,模糊控制,单回路控制系统 第二章温度模糊控制系统 2.1温度控制系统 温度控制系统广泛应用于社会生活的各个领域 ,如家电、汽车、材料、电力电子等 ,常用的控制电路根据应用场合和所要求的性能指标有所不同 , 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用 ,但由于继电器动作频繁 ,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测。 2.2模糊控制 2.2.1模糊控制的用途 自从电子计算机诞生以来,人们就希望计算机能具有智能并取代人进行智能活动。因此

温度控制系统设计论文资料(经典)

摘要 :本设计采用直接数字控制(DDC)对加热炉进行控制,使其温度稳定在在某一个值上。 并且具有键盘输入温度给定值,LED数码管显示温度值和温度达到极限时提醒操作人员注意的功能。 一.概述 温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等;控制方案有直接数字控制(DDC),推断控制,预测控制,模糊控制(Fuzzy),专家控制(Expert Control),鲁棒控制(Robust Control),推理控制等。 本设计的控制对象为一电加热炉,输入为加在电阻丝两断的电压,输出为电加热炉内的温度。输入和输出的传递函数为:G(s)=2/(s(s+1))。控温范围为100~500℃,所采用的控制方案为直接数字控制(DDC)中的最少拍控制。 二.温度控制系统的组成框图 采用典型的反馈式温度控制系统,组成部分见下图。其中数字控制器的功能由微型机算机实现。 三.温度控制系统结构图及总述 图中由4~20mA变送器,I/V,A/D转换器构成输入通道,用于采集炉内的温度信号。其中,变送器选用XTR101,它将热电偶信号(温度信号)变为4~20mA电流输出,再由高精密电流/电压变换器RCV420将4~20mA电流信号变为0~5V标准电压信号,以供A/D转换用。转换后的数字量与与炉温的给定值数字化后进行比较,即可得到实际炉温和给定炉温的偏差。炉温的设定值由键盘输入。由微型计算机构成的数字控制器按最小拍进行运算,计算出所需要的控制量。数字控制器的输出经标度变换后送给8253,由8253定时计数器转变8086 CPU 定时计数器SCR触发回路SCR主回路 电 加 热 炉 4~20mA变送器 I/V A/D 数字滤波

基于模糊温度控制的MATLAB仿真

Based On Fuzzy Controler On MATLAB Simulink Simulation (基于模糊控制的matlab simulink仿真) Abstract—For improving the temperature control precision as the industry require. In this paper we introduce how to design Fuzzy controller in detail and how to model in MATLAB and use Fuzzy Toolbox and SIMULINK in MATLAB to realize the computer simulation of parameters control system. Using the algorithm of Fuzzy control in the system,the temperature was controlled in good state.At present,the system has been used in the phase of the application and the pilot of the resistance furnace temperature in the actual industrial,and satisfying results were achieved.Practice shows that Fuzzy control method improves the leal—time performance、stability and accuracy of controlling and makes the operation simplified.The use for reference of the method was obviously in industrial application.摘要:为提高工业上所需温度的控制精度,本文介绍如何设计模糊控制器,以及如何在具体的模型在MATLAB中,使用模糊工具箱和SIMULINK在MTLAB实现参数的计算机模拟控制系统。在该系统中,通过采用模糊控制算法对温度实现了很好的控制,并且该系统正处于实际工业电阻炉温度控制的应用和试行阶段,也达到了满意的控制效果。实践表明,模糊控制方法提高了控制的实时性稳定性和精确度,并且实现了操作过程的简化,对于工程实际应用具有较强的借鉴意义。 Keywords:Fuzzy Controler; MATLAB; SIMULINK;simulation; 关键词:模糊控制; SIMULINK;MATLAB;仿真 I.I NTRODUCTION (介绍系统) MATLAB / Simulink is a universal language of scientific computing and simulation, and the establishment of MATLAB, Simulink is a system block diagram and block diagram-based system-level simulation environment, the environment provides a number of specialized modules library: such as CDMA Reference Blockset, DSP (Digital Signal Processor) module library and so on. It is a dynamic system modeling, simulation and analysis of simulation results package has the following characteristics: (1) to invoke the preparation of the agent module to the module block diagram of the system is connected into, making the modeling and engineering simulation system block diagram of unified, more comprehensive research communication systems with high openness. (2) allows the user to freely modify the module parameters, and can seamlessly use all the analysis tool MATLAB with high interactivity. (3) simulation results can be almost "real time " to be displayed in graphical or data, which is the same laboratory. Fuzzy logic control, automation development and the future strategy, in which great attention has been paid, is an Intelligent Control Department. It uses linguistic rules and fuzzy sets for fuzzy reasoning. In order to solve complex systems, including nonlinearity, uncertainty and accurate mathematical model is difficult to establish the problem, fuzzy control technology to become widely used. Temperature, often using the traditional PID control algorithm is less obvious [1]: conditions change. Also will change the system parameters, PID parameters need to be adjusted, otherwise it would be worse dynamic characteristics, control accuracy decreased: the temperature deviation is large, prone to the phenomenon of integral saturation, resulting in control for too long and so on. in the same Time, fuzzy toolbox and SIMULINK in MATLAB to achieve the parameter control system computer simulation, to promote efficiency and system design [2] for accuracy. The whole system mainly by the AT89S51 microcontroller, temperature data acquisition circuit, the zero crossing detection and trigger circuit, keyboard and display circuit, memory circuit (CF card), sound and light alarm circuit, reset circuit and the corresponding control software of several parts. Block diagram of the system II.E ASE OF U SE(控制器设计) In theory, the higher dimension fuzzy controller, the control precision is higher. But the higher dimension, Control algorithm is also more difficult to achieve. Currently, the widely used two-dimensional fuzzy controller Nonlinear control law will help ensure system stability. Reduce the response process overshoot. Fuzzy controller includes fuzzification, fuzzy reasoning fuzzy three-part settlement. A. Fuzzy linguistic variables and membership functions to determine Fuzzy controller and dual-input, single output structure, the input linguistic variables as temperature, rate of change of error e and error e, the output variable duty cycle for the SCR-time changes in the amount of ¨.

智能温度控制系统毕业论文

目录 引言 (1) 1 系统的相关介绍 (2) 1.1 系统的目的及意义 (2) 1.2 设计要求 (2) 1.3 系统传感器DS18B20的介绍 (2) 1.3.1 DS18B20的主要特性 (2) 1.3.2 DS18B20的外形和部结构 (3) 2 系统分析设计 (4) 2.1 温度控制系统结构图及总述 (4) 2.2 系统显示界面方案 (4) 2.3 系统输入方案 (5) 2.4系统的功能 (5) 3 相关软件编译知识介绍 (5) 3.1 C语言简介 (5) 3.1.1 C语言的优点 (5) 3.1.2 C语言缺点 (6) 3.2 Keil简介 (6) 3.2.1 系统概述 (6) 3.2.2 Keil C51单片机软件开发系统的整体结构 (7) 4系统流程图设计 (7) 4.1主程序流程图 (7) 4.2 DS18B20控制程序流程图 (8) 4.2.1 DS18B20 复位程序流程图 (9) 4.2.2 DS18B20写数据程序流程图 (9) 4.2.3 DS18B20读数据程序流程图 (10) 4.3 温度读取及转换程序流程图 (12) 4.4 MAX7219驱动程序流程图 (13) 4.4.1 MAX7219写入一个字节数据程序流程图 (13) 4.4.2 MAX7219写入一个字数据程序流程图 (15) 4.5 数码管温度显示程序流程图 (16) 4.6 按键中断服务程序流程图 (17) 5 电路仿真 (19) 5.1 PROTEUS软件介绍 (19) 5.2 温度控制系统PROTEUS仿真 (19) 6总结 (20) 7参考文献 (21) 附录1 源程序代码 (22)

模糊控制器的设计知识讲解

模糊控制器的设计 一、 PID 控制器的设计 我们选定的被控对象的开环传递函数为3 27 ()(1)(3)G s s s = ++,采用经典 的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。 首先,我们搭建simulink 模型,如图1。 图1simulink 仿真模型 由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。调节时间较短,同时超调量很小。响应曲线如图2所示。 图2 PID 控制响应曲线

将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。可以看出,PID 控制器的调节作用已经相当好。 二、 模糊控制器的设计 1、模糊控制器的结构为: 图3 模糊控制器的结构 2、控制参数模糊化 控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。首先对他们进行模糊化处理。 量化因子的计算max min ** max min x x k x x -= - 比例因子的计算**max min max min u u k u u -=- 其中,*max x ,* min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。*max u ,* min u 为控制输出信号实际变化范围的最大最小 值,max u ,min u 输出信号论域的最大最小值。 相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。分别表示负大、负中、负小、零、正小、正中、正大。 3、确定各模糊变量的隶属函数类型 语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。

单片机的模糊温度控制器的设计方案

基于单片机的模糊温度控制器的设计 1 引言本文研究的被控对象为某生产过程中用到的恒温箱,按工艺要求需保持箱温100℃恒定不变。我们知道温度控制对象大多具有非线性、时变性、大滞后等特性, 采用常规的PID 控制很难做到参数间的优化组合, 以至使控制响应不能得到良好的动态效果。而模糊控制通过把专家的经验或手动操作人员长期积累的经验总结成的若干条规则,采用简便、快捷、灵活的手段来完成那些用经典和现代控制理论难以完成的自动化和智能化的目标, 但它也有一些需要进一步改进和提高的地方。模糊控制器本身消除系统稳态误差的性能比较差, 难以达到较高的控制精度, 尤其是在离散有限论域设计时更为明显, 并且对于那些时变的、非线性的复杂系统采用模糊控制时, 为了获得良好的控制效果, 必须要求模糊控制器具有较完善的控制规则。这些控制规则是人们对受控过程认识的模糊信息的归纳和操作经验的总结。然而, 由于被控过程的非线性、高阶次、时变性以及随机干扰等因素的影响, 造成模糊控制规则或者粗糙或者不够完善, 都会不同程度的影响控制效果。为了弥补其不足, 本文提出用自适应模糊控制技术,达到模糊控制规则在控制过程中自动调整和完善, 从而使系统的性能不断完善, 以达到预期的效果。 2 自调整模糊控制器的结构及仿真 (1> 控制对象 一般温度可近似用一阶惯性纯滞后环节来表示, 其传递函数为: 式中: K———对象的静态增益。 Tc———对象的时间常数。 τ———对象的纯滞后时间常数。 本文针对某干燥箱的温度控制, 用Cohn-Coon 公式计算各参数得: K=0.181。 Tc=60。τ=20。 ( 2> 自调整模糊控制器的结构 自调整模糊控制器的结构如图1 所示。 图1 带自调整因子的模糊控制器 图中α为调整因子, 又称加权因子。通过调整α值,可以改变偏差E 和偏差变化EC 对控制输出量U 的加权程度, 从而调整了控制规则。但是, 若α值一旦选定, 在整个控制过程中就不再改变, 即在控制规则中对偏差、偏差变化的加权固定不变。然而, 在实际控制中, 模糊控制系统在不同的状态下, 对控制规则中偏差E 与偏差变化EC的加权程度会有不同的要求。为了适应被控对象的结构和参数的变化, 并模拟人工控制中的学习过程可以构造一个如图1 所示的带自调整因子的模糊控制器, 其实质是一个二级模糊控制系统。 具体方法是: 将调整因子α看作是一个模糊集, 其论域为( 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

中央空调温度模糊控制器的设计

目录 1、摘要 2、模糊控制器理论和基本结构 2.1模糊化 2.2知识库 2.3模糊推理机 2.4解模糊 3、中央空调系统控制方法 3.1控制目标和被控对象建模 3.2系统控制方案的设计 4、中央空调模糊控制器的设计 5、系统硬件设计 5.1单片机系统设计 5.2直流电机控制电路 6、系统软件设计 6.1PC软件设计 6.2控制规则自调整模糊控制器的设计 6.3PC机与单片机串口通信设计 6.4抗干扰设计 6.5误差分析

7、仿真实验 1摘要 在现代化的楼房大厦中,大多数采用了中央空调统一供热、制冷的方法。在每一个房间内都安装了热交换器和循环风机,通过设定风机的转速来改变换热量的大小,调节房间的温度。一般的控制器可以设定“高/中/低/关”四种模式。但这种控制方法的缺点是房间温度需要手动调节,各种环境因素的变化常常会使人们感到不适。 由于被控对象具有较大的惯性和迟延,受各种因素变化影响,因而对象的传递函数具有非线性和时变特性;对于各个空调控制器,由于房间情况和安装情况不同导致对象特性不同,采用常规PID控制难以取得较好的控制效果。而模糊控制是基于模糊规则的控制,可以引入设计者的经验,对非线性对象、大惯性大迟延对象以及数学模型不太清楚的对象都可以取得较好的控制效果,具有较好的鲁棒性。 法国ST公司生产的ST62系列单片机,具有优良的噪声免疫能力,可以直接与电力线连接,能为一般民用 电器的设计提供一种可靠性高、成本低的解决方法。基于ST62系列单片机,本文提出了具有实用价值的房间温度模糊控制器的设计方案。 2模糊控制器理论及基本结构 本节将介绍模糊控制(fuzzy control)的基本原理、结构分析、稳定性理论

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

LabVIEW的模糊控制系统设计(DOC 8页)

LabVIEW的模糊控制系统设计(DOC 8页)

基于LabVIEW的模糊控制系统设计 摘要 本文以LabVIEW为开发环境进行设计模糊控制器,将设计出的模糊控制器应用到温度控制系统中,实现了在有干扰作用的情况下对烤箱温度的控制,取得较好的控制效果。 关键词:虚拟仪器模糊控制热电偶Abstract This paper is design issue is the use of LabVIEW fuzzy control, through the design of fuzzy control procedures to control the plant (oven) temperature. Finally, it comes ture control the temperature of oven even if there has disturb. Keywords: 1引言 虚拟仪器(LabVIEW),就是在以通用计算机为核心的硬件平台上,由用户设计定义虚拟面板,测控功能由软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统的控制面板,以多种形式表达输出结果,利用计算机强大的软件功能实现数据的运算、分析、处理和保存,利用I/O接口设备完成信号采集、测量与控制。 模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。因为引入了人类的逻辑思维方式,使得模糊控制器具有一定的自适应控制能力,有很强的鲁棒性和稳定性,因而特别适用于没有精确数学模型的实际系统。 本文将模糊控制的基本思想应用到基于虚拟仪器的温度控制系统中。通过热电偶测量烤箱实际温度,与给定值比较。当测量温度与设定温度之间存在较大的偏差(e≥6℃)时,定时器产生占空比较大的脉冲序列,全力加热。当系统温度与设定温度之间偏差小于6摄氏度,采用模糊控制算法。模糊控制器根据误差和误差变化率,经过模糊推理输出脉冲序列的占空比的大小,经过固态继电器控制烤箱电源得通断,从而实现对烤箱温度的控制。 2系统组成

相关主题
相关文档 最新文档