当前位置:文档之家› 单片机在电动机保护中应用

单片机在电动机保护中应用

单片机在电动机保护中应用
单片机在电动机保护中应用

摘要

电动机是自动化生产系统中的一个重要环节,对其进行可靠有效的保护尤为关键。但是我国的电动机保护在理论研究和设备制造方面相对外国而言还是比较落后,表现在保护装置功效低,可靠性差,经常出现误动作,电动机损坏情况严重,造成的直接和间接的经济损失巨大。

本文介绍了一种基于单片机的高压大型(异步)电动机保护装置。该保护装置在电动机保护理论上,以检测过电流幅值、零序电流、负序电流等为判据;在故障诊断上,实现了基于差动保护和电流保护的电动机故障诊断;在硬件实现上,以ATmega16L单片机为核心,将采集来的电压、电流及温度等模拟量信号经过A/D转换器转换为数字量信号后送入单片机系统中进行处理,通过处理的结果来判断电动机是否有故障以及故障的类型并进行相应的保护动作,同时通过外接点阵液晶显示器和键盘等外设,对其进行实时监控。在软件部分,运用C语言编写软件程序,使之能够识别并处理从传感器传来的电信号,并执行相应的保护程序,然后通过LCD显示出来。

关键词:电动机保护单片机差动保护电流保护

Motor protection based on Singlechip

Abstract

The motor is the import portion in the auto manufacture system. Therefore, it is important to protect the motor reliably and effectively. However, China’s motor protection in theoretical research and manufacturing facilities overseas in terms of relative performance is still relatively, Back ward in the protection of low-efficiency device reliability poor, often mistaken action, motor damage in serious condition, directly or indirectly caused by the enormous economic losses .

An based on singlechip protection equipment for the high voltage large asynchronous motor is discussed in this article. The protection equipment is based on over-current value, zero-phase-sequence component, negative-phase- sequence component and other protection criterions; In Protection theory, it realizes the intelligent fault diagnosis based on the differential motion protection and the electric current protection;in hardware system, take the ATmega16L MCU as the core of processor system. Use the gather simulation signal likes voltage, electric current, temperature and so on, to transform after ADC for the digital quantity, and then signal sends in the MCU system to process, will judge the transformer through the processing result whether will include the breakdown , the breakdown type, and making the appropriate action to protect. Simultaneously, the system clot matrix liquid crystal display through an external keyboard and peripherals, such as its real-time monitor and control. In system software, utilizes the C language compilation software procedure, enables it to distinguish and to process the electrical signal which transmits from the sensor, and take the appropriate procedures to protect, then demonstrated through the LCD.

Keywords:Motor protection,singlechip,differential motion protection,electrical current protection

目录

第一章绪论 ----------------------------------------------------------------------------- 1 1.1 论文的选题背景意义 ------------------------------------------------------------- 1 1.2国内外电动机保护发展现状 ----------------------------------------------------- 2 1.3我国电动机保护的发展趋势 ----------------------------------------------------- 4 1.4本论文的主要工作 ----------------------------------------------------------------- 4 第二章电动机保护原理 -------------------------------------------------------------- 5 2.1电动机常见故障分析 -------------------------------------------------------------- 5 2.2电动机综合保护分析 -------------------------------------------------------------- 5 2.3电动机保护判据 -------------------------------------------------------------------- 6 第三章电动机保护装置的硬件设计 ---------------------------------------------- 21 3.1 硬件系统的总体设计 ------------------------------------------------------------ 21 3.2数据采集系统 ---------------------------------------------------------------------- 21 3.3 开关量输入输出设计 ------------------------------------------------------------ 29 3. 4显示模块设计 --------------------------------------------------------------------- 31 第四章电动机保护装置的软件设计 ---------------------------------------------- 32 4.1软件描述 ---------------------------------------------------------------------------- 32 4.2软件设计 ---------------------------------------------------------------------------- 35 第五章提高系统可靠性措施 ------------------------------------------------------- 40 5.1 概述---------------------------------------------------------------------------------- 40 5.2 提高抗干扰措施 ------------------------------------------------------------------ 41 第六章总结 ---------------------------------------------------------------------------- 43 参考文献--------------------------------------------------------------------------------- 44 致谢--------------------------------------------------------------------------------------- 45

第一章绪论

本章介绍论文选题的背景意义、国内外电动机保护的发展现状、我国电动机保护发展趋势,以及本课题所做的工作。

1.1 论文的选题背景意义

电动机是各种生产线上的重要设备,是其中的一个重要环节,其耗电量占总发电量的70%以上。由于电动机的耗电量巨大,所以我国在电动机节能方面做了许多工作。但是在电动机的保护装置研制方面,由于大部分的继电保护公司将主要精力用于线路、变压器、发电机等电力系统中主要设备保护装置的研制当中,电动机方面就显得相对薄弱。与先进国家相比,我国的电动机保护装置存在有一定的差距。

如果电动机发生故障,轻者影响生产的正常进行,重者烧毁电动机,使整台甚至整套设备陷入瘫痪,给企业造成巨大的经济损失,更有甚者引起供电系统故障的发生。另外,电动机在烧毁过程中消耗的电量也是很大的。据有关部门统计,每年因电动机烧毁造成的耗电量高达数十亿kWh,因材料报废所产生的间接损耗更是巨大。因此,无论是从减少经济损失还是从节约资源来讲,做好电动机的保护工作都具有重大意义,必须引起足够重视。

同时,由于现代电动机生产在提高其输出功率的同时,缩小了外形尺寸,采用高级绝缘材料和电磁材料减少损耗、提高效率,导致电动机内部的电流密度显著增加;加之生产的自动化和各种顺序控制设备的出现,要求电动机经常在频繁的启动、制动、正反转、间歇及变负荷等多种状态下切换运行,电动机出现故障的概率更加难以确定。因此,电动机保护装置的研制工作有着重要的现实意义。

1.2国内外电动机保护发展现状

1.2.1国内电动机保护发展历程

纵观电动机的保护发展经历以下4个阶段[1]:

1.以热继电器为主的保护装置;以建国初期由苏联引进的JR系列热继电器为代表,热继电器在电子工业尚不发达的时代曾是电动机过载保护的首选产品,具有结构简单,安装方便等优点。但其存在整定精度不高、受环境影响大、误差大以及功能单一等缺点。

2.模拟电子式保护装置;上世纪80年代随着半导体器件的出现而涌现出的电动机保护装置。这种装置体积小,安装方便;功能更为全面:可以保护缺相、过载、欠流、相失衡、逆相、接地、短路、过电压、过电流等故障,还具有电流电压显示和声光报警等功能。但这类产品仍存在一些无法克服的缺陷。如整定精度不高、采样精度不高无法实现具有多种保护功能于一体的全保护、装置复杂,对电磁干扰敏感,对维护人员的要求很高等。

3.温度保护继电器;其结构是在电动机绕组中预先埋设测温元件(一般为PTC热敏电阻)配合控制设备,对电动机进行有效的温度保护。PTC热敏电阻也称正温度系数热敏电阻,它的电阻值随着温度的升高而增大,属于非线性变化,当温度达到某一数值时,电阻急剧增大,而发生突变。温度保护就是利用了热敏电阻的这一特性,当电动机出现各种故障时,都将导致绕组温度升高,达到规定值时,热敏电阻的阻值发生突变,呈很高的阻性,其保护装置获得此信号进行处理后,通过控制设备使电动机停止工作,实现保护。这种直接监视温度来实现对电动机的保护,是一种相对可靠、准确的方式。然而对于非温度因素引起的一些故障该种保护却显得无能为力。

4.微机型的电动机保护装置[2]:采用微机处理器(如单片机,DSP)组成的保护装置。目前的微机保护由32位单片机、数字信号处理器DSP、可编程逻辑芯片、高速高精度的14至16位的A/D转换器构成。由于微机处理器的智能和功能强大,可实现其他三种传统保护控制装置不能实现的保护控制功能。如能迅速处理采集的电机各种故障信号,并将结果同各种设定参数进行比较,在进行保护动作,并可随时设定和显示各种参数,还能通过485通讯口实现主机对多台从机的远程控制保护。基于以上的优点,该保护装置越来越

受到业内人士的青睐,更多的科技人员也正致力于研制出保护效果更好的微机保护装置。本课题也正是基于此所做的研究。

1.2.2国外电动机保护装置现状

在国外,早在1975年初,英国GEC公司将微机处理器应用于变电所的控制和自动合闸的情况就已有报道。1979年,美国电气和电子工程师学会(IEEE)的教育委员会组织了第一次世界性的计算机保护研究班。之后,世界各大继电器制造商都先后推出了各种商业性微机保护装置,微机保护逐步趋于实用。在电动机系统微机保护技术方面,德国、美国、日本、英国发展最快。从70年代后期开始,各国都在这个方面做了很多努力,使电动机微机保护技术逐渐成熟起来。例如,德国西门子公司生产的3UB1智能过载继电器,这种继电器能提供过载、断相和三相电流不平衡保护,还具有自我监测等特性。日本富士公司生产的QA型继电器由CT、A/D转换器和微处理器组成,提供过载、断相和反向保护。韩国三和科技会社推出的3DD、3DI、3DM、FD数显是式智能型保护器可实现断相、过载、欠载、三相不平衡、堵转、漏电、接地和短路等保护功能,并能实现于计算机的联网,可同时监测96台电动机,其他产品还有交流、直流电动机保护器(EOCT、S3、SE、ST、AR、SI、DSL、DDT、TIT、3ST、3E、4F。GE、EGR、DG、DZ、DGRSDDR、EECLH、DZG4、DZNG4、ECHL)、数显式智能型保护器(3DD、3DI、3DM、FD)、电压型保护器(VR、EOVR、EUVR)等型号系列,60余种规格[3]。美国RockAB 公司生产Bulletin825型智能电动机控制器是一种可编程的电子过载保护器,其可通过PROFIBUS现场总线与PC机通信。美国的其它产品还有电子型保护继电器(SMP、CFFI)、热敏电阻保护继电器(RT3)、电子型保护系统(CFT4)、智能控制器(SMC)等各种型号序列数十种规格[21]。

归纳来说,国外保护装置的特点一般有:保护器自身温度补偿、检测负荷率、提示报替、记忆故障原因和数据、通信、与计算机联网,能同时监测多台电动机等。与世界先进国家相比我国的电动机保护控制技术水平,还有一定差距,其技术含量较低。品种和功能少、参数精度低、生产工艺落后等严重制约了我国在电机保护这方面的竞争力,因此研发出新型的智能保护装置是当务之急。

1.3我国电动机保护的发展趋势

我国电动机保护的发展趋势大致有以下几点[3]:

1. 研制在线监控系统;

2. 追寻理论上的突破,逐步由定性描述到定量分析;

3. 应具有较宽的连续可调整范围、方便、准确;

4. 应有完善的保护特性和互换性;

5. 发展小型、质优价廉的保护装置;

6. 应具有高度的可靠性和稳定性;

7. 应具有很强的抗干扰能力、环境适应能力;电压使用能力和长时间连续工作能力。

1.4本论文的主要工作

本论文研究的是基于单片机的电动机(异步电机)保护装置,主要应用于大、中型企业的电动机保护。

在本次课题设计中,首先分析了电动机的各种故障类型及故障产生的原因,对电动机的各种保护原理做了大量分析,选择适合于大、中型电动机的保护方案;然后在第三章以ATmega16L单片机为硬件核心,设计出一套综合保护装置,通过处理采集来的电压、电流、温度等信号来判断电动机是否含有故障以及故障的类型,并发出相应动作保护电动机。接着,在第四章根据保护原理和该装置的硬件平台使用C语言开发了一套针对各种保护功能的软件模块,使之能够识别并处理从传感器传来的电信号,然后通过人机交互界面显示出来,近而使人能够很轻易判断故障类型。

本文仅在电动机保护上做了部分保护装置,有待更高的完善。

第二章电动机保护原理

本章首先列出了电动机常见的故障及针对这些状况的各种保护方式,然后详细介绍了电动机微机保护装置所用到的保护原理和实现保护的逻辑关系图。

2.1电动机常见故障分析

要设计一个保护装置,首先要分析保护对象会遇到的各类故障,分析其故障特征,才能提出切实可行的保护方案。对于异步电动机来说,其故障形式主要分为绕组损坏和轴承损坏两方面。

由于电动机的微机保护主要通过测量电量(电流、电压以及开关状态等)来监测电动机的运行状况,因此本论文探讨的主要是绕组故障。

电动机常见的绕组故障可分为对称故障和不对称故障两大类:

1.对称故障

主要包括过载、堵转、启动时间过长和三相短路等。这类故障主要特征是三相电流电压基本对称,但电流值远远大于额定电流,对电动机的损害主要是热效应,使绕组发热甚至损坏,还会产生不良的机械应力可导致异步电动机不同程度的受损;

2.不对称故障

不对称故障又分为接地故障和非接地故障。非接地故障有:断相、逆相、相间短路、匝间短路等;接地故障有:单相接地和两相接地。这类故障主要特征是除了严重的短路会造成故障相电流明显增大外,大多数的不对称故障一般不会出现明显的过电流,电动机定子出现负序电流和零序电流,对电动机的损害不仅仅是引起发热,更重要的是不对称引起的负序效应能造成电动机端部发热、转子振动及起动力矩降低等一系列问题,如果有过电流出现,还会使绕组发热,甚至严重损坏。

2.2电动机综合保护分析

针对上述故障类型,电动机应装设以下继电保护装置:

1.纵差保护和电流速断保护

电动机的短路故障是比较严重的一种故障,其主要发生在定子绕组,当定子绕组出现短路时,不但使电动机严重损坏,酿成事故,而且可能导致电网电压显著下降,影响其它用电设备的正常运行。因此,对额定容量在2000kW以上,或小于2000kW但电流速断保护灵敏度不够的电动机应装设纵联差动保护。对于2000kW以下的电动机,可装设电流速断保护。

2.热过载保护

由于电动机长时间处于过负荷状态会引起电动机绕组过热,最后导致绕组间绝缘的损坏,所以电动机长时间过负荷运行是不允许的。因此,需装设热过载保护。

3.低电压保护

当供电系出现短路故障,导致电压降低或电压消失时,电动机转矩急剧下降。当电压恢复电动机自起动时,将有数倍于额定值的大电流流过,使电网电压降低,同时电动机端电压也降低,造成电动机起动困难。另外,如果供电电压恢复的较慢,则电动机长期处于起动状态,长时间的大电流会导致绝缘过热甚至损坏。因此,应设置低电压保护。

4.堵转保护

电动机在运行中如果因机械故障、负荷过大、电压过低等原因而使转子处于堵转状态,此时电动机散热条件极差,电流很大,特别容易烧坏,需设置堵转保护。

5.断相保护

有调查表明,由缺相运行造成电动机绕组烧毁,占电动机绕组修理总数的60%~70%,缺相故障是一种严重的不对称故障,因此,应设置断相保护。

6.接地故障保护

在电动机绝缘被破坏时,将导致绕组对外壳短路,引起绕组对地短路故障。在发生绕组接地故障时,不仅故障电流通过定子铁芯引起铁芯过热,性能变坏,而且使电机外壳带电,严重威胁着操作人员的生命安全,所以要有单相接地保护措施。

另外,还应设置过热保护、启动时间过长和频繁起动保护。

2.3电动机保护判据

对于大型异步电动机保护装置而言,在电动机启动和运行过程出现故障

时,能迅速、准确的动作是非常重要的。目前国内外使用的各种异步电动机保护装置对大型异步电动机启动或自启动过程中的继电保护,采用的是给保护整定长延时或在启动过程中闭锁保护跳闸出口的方式,此时若电动机内部存在故障隐患,或电动机启动或自启动过程中发生故障,会导致电动机损坏甚至烧毁。所以本装置采用检测过电流、正序电流、零序电流和负序电流分量为基础,作为电动机故障的判据。

对于2000kW 及以上的大容量电动机,或容量稍小些的重要电动机采用双重保护措施。主保护以带比率特性的差动保护为主;后备保护以电流速断保护、正序定时限保护、两段式负序和零序电流保护为主,另外还配有电压保护、CT 断线告警等。

本文对电动机的主保护为电动机差动保护测控单元,后备保护为电动机保护测控单元,两个保护单元相互独立。

2.3.1纵联差动保护

1.纵联差动保护的原理

纵联差动保护的动作原理是基于比较被保护单元始端和末端电流的大小和相位的原理构成的。它分为比率制动式纵差保护、不完全纵差保护、标积制动式纵差保护等。对于电动机来说,在其一相绕组输入端和输出端分别安装特性和变比完全相同的电流互感器,如图2-1所示。且规定一次侧电流(以A 相位例)1I 和1I '的正方向为由线路流向电动机,则二次测得电流为:

图2-1电动机差动保护原理

12I I n =

,12

I I n

'

'= ,22d I I I '=- (2.1) 式中:2I 、2

I '——电流互感器二次测电流;n ——电流互感器变比; d I ——差动电流。

当电动机正常运行或外部故障时,流入电动机一相绕组上的两个电流互感器二次侧电流、相位均相同,此时差动保护不动作。在不考虑电流互感器励磁电流影响时有:

120d I I I =-= (2.2)

当保护范围内部故障时,假设图2-1中A 相绕组在d 点发生短路故障,则在 d 点两侧均有电流流向短路点,此时,两电流互感器二次侧的电流幅值、相位均不相同,此时差动保护动作。于是有:

120d I I I =-≠ (2.3)

本设计采用的是比率制动式纵差保护,它对电动机内部短路有较高灵敏度,而对外部短路则能可靠不误动。理想情况下差动保护动作判据为:0d I ≠。

比率制动式纵差保护制动特性如图2-2所示:

I

图2-2 比率制动式纵差保护的制动特性

图中,DZ I 为差动电流,SD I 为差动速断电流,一般取6~8倍的流入保护装置的第二侧二次电流,.min DZ I 为差动启动电流,一般为0.3~0.4倍的流入保护装置的第二侧二次电流,.min ZD I 为最小制动电流,一般取额定电流,ZD I 为制动电流。

保护判据如下:

差动速断: D Z S D I I > (2.4)

比率差动:.min .min

.min .min .min ()ZD ZD DZ DZ ZD ZD DZ ZD ZD ZD DZ I I I I I I I K I I I <>??≥>-+?当时,当时, (2.5)

式中ZD K 为制动系数。 2.CT 断线闭锁功能

为防止CT 断线时保护装置误动,本装置采用了CT 断线闭锁差动保护的方案。CT 断线只闭锁比率制动差动保护,不闭锁差动速断保护。

CT 断线判据:当至少检测到一相电流为零并且零序电流大于ct I 时,发出断线告警并闭锁差动保护。只有在装置检测到高低压侧最大相电流在0.8.min DZ I 至6.min DZ I 之间才进行CT 断线判定,否则不进行CT 断线断定。

3.纵联差动保护的逻辑框图

图2-3 比率制动式纵差保护逻辑框图

图2-4为差动速断保护的逻辑框图。当任一相差动电流大于差动速断整定值时瞬时动作于出口继电器。

图2-4 差动速断保护逻辑框图

2.3.2以序分量为基础的电流保护

根据对称分量法,发生不对称故障时,电动机电流可分解为正序、负序和零序分量。当电动机三相对称时,负序和零序电流为零,而发生不对称故障时则会显著增加。因此可以在检测电动机过流程度的同时,以序分量为基础,检测负序、零序电流的大小。这样,不仅能更好地反应电动机的运行状况,还可以大大提高保护的灵敏度和可靠性。异步电动机常见故障的过流、负序和零序电流的分布情况如表2-1所示,表中单相故障设A相为故障相,二相故障设B、C相为故障相,

I表示故障前相电流幅值。

P

从表2-1可知,若以过流信息反映短路和堵转故障,以负序和零序电流反映各类不对称短路和接地短路等不对称故障,可以实施全面的电流保护。

1.短路保护

设置电流速断保护作为电动机的主保护,用于电动机内部定子绕组以及

进线所发生的相间短路故障。

由于短路故障将导致很大的故障电流,所以只要检测到A 、B 、C 三相电流中任一相或一相以上的电流值大于速断的整定值,保护立即动作。根据对继电保护速动性的要求,保护装置动作切除故障的时间,必须满足系统稳定和保证重要用户供电可靠性。在简单、可靠和保证选择的前提下,原则上总是越快越好。设置速断保护电流定值时,要保证电动机在满载启动过程中短路保护可靠地不动作,即躲过电动机最大启动电流。

电动机启动时,保护判据为:.max sqzd relq st I I K I >=? (2.6) 电动机运行时,保护判据为:sdzd rel xjd I I K I >=? (2.7) 其中I 为电动机各相相电流;relq K 为电动机启动时可靠系数,

一般取1.2;.max st I 为电动机最大启动电流,一般取9倍的额定电流N I ;xjd I 为电动机运行时相间短路电流;rel K 为电动机运行时可靠系数,一般取0.8。

其保护逻辑框图见图2-5。

速断保护投入

A 相电流大于整定值

B 相电流大于整定值

C 相电流大于整定值

&

速断保护动作

图2-5 电流速断保护逻辑框图

2.堵转保护

设置正序定时限保护作为电动机堵转故障的主保护,过负荷运行的后背保护。

当保护装置在电机运行过程中检测到电流超过堵转电流整定值,并达到整定时限时堵转保护动作,出口跳闸。堵转保护在电动机启动过程中闭锁,启动结束后自动投入。保护判据为:

电动机启动时:11.max

1qzd relq st zd I I K I T t >=????>??

(2.8)

电动机运行时 111zd rel zx

zd I I K I T t >=???>?

(2.9)

1I 为电动机的正序电流;.max st I 为电动机最大启动电流;relq K 为电动机启动时可靠系数,依据不同保护类型取不同值;1zd t 为时间常数,依据不同保护取不同值;zx I 为电动机运行时正序电流整定值;rel K 为电动机运行时可靠系数。

其逻辑框图如图2-6所示。

正序电流保护投入

C 相正序电流大于整定值

B 相正序电流大于整定值A 相正序电流大于整定值≥

&

堵转保护动作

1zd

t

图2-6正序电流保护逻辑图

3.热过载保护

设置热过载保护来防止电动机长时间过负荷运行,导致定子过热而引起的损坏。

过负荷保护实际上是通过电流幅值模拟电机的发热,电动机的热惯性 使它具有一种短暂的过载能力,此时短时间的过载仍属正常运行,只有到热量积累温升达到损坏电动机的寿命程度时,才给予保护。

引起电动机过负荷原因: (1)外界原因引起的堵转; (2)电动机本身机械故障;

(3)由于供电系统电压畸变和电压不平衡,造成三相电流不完全对称,在电流中含有一定的负序分量。因而产生电动机的制动力矩,造成电动机过热;

(4)周围环境工况恶劣,通风不畅,环境温度过高; (5)频繁地起动制动等。

反时限保护是有效地防止电动机过负荷的一种方法。这种方法是以电动机发热不至于使电机烧坏为准,即电动机的绕组在电流越大时,发热量也越大,此时电动机内的温度上升越快,达到使绕组被烧坏的温度时间越短,此

时需快速地切开电动机,反之,电动机的电流小,达到电动机绕组被烧坏的温度的时间就越长,此时电动机还可继续工作一段时间。电动机反时限保护特性曲线如图2-7所示。

4

10/e

I I

图2-7电动机反时限动作特性曲线

电动机发热理论研究表明,电动机持续运行的容许负荷,主要取决于定子绕组的温升,即定子电流的大小为电动机过负荷的主要依据。因此,依据均质固体发热理论,电动机定子绕组的温升特性可以采取如下形式的热平衡微分方程描述:

22()e Qdt I I rdt CGd s dt θαθ-=+ (2.10)

式中 Q ——定子物体每秒钟内所产生的热量,单位为W ; R ——定子绕组电阻(Ω);

α——散热系数 (2/w m c )每平方米表面、每度温差,每秒时间所

散发的热最焦耳数; S ——冷却表而积(2m ); θ——定子绕组温升(C ?)

I ——过负荷时定子绕组流过电流 (电动机运行中三相电流最大者)

(A);

e I ——可整定的保护动作电流(A);

C ——定子物体材料比热 (/J kg C ??); G ——定子物体重量 (kg)。

而方程左边Qdt 为在时间间隔dt 中,定子绕组由于过负荷而发出的热量,方程右边CGd θ为这一热量一部分使定子温度升高d θ度。

而s dt αθ为另一部分热最散失于冷却介质中。 式2.10为一阶段性微分方程,其通解为:

s t CG

Q Ae s

αθα=+ (2.11)

由初始条件/(0)0t θ==,代入(2-11)解出常数A 为:

22()e I I r Q

A s s

αα-=-=-

再代入(2-11)得解为:

22()(1)s

t e CG I I r

e s

αθα--=- (2.12)

由此得到电动机过负荷运行时的温升特性表达式。 其温升变化过程如图2-8所示。

t1t2

t θ0

θmax

I

图2-8过负荷运行时温升特性曲线

将温升特性式 (2-12)中指数项进行泰勒级数展开,取其前两项,得:

1s t CG

s

e

t CG

αα-

=-

带入(2-12)得

2222()[(/)1]e e e I I r I r t I I t CG CG

θ-==-

∵ 2

c e P I r ?=——铜损为常数。

C ,G 也为常数,设允许温升为max θ。 则得出反时限过负荷动作特性为:

max 22

1[(/)1](/)1

CG

e

e e T

t P I I I I θ≥

?

=?-- max e

CG

T P θ=

?

T 根据电机材料、定子重量、额定铜损,根据经验得到的允许温升计算确定。

上述过负荷保护是通过测量电动机定子绕组电流,根据电机发热模型而计算出在给定的过负荷电流、给定的允许温度下,电动机所允许运行的时间,不能直接反应电机绕组温度,对冷却系统损坏、机械转子损耗增加、环境温度过高等造成的过热不能检测。所以对埋有温度传感器的电动机,有必要对温度传感器传来的信号进行测量,以实现电机过热保护,结合前面所述的热过载保护,则更能有效地保护电动机。由于感温元件埋在电机内部,可消除各种环境温度对传感器的影响。在本文中,采用的是集成温度传感器AD590。4.断相保护

针对电动机的各类非接地性不对称故障,设置负序过电流保护。负序电流保护是作为电动机断相、定子绕组或引出线不对称相间短路、定子绕组匝间短路及三相电流不平衡的主保护。在电源电压不对称、逆相、断相等故障时均会引起负序电流2I ,对这类故障,虽然过热保护己能提供保护,但在严重的不对称故障时引起的2I 很大,很有必要设置单独的快速保护。所以本文采用两段式定时限负序过电流保护。Ⅰ段针对严重不平衡故障,具有较高的

整定值,动作延时短(2zd t ');Ⅱ段针对三相电源严重不对称,具有较低的整定值,动作延时长(2zd t '')。

电动机启动时:

I 段负序电流保护判据: 22

2qzd zd I I T t '>???'>?? (2.13)

Ⅱ段负序电流保护判据 : 22

2

qzd zd I I T t ''>???''>?? (2.14)

2I 为电动机负序电流值;2

qzd I '和2qzd I ''分别为电动机启动时I 段和II 段负序电流整定值;2

zd t '为I 段负序电流保护时间整定值,为短延时;2zd t ''为II 段负序电流保护时间整定值,为长延时。

电动机运行时:

Ⅰ段负序电流保护判据: 22

2zd zd I I T t '>??'>? (2.15)

Ⅱ段负序电流保护判据: 22

2zd zd

I I T t ''>??''>? (2.16)

2I 为电动机负序电流值;2

zd I '为电动机运行时Ⅰ段负序电流整定值,大小为0.2~1倍的额定电流;2

zd I ''为II 段负序电流整定值,大小为0.2~0.6倍的额定电流;2

zd t '为Ⅰ段负序电流保护时间整定值,为短延时;2zd t ''为II 段负序电流保护时间整定值,为长延时。

在整定负序电流定值时,需要注意1%的电压不平衡会引起6%的电流不平衡,而实际供电电源总存在一定的不对称,即使在正常运行时,电动机也会有一定的负序电流,所以整定时必须躲过这一不平衡因素。

图2-9负序电流保护逻辑图

5.接地故障保护

接地保护针对各类接地故障。为提高接地保护的灵敏度,采用零序电流保护和零序电压保护。 ①零序电流保护

零序电流保护是作为电动机定子绕组及引出线接地故障的主保护,其电流取自机端专用的零序电流互感器。

本文采用两段式零序电流保护,I 段零序电流保护用于跳闸,Ⅱ段零序电流保护用于告警。

电动机启动时;

?段零序电流保护判据: 00

0qzd zd I I T t '>???>?? (2.17)

П段零序电流保护判据: 00

0qzd zd I I T t ''>???''>??

(2.18)

0I 为电动机零序电流值;0

qzd I '和0qzd I ''分别为电动机启动时I 段和П段零序电流整值;0

zd t '为I 段零序电流保护时间整定值,为短延时;0zd t ''为П段零序电流保护时整定值,为长延时。

电动机运行时:

?段零序电流保护判: 00

0zd zd

I I T t '>??'>? (2.19)

电机断相保护器的应用

电机断相保护器的应用 摘要:供水泵电源高压侧采用跌落保险控制,经常出现断相现象,低压侧采用交流接触器控制,触点老化使电机缺相运行烧毁电机。故采用电机断相保护器控制减收电机故障率。介绍电机断相保护器的原理、参数、接线方式及故障处理等。 关键字:电机断相保护器、JD-5、功率 供水水泵电机经常烧毁,造成供水停顿,跟换水泵频繁。分析原因:供水水泵是由三相电机作为动力,三相电机电源由变压器高压侧由高压低落保险引入,当高压低落保险一相熔断后,水泵三相电机电源变成缺相运行,易引起水泵电机烧损。为保证水泵电机的安全及可靠运行,决定在电机回路中增设电机断相保护器。选用的电机断相保护器型号为JD-5。 电机断相保护器原理及参数 JD-5电机断相保护器,适用于交流50HZ,电压380V以下的供电电路中与交流接触器等开关电路组成电动机控制电路。当电动机的主电路出现断相、过载、堵转等非正常工作状态时,能及时断开开关电器触头,分断电动机三相电源。 JD-5电机断相保护器根据电动机功率特点划分,采取划段小、保护精度高、结构合理、功能完善、使用方便等特点设计而成。具有对称性故障(如过载、堵转)及非对称性(如断相)的保护功能。采用电流检测技术,采用继电器输出接口,保护采用穿心式。具有结构简单、动作可靠、使用方便、价格低廉的特点。 JD-5电机断相保护器的技术参数 水泵电机功率(P)为13KW,功率因数(COSΦ)为0.8,计算电流I I=P÷(UCOSΦ)=13÷(1.732×0.4×0.8)=24A 故选额定电流范围在20-80A,工作电压AC220V 安装及接线图 工作电压为AC220V的接线图(见下图)

基于AT89C51单片机的步进电动机控制系统设计

重庆科技大学 本科毕业论文 基于AT89C51单片机的步进电动机控制系统 设计 考生姓名: XXXXX X 准考证号: XXXXXXXXXXXX 专业层次:本科院(系):XXXXXXXXXXXXXXXXXXX 指导教师: XXXXXX 职称:讲师 重庆科技大学 二O一二年月日

基于AT89C51单片机的步进电动机控制系统 设计 考生姓名: XXXXXX 准考证号: XXXXXXXXXXXX 专业层次:本科 指导教师: XXXXXXX 院(系):机械与动力工程学院 重庆科技大学 二O一二年九月二十日

摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过I/O口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机。 实践证明,基于单片机控制的步进电机比传统的步进控制器具有更好的性能,更加简单、方便、可靠。本设计的主要研究对象就是开环伺服系统中最常用的执行器件——步进电机。 关键词:步进电机,单片机,正反转控制,键盘控制,LCD液晶显示

电动机保护器抗晃电应用

电动机保护器抗晃电应用 晃电是什么意思? "晃电"指的是电网因雷击、对地短路、重合闸、设备起动、发电厂故障及其他原因造成电网电压短时失压、电网电压短时大幅度波动、短时断电数秒等的电能质量事件。化工企业对系统供电可靠性的要求较高,一旦出现供电系统晃电,会引起保护设备欠压误保护、生产设备意外停机,致使生产线瘫痪、事故扩大,导致非常大的经济损失,甚至对操作人员的安全构成威胁。 1、常用的抗晃电的措施及应用 (1)UPS抗晃电系统 控制系统如DCS,PLC等工作电源由UPS电源接入,实现抗晃电的目的。在线式UPS工作原理框图如图1所示,在电网电压工作正常时,给负载供电,同时给储能电池充电。当市电欠压或突然掉电时,UPS电源开始工作,由储能电池给负载供电。图1 系统发生晃电时,接触器的线圈依靠UPS供电正常工作,保持主触头的吸合,避免晃电造成电机停机。当母线失电超过一定的时间后,根据二次控制部分设定的时间断开输出,避免电压回复后事故的发生,控制接线图如图2所示。图2 (2)DC-BANK抗晃电系统

应对变频器抗晃电有如下方法: 方法1:取消变频器低压保护设置,设置快速重起动,缺点是关键电机的停止、重起会影响生产的连续性和造成次品增加,另外低压往往会表现为变频器的过流保护,而取消过流保护会增加变频器本身损坏隐患,这种方式在连续性生产要求较高的石化企业很少使用。 方法2:DC-BANK系统,DC-BANK系统主要应用于变频电机和PLC/DCS 供电系统。电网正常时变频器由交流母线供电,DC-BANK系统处于热备状态。电网晃电或备自投切换时,电网电压下降,转换成由DC-BANK 向变频器的直流母线供电,变频器保持正常工作,其工作模式如图3,单台控制逻辑图如图4所示。 图3图4 p](3)电动机的抗晃电措施 交流接触器广泛使用于低压电动机控制系统中,常用电机控制电路如图5所示,晃电发生后接触器断开,会使电动机停转。图5. 电动机抗晃电主要为接触器抗晃电,交流接触器的抗晃电方法: 方法1:采用抗晃电接触器,具有延时释放/避开弹跳区的接触器被称为抗晃电接触器,晃电出现时接触器不立即释放,也不工作在临界弹跳区,其控制线路安装接线如图6所示。图6方法2:原有的交流接触器上增加延时模块,其具体的控制电路如图7所示。图7方法3:加装再起动控制器,,加装再起动模块的自起动控制器的起动控制线路如图8

单片机基于80C51单片机的步进电机控制系统

中国地质大学长城学院 本科课程设计题目:基于80C51单片机的步进电机控制系统 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称讲师 2014 年6 月11 日

摘要 本文研究基于51系列单片机的步进电机控制系统设计,该系统包括以下几个部分:数据采集、数据处理、终端接收,该系统以汇编语言为单片机的驱动程序语言,单片机控制步进电机,主要任务是把二进制数变成脉冲序列,按相序输入脉冲以实现电机转动方向控制,利用单片机实现对步进电机的远距离实时监控,从而达到高效、节能的控制步进电机工作的目的,该系统具有成本低、控制方便的特点。使用单片机驱动四相步进电机,控制步进电机以四相八拍的方式运行,来实现步进电机正向/反向旋转,P1.0~P1.3分别控制步进电机;P1.5~P1.7分别控制步进电机的停止、正转、反转。 关键词:51单片机;步进电机;数据采集;汇编语言;

目录 摘要 0 1 设计目的 (1) 2设计内容与要求 (1) 3 总体设计方案 (1) 3.1整体方案 (1) 3.2具体方案实现 (1) 4系统硬件设计 (2) 4.1复位电路 (2) 4.2晶振电路 (2) 4.3按键电路 (3) 4.4指示灯电路 (3) 4.5驱动电路 (4) 4.6步进电机 (4) 5程序软件设计 (5) 5.1程序流程图 (5) 5.2源程序 (6) 6系统调试与仿真 (7) 7总结 (8)

1设计目的 1.掌握单片机控制步进电机的硬件接口电路。 2.掌握步进电机驱动程序的设计和调试方法。 3.熟悉步进电动机的工作特性。 2设计内容与要求 1.查阅资料,了解步进电机的工作原理。 2.通过单片机给定参数控制电机转动。 3.通过按钮控制正转、反转和停止。 3总体设计方案 3.1整体方案 本系统主要是由AT89C51,步进电机控制器ULN2004,步进电机,通过单片机编程,实现步进电机控制的脉冲分配,使电机实现正转,反转以及停止等功能 3.2具体实现方案 根据系统要求画出单片机控制步进电机的控制框图,见下图。系统包括单片机、按键、驱动电路和步进电机。 键盘80c51单片机 步进电机 驱动电路

单片机控制直流电机分解

1.设计思路 1.1方案对比 1.1.1电机调速控制模块: 方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。 方案三:采用由达林顿管组成的H型PWM电路。用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。 兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。

1.2.1 PWM调速工作方式: 方案一:双极性工作制。双极性工作制是在一个脉冲周期内,单片机两控制口各输出一个控制信号,两信号高低电平相反,两信号的高电平时差决定电动机的转向和转速。 方案二:单极性工作制。单极性工作制是单片机控制口一端置低电平,另一端输出PWM信号,两口的输出切换和对PWM的占空比调节决定电动机的转向和转速。 由于单极性工作制电压波开中的交流成分比双极性工作制的小,其电流的最大波动也比双极性工作制的小,所以我们采用了单极性工作制。 1.2.2 PWM调脉宽方式: 调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在采用单片机产生PWM 脉冲的软件实现上比较方便。 1.2.3 PWM软件实现方式: 方案一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。 方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。但是基于不占用定时器资源,且对于直流电机,采用软件延时所产生的定时误差在允许范围,故采用方案二。

浅谈电动机保护器的应用

浅谈电动机保护器 动力公司乐臻欣 摘要:通过对电动机保护器产品的基本原理及应用的介绍,使得对该类型保护器有初步的了解。 关键字:电动机、保护器、智能化 1、引言 在现代工业中,电动机作为一种拖动机械成为了所有动力机械的基础,随着科学技术的不断进步和工艺控制的不断完善,尤其是自动化程度的不断提高,对电动机的控制和保护的要求也越来越高,同时现在的生产中对电机设备的可靠性和稳定性要求极高,一旦发生事故,必须马上找出故障原因及时进行处理消除故障以保证恢复生产。我们过去一直采用热继电器作为电动机的过载保护和控制元件,由于元件质量和工艺的原因,已经无法满足日益发展的工艺自动化需要,为此我们应该采用电动机保护器来作为电动机的保护元件,不但可以有效的保障电机的运行,彻底取代热继电器,同时提高了保护率,能有显著的经济效果,下面我们就电动机保护器的运用做简单的介绍。 2、基本工作原理: 电机保护器是最近十来年才发展起来的新型电子式多功能电动机综合保护装置,它集过(轻)载保护、缺相、过(欠)压、堵转、漏电、接地及三相不平衡等低压保护于一身,具有设定精度高、节电、动作灵敏、工作可靠等优点,是传统热继电器的理想替代品,他通常是由电流传感器、比较电路、单片机活出口继电器等几个部分组成。基本原理及工作过程如图:

传感器将电动机的电流变化线性的反映至保护器的采样端口,经过整流、滤波等环节,转换成与电动机电流成正比的直流电压信号,送到相应部分与给定的保护参数进行比较处理,再经单片机回路处理推动功率回路使得继电器动作。当电机由于驱动部分过载导致电流增大时,从电流传感器取得的电压信号将增大,此电压值大于保护器的整定值时,过载回路工作,RC延时电路经过一定的(可调)延时驱动出口继电器动作,使得接触器切断主回路,欠压及缺相保护等工作原理基本相同。 3、系统功能 (1)保护功能 电动机保护器可以实现电机的综合保护,具有功能有接地保护、断相保护、短路保护、过(轻)负荷保护、不平衡保护、堵转保护、过(欠)压保护等。有些保护器在正常运行时还能通过显示屏实时显示电机的工作电流电压,具有通讯功能的电机保护器还能将信号通过数据线传至后台微机。当故障发生时,保护器迅速动作,能将故障类

完整的单片机控制步进电机程序

#include "reg52.h" #include "INTRINS.H" #include #include #define uint unsigned int #define uchar unsigned char void check_addr(void); /*地址核对*/ uchar code slave_addr[4]={00, 01, 02, 255}; /*从机地址*/ uchar idata T0low, T0high,common_count,input_order,cmd_in_permit,interval; uchar sent_ok,speed_change,start_up,start_end,address_true,i; uint y1; uint code add[100]={60006,62771,63693,64154,64430,64614,64746,64845,64922,64983,65033,65075,651 11,65141,65167,65190,65211,65229,65245,65260,65273,65285,65296,65306,65315,65323,65331 ,65339,65345,65352,65358,65363,65368,65373,65378,65382,65387,65390,65394,65398,65401,6 5404,65407,65410,65413,65416,65418,65421,65423,65425,65428,65430,65432,65434,65435,654 37,65439,65441,65442,65444,65445,65447,65448,65450,65451,65452,65453,65455,65456,65457 ,65458,65459,65460,65461,65462,65463,65464,65465,65466,65467,65468,65469,65469,65470,6 5471,65472,65472,65473,65474,65475,65475,65476,65477,65477,65478,65478,65479,65480,654 80,65481}; sbit P2_0=P2^0; /*作输入步进电机的脉冲信号发送口*/ sbit P2_2=P2^2; /*作输入步进电机的旋转方向信号发送口*/ sbit P1_0=P1^0; /*作串口输出信号的使能口, P1_0=0时接通串口,输出信号*/ sbit WD=P1^7; /*看门狗*/ main() { P2_0=0; P2_2=0; /*步进电机的旋转方向待试验后确定*/ P1_0=1; /*开机时需要关断,串口发送功能,需要时再接通*/ WD=1; /*看门狗先为1,电平翻转为喂狗*/ i=0; common_count=0; cmd_in_permit=0; input_order=0; interval=0; address_true=1; speed_change=0; start_up=0;

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

电动机保护器的保护原理及应用

电动机保护器的保护原理及应用 1、引言 在当今的动力设备中,电动机是应用最为广泛的,电动机能够正常运转发挥,是其他的设备能够正常工作的前提条件,所以电动机保护器的合理利用是对正常的生产工作负责的表现,只有在电动机正常发挥其功能的基础上,才能够保证一个企业的工作流程不会受到干扰,可以正常运转。现如今,电动机已经被广泛的应用到各行各业当中,在各个领域当中都发挥着及其重要的作用。电动机保护器的作用是保证电动机在发电,供电,用电的一系列流程中,不会中途受到某些因素的制约而停止工作的的一种设备。在电机出现过热、接地、轴承磨损、定转子偏心时、绕组老化时,电动机保护器会予以报警或保护控制。如今电动机保护器几乎渗透到所有用电领域,其影响也是非常的巨大,所以电动机保护器的保护就显得和重要。 2、电动机保护器的保护原理与构成 2.1电动机烧毁的主要原因是运行时出现断相和过载烧毁绕组,因而,有电动机存在的电路应该装设有电动机保护器,以保证在电动机出现断相和过流运行时及时切断工作电源,保护电动机免受损坏,小型电动机的主要保护器是热继电器,而当面对大型电动机时,如果还使用热继电器对电动机进行保护的话其连接点(即进出热继电器的螺丝接线点)就很容易出现发热现象及发生故障,为避免如上问题,就出现了电动机综合保护器,电动机综合保护器是穿心式的,可以减少电线连接点,可以减少发热点和故障点,价格也便宜。 2.2使用电机综合保护器时必须注意控制线路的接线问题,以确保正常运行 2.3有的电机综合保护器注明,一定要接上负载才能正常工作,不接负载时表示电路处于缺相工作状态,因此综合保护器是拒绝合闸的,电动机将无法启动,这说明电机综合保护器内部是依靠电流互感器来检测三相线电流的有无,来判断电路是否存在缺相问题,因而在未接通电源或没有负载时,个闭点实际上是开点所以没办法合闸。 2.4某些大型电机冷却系统故障或是长时间工作在高温高湿环境下造成电机故障。电动机保护原理的研究是保证电动机保护器性能高低的关键,根据三相对称分量法的理论,三个不对称的向量可以唯一分解成三组对称的向量,分别为正序分量、负序分量和零序分量。电动机在发生对称故障和不对称故障时,电动机的三相电流都会发生变化。电动机故障条件流过绕组的电流过大,超过电动机的额定电流,因此可根据这一特征来对电动机过电流进行保护。电机过载、断相、欠压都会造成绕组电流超过额定值。电源电压欠压,运行电流上升的比例将等于电压下降的比例;电机过载时,常造成堵转,此时的运行电流会大大超过额定电流。针对以上情况,电动机保护器可通过对三相运行电流进行检测,根据运行电流的不同性质来确定不同的保护方式,从而对电机予以的断电保护。电动机的故障类型分为过流保护、负序电流保护、零序电流保护、电压保护和过热保护等几种。通过对电动机保护器的保护原理分析可以看出,理想的电动机保护器应满足可靠、经济、方便等要素,具有较高的性能价格比。经过发展和更新,如今电动机保护器一般由电流检测电路、温度检测电路、基准电压电路、逻辑处理电路、时

51单片机控制直流电机PWM调速C语言程序

#include #define uchar unsigned char #define uint unsigned int sbit KEY1 = P3^4; sbit KEY2 = P3^5; sbit KEY3 = P3^6; sbit IN1 = P1^0; sbit IN2 = P1^1; sbit ENA = P1^2; sfr ldata=0x80; sbit dula=P2^6; sbit wela=P2^7; //sbit lcden=P3^4; //uchar timer,ms,t_set = 1; uchar T_N=100; uchar T_N1=100; uchar T_H_N=50; uchar T_H_N1=50; void msplay(uchar,uchar); uchar code x1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e}; uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf}; //uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20}; void delay(uint z) //延时函数 { uint x; for(x=z;x>0;x--); }

基于51单片机控制直流电机的设计

可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main()

GDH型电机保护器的应用

GDH-30型数显智能化电动机保护器 在无人给水站的应用 摘要:无人给水站均位于邯长线偏远站区,遇有潜水电动机故障,需要及时判断故障原因,尽快进行故障处理;并能实现一定的自动恢复功能。而GDH-30型数显智能化保护器,是数显式、智能化电动机保护器,摆脱传统电机保护器单一保护,实现故障预报警功能,准确显示故障类别,提供给维修人员故障原因,减少前往现场次数,达到缩短故障处理时间的目的。同时,对于一些暂时性干扰因素引起的故障,能够实现自动恢复,保证了无人给水站设备运行质量,降低了设备运行成本。 关键词:智能化电动机保护器无人给水站 电动机保护器在整个控制系统中举足轻重,是对整套设备控制最关键的,也是最后一个环节。如果它失去功效,电动机就会发生烧毁,直接影响整个站区的供水,从而影响铁路运输。下面,通过与传统电动机保护器的对比,来阐述推广使用GDH-30型数显智能化保护器的必要性。同时,结合工作实际,完善该设备的设定值,更加科学、合理地使用,使用其发挥真正意义上的保护电动机的功能。 一、传统电动机保护器

2004年1月,在邯长线进行给水站配电柜安装时,采用的电动机保护器是热继电器,其原理是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过载保护。热继电器作为电动机的过载保护元件,曾经以其体积小,结构简单、成本低等优点得到了广泛应用。 但经过六年的运行,发现它存在以下缺点: 1、保护项目单一。它只能进行过流保护,当电动机发生故障时,超过设定的热继值时,断开控制回路来保护电动机。而当井下水位下降时,电动机发生欠流,则不会动作。如果运行时间较长,可能烧损电机。邯长线近几年,发展钢铁业较快,造成许多站区井下水位下降。经统计,每年有6~7处出现电动机因欠流故障而被烧损。 2、受环境因素较大。无人给水站均位于高处无遮荫地区,夏季炎热时,室内温度达到42℃。热继电器因天气温度较高时,有时会自己断开。经常是接到停水故障报告,到现场测试电动机绝缘符合要求,只要按一下热继器的恢复键,就能使电动机正常运行,浪费了大量的人力、财力。 3、故障源敏感。无人给水站,没有人值守,只有维修人员按周期进行中修时,才对其进行检修。而有时发生暂时电源故障,相序继电器没有及时反应时,热继电器就会自动

基于单片机的三相步进电机控制系统设计分解

电气与电子工程学院 单片机原理及应用课程设计报告 课题名称 专业班级 学 号 学生姓名 指导教师 评 分 2016年06月20日至06月24 日

目录 摘要 (3) 1设计任务 (4) 2方案 (6) 2.1 设计思路与方案 (6) 2.2总体设计框图 (6) 3系统实现的原理说明 (7) 3.1 步进电机控制工作原理 (7) 3.1.1步进电机的工作原理 (7) 3.1.2 步进电机的启停控制 (7) 3.1.3 步进电机的转向控制 (9) 3.2步数显示模块原理 (10) 4硬件设计 (11) 4.1系统总原理图 (11) 4.2各部分硬件原理图设计 (11) 4.2.1 单片机控制模块 (11) 4.2.2按键选择工作状态模块 (12) 4.2.3步进电机工作模块 (13) 4.2.4工作状态显示模块 (14) 4.2.5 4位数码管显示步数模块 (14) 5软件设计 (16) 5.1系统总体设计 (16) 5.2步进电机工作模块 (17) 5.2.1步进电机的工作方式说明 (17) 5.2.2设计说明及流程图 (18) 5.3数码管步数显示模块 (19) 6仿真调试记录 (21) 7心得体会 (22) 参考文献 (22) 附录:程序清单 (23)

摘要 本设计详细介绍了基于单片机的三相步进电机控制系统。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,因此,单片机通过向步进电机发送控制信号就能实现对步进电机的控制。 单片机实现的步进电机控制系统具有成本低、使用灵活的特点,该系统采用80C51单片机作为主控芯片,来完成对步进电机转动及LED显示的控制。 本设计主要由单片机80C51,3相步进电机,7段数码管,及一些其他相关元件设计而成,分为按键选择工作状态模块、步进电机工作模块、LED二极管显示工作状态模块以及4位数码管显示步数模块。可以通过开关来控制系统的启/停工作,当系统运转时,用开关来控制方向,并使相应的指示灯亮起,同样由开关来选择工作模式。运转时,用4位7段数码管来输出步数。最后根据思路所设计出来的硬件图设计相适应的软件。 电路结构简单,设计思路清晰,同时利用Proteus进行联调仿真,结果比较直观。仿真结果收到了预期的效果。 关键字:三相步进电机、单片机、PROTEUS仿真

单片机控制电机调速实验报告

重庆邮电大学综合实验报告——单片机控制步进电机调速 学生姓名:组长:AAAA 组员:AAAAAAAA 学号:XXXXX XXXXXXXXXXXXX 所在学院:自动化 班级:XXXXX 专业:机械设计制造及其自动化 指导老师:XXXX 成绩评定: 检测与控制实验中心

目录 一、实验要求与目的 (3) 1、设计要求 (3) 2、实验目的 (3) 二、设计思路 (3) 三、实验原理 (4) 1、步进电机 (4) 2、步进电机控制系统结构 (4) 3、速度控制算法 (5) 四、功能概述及方案设计 (5) 1、显示模块 (5) 2、AD转换模块 (6) 3、步进电机细分驱动模块 (6) 五、实验运行程序 (7) 六、实验心得 (13) 参考文献 (13)

一、实验要求与目的 1、设计要求 1、步进电机的给定速度由电位器通过AD转换输入 2、只有给定速度和实际速度显示功能 3、实际速度通过红外光电开关(或霍尔元件)检查 4、步进电机具有细分功能:1/2细分 1/4细分 1/8细分 5、测试步进电机的响应时间及曲线 2、实验目的 1、熟悉步进电机的工作原理 2、熟悉51系列单片机的工作原理及调试方法 3、设计基于51系列单片机控制的步进电机调速原理图 4、实现51系列单片机对步进电机的速度控制 5、了解霍尔元件和步进电机细分驱动芯片tb6560的使用 二、设计思路 主控芯片采用STC89C52单片机,显示采用1602液晶,由于步进电机速度设定由电位器输入,使用外部AD tlc5510,AD时钟源接89C52 ALE引脚,AD为并行,AD使用单片机P1口,可以直接读取,根据对应数据设定速度。步进电机速度控制采用闭环控制,由于传统的PID控制算法波动较大,我们采用分级设定加速度的办法,并把编码器反馈回来的速度与设定速度进行比较确定是加速还是减速,软件模拟加速减速过程,步进电机细分由驱动芯片TB6560提供,由于驱动细分由m1、m2口电平决定,我们采取直接通过拨码开关设定电平,从而设定驱动细分值。

单片机直流电机控制系统的设计与仿真要点

《单片机》期末考查(课程 设计) 论文题目:单片机直流电机控制系统的设计与仿真 学别:电气信息 班级: 姓名: 学号:1238230239 指导老师: 职称: 日期:2015 年1 月16 日

目录 第一章绪论................................................................................................................................................................ 1.1 W A VE6000软件说明.................................................................................................................................... 1.2 PROTEUS软件说明..................................................................................................................................... 1.2.1 软件的特点........................................................................................................................................ 1.2.2 ISIS智能原理图输入系统................................................................................................................. 1.3 MCS-51单片机系统简介.............................................................................................................................第二章总体方案设计................................................................................................................................................ 2.1 总体设计....................................................................................................................................................... 2.2 硬件设计....................................................................................................................................................... 2.2.1 硬件设计电路.................................................................................................................................... 2.2.2 PROTEUS软件使用过程.................................................................................................................. 2.2.3元器件清单如下................................................................................................................................. 2.3 软件设计....................................................................................................................................................... 2.3.1 PROTEUS硬件属性分配.................................................................................................................. 2.3.2程序设计............................................................................................................................................. 2.3.3编译成HEX文件步骤 ......................................................................................................................第三章综合测试........................................................................................................................................................ 3.1仿真工具栏................................................................................................................................................... 3.2 仿真结果.......................................................................................................................................................第四章总结鉴定........................................................................................................................................................参考文献 .....................................................................................................................................................................课程设计心得体会......................................................................................................................................................评阅老师:日期:..........................................................................................................................

基于单片机步进电机控制系统研究

基于单片机的步进电机控制系统研究 摘要:文章介绍了步进电机的基本结构以及驱动器构成,提出了基于单片机的步进电机的脉冲分配和速度调节方法,给出了脉冲频率调节的实现方法和实用程序,同时还提出了步进电机加减速控制的几种方案及其微机控制。对现实工作中的步进电机控制系统研究具有十分重要的意义,文章中的研究理论,可以对我们的工作内容进行有效的指导,对提高工作质量和效率具有十分重要的作用。希望文章的内容能对今后工作予以正确的指导。 abstract: this paper introduces the basic structure of stepper motor and the composition of the drive, and proposes the pulse distribution and speed regulating methods of stepper motor based on microcontroller. the method and practical program to adjust the pulse frequency is given. at the same time, it puts forward several solutions of acceleration and deceleration control of stepper motor and microcomputer control, which has a very important significance to the stepper motor control system research in the real work. the theory in article, can give effective guidance on the content of our work, and has a very important role to improve the quality and efficiency. i hope the content of the article can provide correct guidance for future work. 关键词:单片机;步进电机;脉冲分配;速度调节;加减速控

相关主题
文本预览
相关文档 最新文档