当前位置:文档之家› 高物高化概念总结

高物高化概念总结

高物高化概念总结
高物高化概念总结

1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。

2. 氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。

3. 等规聚合物:指全同立构和间同的高聚物。

4. 等规度:高聚物中含有全同立构和间同立构总的百分数。

5. 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。

1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。

2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。

3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。

4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。

5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。

6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。

1. 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。

2. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。

3. 构象:由于单键内旋转而产生的分子在空间的不同形态。

4. 熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。

5. 熔点:高聚物结晶部分完全熔化的温度。

6. 剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。

7. 高聚物的屈服:聚合物在外力作用下产生的塑性变形。

1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。

1. 高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物的熔点。

2. 特性粘度:高分子在c→0时,单位浓度的增加对溶液的增比浓度或相对粘度对数的贡献。其数值不随溶液浓度的大小而变化,但随浓度的表示方法而异。

3. 滞后现象:高聚物在交变应力作用下,形变落后于应力变化的现象。

4 内耗:如果形变的变化落后于应力的变化,发生滞后现象,则每一循环变化中就要消耗功,称为内耗。

1. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。

2.溶剂化作用:又称广义酸碱作用,是指溶质和溶剂分子间的作用力大于溶质分子间的作用力,而使溶质分子彼此分离而溶解于溶剂中。

2.应力松弛:在恒定温度和形变标尺不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。

3.强迫高弹形变:玻璃态高聚物在的外力作用下发生的大形变,其本质跟橡胶的高弹形变一样,但表现的形式却有差别,为了与普通的高弹形变区别开来,通常称为强迫高弹形变。

本质相同:都是链段运动

不同:强迫高弹形变外力除去不能自动回复,需要加热,受外力要大的多,发生在Tb-Tg之间。橡胶的高弹形变

1. 等规度:高聚物中含有全同立构和间同立构总的百分数。

2. 非均相成核:即异相成核,以外来的杂质,未完全熔融的残余结晶聚合物,

分散的小颗粒固体或容器的壁为中心,吸附熔体中的高分子链作有序排列而形成的晶核。

3. 均相成核:由熔体中的高分子链段靠热运动形成有序排列的链束的晶核。

4.θ溶剂:在某一温度下聚合物溶于某一溶剂中,其分子链段间的相互吸引力与

溶剂化以及排斥体积效应所表现出的相斥力相等,无远程相互作用,高分子处于无扰状态,排斥体积为0,该溶液的行为符合理想溶液行为,此时溶剂的过量化学位为0,此时的溶液称为θ溶液。

5.熔融指数:在一定温度下,熔融状态的高聚物在一定负荷下,十分钟内从规定直径和长度的标准毛细管中流出的重量。

1. 均方末端距:平均末端距或末端距的平方的平均值。

2. 增塑作用:添加增塑剂使高聚物分子链易于运动。

3.溶度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。

4 .冷拉:结晶高聚物和玻璃态聚合物的拉伸过程都经历弹性变形,屈服,发展大形变以及应变硬化等阶段,拉伸的后阶段都呈现强烈的各向异性,断裂前的大形变在室温下都不能自发回复,而加热后却都能回复原状,因而本质上两种拉伸过程造成的大形变都是高弹形变,通常把它们统称为冷拉。

5.假塑性流体:流变行为与时间无关,粘度随剪切速率的增加而减小的流体。

6.蠕变:就是指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象。

1. 旋光异构:两种有机物构成互为镜影的异构体,表现出不同的旋光性,称为旋光异构。

2. 结晶聚合物的熔点:结晶部分完全熔化的温度。

3. 高分子液晶:某些物质的结晶变热熔融或被溶剂溶解之后,虽然失去固体物质的刚性,而获得液态物质的流动性,却仍然部分地保存着晶态物质分子的有序排列,从而在物理性质上呈现处各向异性,形成一种兼有晶体核液体的部分性质的过渡状态,这种中间状态称为液晶态,处于这种状态的物质称为液晶。

4. Huggins参数:反映高分子与溶剂混合时相互作用能的变化。

5. 相对分子质量分布宽度指数:是指试样各个分子量与平均分子量之间的差值的平方平均值。

6. 高弹形变:分子链通过链段运动逐渐伸展的过程,形变量比普弹形变要大的多,且形变与时间成指数关系。

7. 力学损耗:如果形变的变化落后于应力的变化,发生之后现象,则每一循环变化中就要消耗功,称为力学损耗.

1. 冷流:

2. 高聚物的多分散性:高聚物的多分散性有相对分子量的多分散性和分子结构的多分散性。相对分子量的多分散性是指聚合物是相对分子质量不等的同系物混合物其相对分子量或聚合度是一平均值,这种相对分子质量的不均一性称为相对分子量的多分散性。分子结构的多分散性:

3. 溶胀现象:溶剂渗入高聚物内部,使高聚物体积膨胀的现象。

4.溶解:高分子均匀分散在溶剂中形成完全溶解的分子分散的均匀体系。

补充:

1. 均方末端距:采用向量运算,求平均末端距或末端距的平方的平均值。

2. 末端距:是指线型高分子链的一端与另一端的距离。用h表示。

3. 根均方末端距:均方末端距的平方根。

4. 最可几末端距:末端距的几率密度函数(径向分布函数)的导数为零的极值点。

5. 构造:是指链中原子的种类和排列,取代基和端基的种类单体单元的排列顺序,支链的类型和长度等。

6. 链段:把若干键组成的一段链作为一个独立运动的单元。

7. 脆性断裂:材料在出现屈服之前发生的断裂。

8. 韧性断裂:材料在出现屈服之后发生的断裂。

9. 应力集中:材料存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧增加,远远超过应力平均值的现象。

10. 银纹:热塑性塑料由于应力以及环境的影响,表面会产生裂纹,这些裂纹由于光的反射,看上去是发亮的,称为银纹。

11. 裂纹:可逆的,在压力或Tg以上退火,会回缩或消失。

12. 裂缝:不可逆,是裂纹在较大外力作用下进一步发展。

13. 支化度:通常以支化点密度或两相邻支化点之间的链的平均分子量来表示支化的程度

14. 交联度:通常用相邻两个交联点之间的链的平均分子量Mc来表示。

15. 几何异构体:1,4-加成的双烯类聚合物,由于内双键上的基团在双键两侧排列的方式不同而有顺式构型

与反式构型之分。

16. 内旋转:单键是由6电子组成;电子云分布是轴对称的,因此分子在运动时C-C单键可以绕轴旋转,称为内旋转。

17. 位垒:顺式构象与反式构象的位能差。

18. 完全伸直链:n个键的芳香全部一致,整个链是一条直线。

19. 内旋转异构体:由单键的内旋转所导致的不同构象的分子。

20. 自由结合链:假定高分子是由足够多的不占有体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等。

21. 自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响。

22. 等效自由结合链:由若干个化学键组成的一段链可作为一个能独立运动的单元,称为链段,令链段与链段自由结合,并且无规取向,称为等效自由结合链。

23. 熵弹性:理想高弹体拉伸时只引起熵变,或者说只有熵的变化对理想高弹体的弹性有贡献,因此称为熵弹性。

24. 冷拉:本质是高弹形变的拉伸造成的形变,大形变在室温下不能回复,加热后能回复原状。

25. 同质多晶现象:由于条件变化,引起分子链构象的或堆积方式的改变,则一种高聚物可以形成几种不同的晶型。

26. 雾点:共混物刚刚产生相分离时的温度称为雾点。雾点越低,制品的耐低温性能越好。

27. 凝胶:是高分子链间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,它是高分子浓溶液,又是高弹体固体。

28. 冻胶:由范德华力交联形成的,加热可使范德华力拆散其交联,使冻胶溶解。

29. 溶胀比Q:交联高聚物在溶胀平衡时的体积与溶胀前体积之比。

30. 玻璃化转变的多维性:Tg只不过是测定玻璃化转变的一个指标,如果保持温度不变,而改变其它因素,也能观察玻璃化转变。

31. 应力发白:用橡胶增韧的塑料,像高抗冲聚苯乙烯,ABS树脂等,它们在拉伸形变或弯曲变形时试样有发白现象,在受冲击的破坏面也能看到发白现象,这种现象称为应力发白。

32. 32 填料:①惰性填料:只起稀释作用,降低成本,强度也降低。②可以提高材料强度,与填料本身强度有关,也跟填料与高聚物之间亲和力有关。

33. 主链液晶:

34. 侧链液晶:

35. 高分子溶液:高聚物以分子状态分分散在溶剂中所形成的均相聚合物。

36. 溶胀:高聚物溶解过程中,溶剂分子渗入高聚物内部使高聚物体积膨胀。

37. 理想溶液:指溶液中溶质分子间,溶剂分子间和溶质溶剂分子间的相互作用能都相等;溶解过程中没有体积的变化。

38. 过量化学位:溶液中非理想部分的溶剂的化学位变化。

39. 坍陷线团:内排斥体积为负值的链。

40. 无扰尺寸:在特殊情况下,正的外排斥体积和负的内排斥体积正好抵消,

41. u=0,线团的行为好像无限细的链的一样,处于无扰的状态,这种状态的尺寸称无扰尺寸。

42. 扩胀因子/溶胀因子:T>θ时高分子链的均方末端距与均方旋转半径和θ状态下h0和S0的比值。

43. 第二维利系数:高分子链段与链段之间以及高分子与溶剂分子之间相互作用的一种量度。

44. 松弛过程:在一定的外界条件下,高聚物从一种平衡状态通过分子热运动,达到与外界条件相适应的新的平衡态,由于分子运动时运动单元所受到的摩擦力一般很大,此过程通常是缓慢完成的,称为松弛过程。

45. 分配系数:GPC中,孔体积Vi可以被溶质分子进入的部分与Vi之比。

46. 粘流温度:高弹态与粘流态之间的转变温度。

47. 普弹性:(即虎克型弹性):形变与受力的大小成正比,当外力除去后形变能立刻回复。

48. 玻璃态:非晶态高聚物处于具有普弹性的状态。

49. 软化点:塑料的最高使用温度。

50. 马丁耐热温度:指升温速度为每小时50摄氏度的情况下,标准试条受弯曲应力50Kg/cm2时,试条弯曲使指示器下降6mm的温度。

51. 热变形温度:指升温速度为每小时2/min,加18.5Kg/cm2或4.6Kg/cm2的负荷在塑料表面上(试样长120mm,宽15mm),使它产生弯曲变形,当试样中点弯曲挠度达到0.21mm时的温度。

52. 剪切变稠:胀塑性流体的粘度随剪切速率的增加而升高。

53. 剪切变稀:假塑性流体的粘度随剪切速率的增加而减少。

54. 触变性(摇溶性)流体:在恒定剪切速率下粘度随时间增加而降低的液体

55. 反触变性(摇凝性)流体:在恒定剪切速率下粘度随时间增加而升高的液体

56. 剪切流动:速度梯度的方向与流动方向相垂直。

57. 拉伸流动:速度梯度的方向与流动方向相一致。

58. 挤出胀大(离模膨胀,巴拉斯效应):当高聚物熔体从小孔,毛细管或狭缝挤出时,挤出物的直径或厚度会明显地大于模口的尺寸的现象

59. 挤出胀大比:挤出物的最大直径与口模直径的比值。

60. 应变:当材料受到外力作用时,而所处的条件不能产生惯性移动时,它的几何形状和尺寸将发生变化,这种变化称为应变。

61. 应力:单位面积上的附加应力。

62. 机械强度:材料抵抗外力破坏的能力。

63. 拉伸强度:在规定的试验温度,湿度和试验速度下,在标准试样上沿轴向施加载荷,直到试样被拉断为止,断裂前试样承受的最大载荷P与试样的断裂横截面积之比。

64. 弯曲强度(挠曲强度):在规定试验条件下,对标准试样施加静弯曲力矩,直到试样折断为止取试验过程中的最大载荷P,按下式计算弯曲强度:

65. 冲击强度:试样受冲击载荷而折断时单位截面积所吸收的能量。

66. 硬度:衡量材料表面抵抗机械压力的能力的一种指标。

67. 临界伸长率:产生裂纹的最低的伸长率。

68. 临界应力:产生裂纹的最低的拉伸应力。

69. 热弹效应:橡胶被拉伸时会发热,回缩时会吸热,而且伸长时的热效应会随伸长率而增加。

70. 热弹转变现象:当伸长率小于10%时,F对T的曲线斜率会变成负值的现象。

71. 橡胶的极限性质:指极限强度,最大伸长率和断裂行为。

72. 力学松弛:高聚物的力学性质随时间变化而变化。

73. 极化强度:单位体积内分子偏极距的矢量和。

74. 介电损耗:电介质在交变电场中,由于消耗一部分电能,使介质本身发热的现象。

75. 高弹性:在高弹态下,聚合物的变形是外力作用促使高聚物主链发生内旋转的过程,它所需的外力显然比高聚物在玻璃态时变形(改变化学键的键长和键角)所需要的外力要小的多,而形变量却要大的多,这种力学性质称为高弹性。

76. 取向:在外场作用下,分子链,链段及结晶高聚物的晶片,晶带将沿着外场方向排列,这一过程称为取向。

77. 普弹形变:当高分子受到外力作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变。

78. 高弹形变:分子链通过链段运动逐渐伸展的过程,形变量比普弹形变要大的多,且形变与时间成指数关系。

79. 粘性流动:分子间没有化学键的线形高聚物,则还会产生分子相对滑移,称为粘性流动。

80. 永久变形:由于粘性流动是不能回复的,因此对线形高聚物来说,当外力除去后总会留下一部分不能回复的形变,称为永久变形

81. 次级松弛:在Tg(非晶和低结晶聚合物)或Tm(高结晶聚合物)以下,小尺寸运动单元从运动到冻结或从冻结到运动的变化过程称为次级松弛。

82. Boltzmann叠加原理:高聚物的力学松弛行为表现为历史上各松弛过程的线性加和

83. 热致型液晶:靠升高温度,在某一温度范围内形成液晶态的物质。

84. 溶致型液晶:靠溶剂溶解分散,在一定浓度范围成为液晶态物质。

85. θ条件:可以通过选择溶剂和温度以满足过量化学位为0的条件。θ状态下所用的溶剂称为θ溶剂,θ状态下所处的温度称为θ温度。

86. 高分子的聚集态结构:指高分子链之间的排列和堆砌结构,也称超分子结构。

87. 高斯链:因为等效自由结合链的链段分布符合高斯分布函数,故这种链称高斯链。

88. 蠕虫状链:是自由旋转链当键长无限分割,而且θ角无限缩小的一种极限情况。

89. 持续长度:无限长的自由旋转链在第一键的方向上投影的平均值。

90. 热塑性:一般是线形或支链形聚合物具有可反复加热软化或熔化成型的性质。

91. 热固性:是指线形聚合物在加热或外加交联剂存在发生交联反应形成不熔不溶交联聚合物的性质。

92. 序列结构:是聚合物分子链中结构单元的链接顺序,有头头,尾尾,头尾。

93. 增塑剂:添加到线型高聚物中使其塑性增大的物质。

94. 亚浓溶液:当稀溶液的浓度增大到某种程度后,高分子线团相互穿插交叠,整个溶液中的链段分布趋于均一,称为亚浓溶液。

95. 内聚能:为克服分子间作用力,把1mol液体或固体移至分子间的引力范围

之外所需的能量。

96. CED:(内聚能密度)单位体积的内聚能。

97. 外增塑:利用增塑剂破坏高分子链间的作用力,使链段运动得以实现的过程(即物理增塑)

98. 内增塑:在分子链上引入其它取代基或短的链段,使结晶破坏,分子链变柔,易于活动。(即化学增塑)

99. 高聚物增韧:

1. 等效自由连接链:将含有n个键长为l、键角θ固定、旋转不自由的键组成的链视为一个含有Z个长度为b的链段组成的可以自由旋转的链,称为等效自由

连接链。

2. 取向:在某种外力的作用下,分子链或者其他结构单元沿着外力作用方向择

优排列的结构。

3. 银纹:聚合物在张应力的作用下,在材料某些薄弱的地方出现应力集中而产

生的局部的塑性形变和取向,以至于在材料的表面或者内部垂直于应力方向出现微细凹槽的现象。

4. θ温度:在某一温度下聚合物溶于某一溶剂中,其分子链段间的相互吸引力与溶剂化以及排斥体积效应所表现出的相斥力相等,无远程相互作用,高分子处于无扰状态,排斥体积为0,该溶液的行为符合理想溶液行为,此时溶剂的过量化学位为0,溶液为θ溶液,此时的温度称为θ温度。

5. 银纹:聚合物在张应力的作用下,在材料某些薄弱的地方出现应力集中而产

生的局部的塑性形变和取向,以至于在材料的表面或者内部垂直于应力方向出现微细凹槽的现象。

6. 等效自由结合链:由若干个化学键组成的一段链可作为一个能独立运动的单元,称为链段,令链段与链段自由结合,并且无规取向,称为等效自由结合链。

7. 取向度:是材料取向程度的衡量指标,一般可用取向函数F来表示F= 式中q 为分子链主轴与取向方向间的夹角。

8. 次级松弛:在Tg(非晶和低结晶聚合物)或Tm(高结晶聚合物)以下,小

尺寸运动单元从运动到冻结或从冻结到运动的变化过程称为次级松弛。

9. 非牛顿性指数:幂律公式中的n是表征流体偏离牛顿流动的程度的指数,称

为非牛顿指数。

10. 粘弹性:外力作用下,高聚物材料的形变行为兼有液体粘性和固体弹性的双重特性,其力学性质随时间变化而呈现出不同的力学松弛现象的特性称为粘弹性。

11. Boltzmann叠加原理:高聚物的力学松弛行为表现为历史上各松弛过程的线

性加和。

12. 银纹:又称裂纹,是高聚物受应力、环境影响而在表面出现的银白色条纹。

13. 键接异构——大分子链结构单元的键接顺序不同所引起的异构体。

14. 双轴取向——取向单元沿两个相互垂直方向的取向,其面积增大,厚度减小。

15. 脆性断裂——屈服前的断裂,拉伸中试片均匀形变,断面较平整。

16. 力学状态——高聚物的力学性质随温度变化的特征状态;

17. 银纹质(体)——联系起两银文面的束状或高度取向的聚合物。

18. 零切黏度——剪切速率趋向于零时的熔体黏度,即流动曲线的初始斜率。

(完整word版)初中化学基本内容

化学 一、上海初中化学基本教学内容与要求 第一部分基本概念和基本理论 一、物质的组成和构成 (一)学习要求 1.知道分子和原理的概念以及它们的区别和联系,能从原子、分子的角度来认识物质的构成,为进一步从本质上认识物质的变化打下基础。 2.识记元素的概念,分析物质的元素组成,并能判断元素的存在形容。 3.知道地壳中、大气中含量最多的元素和地壳中含量最多的金属元素。 4.学会分析物质的组成和构成。 5.知道同素异形现象和同素异形体的概念,识记碳元素的一些常见的同素异形体以及氧元素的同素异形体。 二化学用语 (一)学习要求 1.熟练书写常见的21种元素的符号和名称:H、He、C、N、O、Na、Mg、Al、Si、P、S、Cl、K、Ca、Mn、Fe、Cu、Zn、Ag、Ba、Hg。 2.识记常见的原子团的符号和名称:铵根、硝酸根、氢氧根、硫酸根、碳酸根。 3.知道化合价的概念,熟记常见的元素和常见原子团的化合价(只要求掌握C和Fe的可变化合价)。能熟练运用元素的化合价。写出化合物的化学式;能应用元素的化合价判断化学式的正误。 4.能根据物质的化学式求所含元素的化合价。 5.知道化学方程式的意义和读法;能根据化学反应正确书写化学方程式,并能配平化学反应方程式。 三物质的性质和变化、质量守恒定律 (一)学习要求 1.知道物理变化和化学变化的概念和它们的本质区别,会判断比较典型的物理变化和化学变化。知道物理性质和化学性质的概念,并能做出判断。 2.学会用化学方程式表述各类反应,理解化合、分解、置换和复分解反应的概念,并能作出判断。3.知道中和反应的概念、中和反应放热,理解中和反应过程中常见指示剂颜色的变化。能书写若干常见中和反应的化学方程式。 4.理解氧化反应、还原反应的概念和氧化剂、还原剂的概念,学会从得氧、失氧角度判断氧化反应、还原反应和氧化剂、还原剂。 5.理解质量守恒定律的意义。 四、溶液 (1)学习要求 1.认识自然界中的物质常以某种分散体系的形态存在。溶液是一种重要的分散体系,在生活、生产和生命活动中具有重要的作用。 2.初步理解溶液、溶质和溶剂的概念及它们的相互关系,常识性了解悬浊液、乳浊液的概念,并知道它们跟溶液的区别。 3.初步体验自然界中充满了“物质溶解成溶液,溶液中析出溶质”的现象。理解饱和溶液和不饱和溶液的概念,掌握饱和溶液和不饱和溶液相互转变的方法。知道浓溶液、稀溶液跟饱和溶液、不饱

材料力学概念及基础知识

一、基本概念 1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。 2 强度:构件抵抗破坏的能力。 3 刚度:构件抵抗变形的能力。 4 稳定性:构件保持初始直线平衡形式的能力。 5 连续均匀假设:构件内均匀地充满物质。 6 各项同性假设:各个方向力学性质相同。 7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。 8 截面法:计算内力的方法,共四个步骤:截、留、代、平。 9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。 10 正应力:垂直于截面的应力(σ) 11 剪应力:平行于截面的应力( ) 12 弹性变形:去掉外力后,能够恢复的那部分变形。 13 塑性变形:去掉外力后,不能够恢复的那部分变形。 14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。 二、拉压变形 15 当外力的作用线与构件轴线重合时产生拉压变形。 16 轴力:拉压变形时产生的内力。 17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。 18 画轴力图的步骤是: ①画水平线,为X轴,代表各截面位置; ②以外力的作用点为界,将轴线分段; ③计算各段上的轴力; ④在水平线上画出对应的轴力值。(包括正负和单位) 19 平面假设:变形后横截面仍保持在一个平面上。 20 拉(压)时横截面的应力是正应力,σ=N/A 21 斜截面上的正应力:σα=σcos2α 22 斜截面上的切应力: α=σSin2α/2 23 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp) 24 胡克定律的微观表达式是σ=Eε。 25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。 26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。 27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣ 28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。 29 比例极限σp :比例阶段的最大应力值。 30 屈服极限σs :屈服阶段的最小应力值。 31 强化极限σb :断裂前能承担的最大应力值。 32 脆、塑材料的比较: ①脆材无塑性变形,抗压不抗拉;塑材抗拉也抗压。 ②脆材对应力的集中的反应敏感,塑材不敏感。。 33 应力集中:在形状变化处,应力特别大的现象。 34 延伸率:拉断后,变形量与原长的比值(δ=△L1/L,≥5%为塑材) 35 冷作硬化:进入强化阶段后,卸载再重新加载,比例极限增大的现象。 38 极限应力σjx:失去承载能力时的应力 39 许用应力〔σ〕:保证安全允许达到的最大应力。 42 计算思路:外力内力应力。 43 超静定问题:未知力多于平衡方程个数的问题(用平衡方程不能或不能全部计算出构件的外力)。 44 计算超静定问题:除平衡方程以外,更需依据变形实际建立补充方程。 45 剪力:平行于截面的内力(Q),该截面称作剪切面。 46 单剪:每个钉有一个剪切面。双剪:每个钉有两个剪切面。 48 挤压力:两构件相互接触面所承受的压力。 三、扭转 1 外力偶矩的矢量方向与杆件的轴线重合时杆件发生(扭转)变形。杆件的两个相邻截面发生绕轴线的相对转动。 2 传动轴所传递的功P(kw),转速n(r/min),则此外力偶矩为Me=9.549P/n(N*m)。 3 扭转变形时,杆件横截面上的内力称扭矩。表示各截面上扭矩大小的图形,称作扭矩图。 4 两正交线之间的直角的改变量( ),称为剪应变。表示剪切变形的严重程度。 5 剪切胡克定律τ=G ,式中G称为材料剪切弹性模量。 6 薄壁扭转构件横截面上某点的剪应力 n δ,式中 为圆形横截面包围的面积,δ为该点处的壁厚。 7 Ip=∫Aρ2dA称为截面的极惯性矩。 四、弯曲应力: 1 梁弯曲时,作用线与横截面平行的内力,称为剪力。数值上等于该截面之左侧或右侧梁上各个横向外力的代数和,绕截面顺转的力为正。 2 梁弯曲时,作用面垂直于轴线的内力偶矩,称为弯矩。数值上等于该截面之左侧或右侧梁上各个外力(包括力偶)对截面力矩的代数和,使截面处产生凹变形的力矩为正。 3 无均布载荷梁段,剪力为水平直线。 无剪力(零)的梁段,弯矩为水平直线。 在集中力作用的截面,剪力图上发生转折,在集中力偶作用的截面,弯矩图上发生跃变。 在剪力为零的截面,弯矩有极大值。最大弯矩发生在Q=0 ,集中力偶两侧、悬臂梁根部和集中力的截面上。 Iz=∫Ay2dA称为截面的轴惯性矩。式中y是微面积dA到中性轴的距离。 中性轴通过截面的形心,是拉压区的分界线。 五、弯曲时的位移 1 挠度是梁弯曲时横截面的形心在垂直于梁轴线方向的位移。 2 转角是梁变形时横截面绕其中性轴旋转的角度。 六、超静定问题 1 使用静力平衡方程不能求出结构或构件全部约束力或内力的问题。 2 多余约束力 解除维持构件平衡的多余约束后,以力代替该约束对构件的作用力。 变形协调方程 多余约束力与基本力共同作用的变形满足梁的约束条件。 七、应力状态和强度理论 1 应力状态: 受力构件内部一点处不同方位截面应力的集合。 单元体:围绕构件内一点处边长为无穷小的立方体。 主平面:单元体上剪力为零的截面 4 截面核心:压力作用线通过此区域,受压杆横截面上无拉应力。 5 弯矩扭合构件选用空心圆形截面比较合理。 九、压杆稳定 1 稳定性:受压杆件保持原有直线平衡形式的能力。 2 临界力Pcr:受压杆件能保持稳定的最大压力。 9 提高稳定措施:①环形截面;②减小长度;③固定牢固。 冷拉是在常温条件下,以超过原来钢筋屈服点强度的拉应力,强行拉伸钢筋,使钢筋产生塑性变形以达到提高钢筋屈服点强度和节约钢材为目的。 冷拔-是材料的一种加工工艺,对于金属材料,冷拔指的是为了达到一定的形状和一定的力学性能,而在材料处于常温的条件下进行拉拔。冷拔的产品较之于热成型有:尺寸精度高和表面光洁度好的优点。第一章绪论 §1.1 材料力学的任务 二、基本概念 1、构件:工程结构或机械的每一组成部分。(例如:行车结构中的横梁、吊索等) 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的改变。(宏观上看就是物体尺寸 和形状的改变) 弹性变形—随外力解除而消失 塑性变形(残余变形)—外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力 3、内力:构件内由于发生变形而产生的相互作用力。(内力随外力的增大而增大) 强度:在载荷作用下,构件抵抗破坏的能力。 4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。 强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承 载能力的一门科学。 三、材料力学的任务 材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全 的构件,提供必要的理论基础和计算方法 研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在进行理论分 析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。 四、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的 杆 等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状 变化的杆 等截面直杆——等直杆 §1.2 变形固体的基本假设 在外力作用下,一切固体都将发生变形,故称为变形固体。在材料力学中,对变 形固体作如下假设: 1、连续性假设:认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织球墨铸铁的显微组织 2、均匀性假设:认为物体内的任何部分,其力学性能相同 普通钢材的显微组织优质钢材的显微组织 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增 强材料等) 4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。 如右图,δ远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的 变形略去不计。计算得到很大的简化。 §1.3 外力及其分类 外力:来自构件外部的力(载荷、约束反力) 按外力作用的方式分类 体积力:连续分布于物体内部各点的力。如重力和惯性力 表面力: 分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水压力等 均为分布力 集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。 按外力与时间的关系分类 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静 载 动载:载荷随时间而变化。如交变载荷和冲击载荷 §1.4 内力、截面法和应力的概念 内力:外力作用引起构件内部的附加相互作用力。 求内力的方法—截面法 (1)假想沿m-m横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留 下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力的值。 §1.4 内力、截面法和应力的概念 为了表示内力在一点处的强度,引入内力集度,即应力的概念。 §1.5 变形与应变 1.位移:MM' 刚性位移;变形位移。 2.变形:物体内任意两点的相对位置发生变 化。 取一微正六面体 两种基本变形: 线变形——线段长度的变化角变形——线段间夹角的变化 3.应变 正应变(线应变) x方向的平均应变:切应变(角应变) 杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲 第二章拉伸、压缩与剪切(1) §2.1 轴向拉伸与压缩的概念和实例 受力特点与变形特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件 变形是沿轴线方向的伸长或缩短。 §2.2 轴向拉伸或压缩时横截面上的内力和应力 2、轴力:截面上的内力 由于外力的作用线与杆件的轴线重合,内力的作用线也与杆件的轴线重合。所以 称为轴力。 4、轴力图:轴力沿杆件轴线的变化 杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆 件的强度。 在拉(压)杆的横截面上,与轴力FN对应的应力是正应力。根据连续性假设, 横截面上到处都存在着内力。 观察变形: 平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。 从平面假设可以判断: (1)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的 §2.4 材料拉伸时的力学性能 一试件和实验条件:常温、静载 二低碳钢的拉伸 明显的四个阶段 1、弹性阶段ob 2、屈服阶段bc(失去抵抗变形的能力) 3、强化阶段ce(恢 复抵抗变形的能力) 4、局部径缩阶段ef 两个塑性指标: 断后伸长率断面收缩率 δ>5%为塑性材料δ<5%为脆性材料 低碳钢的S≈20-30% ψ≈60%为塑性材料 三卸载定律及冷作硬化 1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载 材料在卸载过程中应力和应变是线性关系,这就是卸载定律。 材料的比例极限增高,延伸率降低,称之为冷作硬化或加工硬化。 四其它材料拉伸时的力学性质 对于没有明显屈服阶段的塑性材料,用名义屈服极限σp0.2来表示。 对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩 现象,试件突然拉断。断后伸长率约为0.5%。为典型的脆性材料。 拉伸与压缩在屈服阶段以前完全相同 三脆性材料(铸铁)的压缩 脆性材料的抗拉与抗压性质不完全相同 压缩时的强度极限远大于拉伸时的强度极限 一、安全因数和许用应力 变形特点:位于两力之间的截面发生相对错动。 切应力强度条件:[τ]许用切应力,常由实验方法确定 第三章扭转 §3.1 扭转的概念和实例 扭转受力特点及变形特点: 杆件受到大小相等,方向相反且作用平面垂直于杆件 轴线的力偶作用, 杆件的横截面绕轴线产生相对转动。 1.材料力学就是研究构件强度、刚度、稳定性理论 2.变形性质分为弹性变形、塑性变形 3.研究内力的方法是截面法 4.表示内力密集的程度是应力 5.基本变形有:轴向拉伸或压缩、剪切、扭转、弯曲 6轴力图是表示轴力与横截面积关系 7.平面假设是受轴向拉伸的杆件,变形后横截面积仍保持不变为平面,两平面相 对位移了一段距离 8.应力集中是会在其局部应力骤然增大的现象 9低碳钢的四个表现阶段弹性阶段、屈服阶段、强化阶段、局部变形阶段 10.代表材料强度性能的主要指标是屈服强度和抗拉强度 11塑性指标主要是伸长率和断面收缩率 12.5 ≥ δ%为塑性材料% 5 < δ为脆性材料 13连接杆主要有铆钉链接、螺栓链接、焊接、键连接、销轴链接 14剪切计算主要有安全计算、加工计算、运算安全计算 15焊接的对焊接和搭焊接两种,其中对焊接有对接、V型、 X型 16按照强度条件设计的构件尺寸取大值,许应用荷载取小值, 17切应力互等原理是在单元体互相垂直的平面上,垂直于两面交线的切应力数值 相等,其方向均指向或背离该交线, 18脆性材料的抗拉能力低于其抗剪能力,塑性材料的抗剪能力则低于抗拉能力 19纯弯曲是指梁横截面上只有弯矩无剪力的弯曲 20横力弯曲指的是梁横截面上既有弯矩又有剪力的弯曲变形 21材料力学的基本假设连续性假设、均匀性假设、各向同性假设

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

中考化学专题讲座基本概念和基本理论

中考化学专题讲座基本概念和基本理论 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

专题讲座一基本概念和基本理论 考点剖析: 1、化学用语 化学用语是化学学科的语言工具,熟悉并熟练应用化学用语,是初中学生应该具有的化学学科基本素质之一,初中化学常见的化学用语有:元素符号、离子符号、原子或离子结构示意图、化学式、化学方程式等,对其基本要求是能够理解其意义并能正确书写。 2、物质的组成、结构和分类 重点掌握物质的宏观组成和微观构成,会判断物质的类别并掌握各类物质的读法、写法。 3、物质的性质和变化 重点掌握物理变化、化学变化、物理性质、化学性质等基本概念,并运用这些概念对具体物质的性质和变化进行判别。 4、质量守恒定律 质量守恒定律的概念和理论解释,利用质量守恒定律去解决实际问题。 中考热点预测 1、元素符号和化学式 用化学用语表示微粒或元素化合价,根据物质名称或指定物质类别书写化学式是较典型的题。近年来联系最新科技信息的题目渐多,一般是根据题目提供的化学式说明新物质的元素组成或分子构成情况。 2、物质的结构和分类 分子、原子、离子定义及原子(或离子)结构示意图等内容是本部分考查的重点,联系环保、化工等问题,考查物质的类别、组成或构成及隶属关系。在介绍一种新物质或有关环保、毒品或中毒的事件后,要求考生根据题给信息进行讨论和判断,是较新潮的题型。 3、化学方程式 判断化学方程式的正误、理解化学方程式的意义、化学方程式的读法等内容是考查的重点,对化学反应类型的考查多与书写方程式相揉和,特别是复分解反应发生条件是必考点。 4、质量守恒定律 有关质量守恒定律的概念和理论解释是本部分的基础,利用质量守恒定律来解决实际问题是各地中考题中的常见题型,如:利用质量守恒定律判断化学反应之中某物质的质量变化、求某物质的化学式或推断物质的组成。 说明:本部分内容在各省市中考题中都有,常常作为中考试题的开篇题,考核率为100%,命题的形式有选择题、填空题和简答题等形式。 复习技巧点拨 1、掌握规律,把好记忆关,在记忆过程中注意总结,增强应变能力和迁移能力。 2、复习时要有所侧重,在中考中,化合价与化学式、化学方程式是必考知识点,对于这样的精品知识,复习时要重点突破。 3、抓住物理变化与化学变化的本质区别:有无新物质生成。

高中化学“基本概念基础理论”知识归纳

2013年高中化学“基本概念基础理论”知识归纳 1.与水反应可生成酸的氧化物都是酸性氧化物错误,是"只生成酸的氧化物"才能定义为酸性氧化物 2.分子中键能越大,分子化学性质越稳定。正确 3.金属活动性顺序表中排在氢前面的金属都能从酸溶液中置换出氢 错误,Sn,Pb等反应不明显,遇到弱酸几乎不反应;而在强氧化性酸中可能得不到H2,比如硝酸 4.既能与酸反应又能与碱反应的物质是两性氧化物或两性氢氧化物 错误,如SiO2能同时与HF/NaOH反应,但它是酸性氧化物 5.原子核外最外层e-≤2的一定是金属原子;目前金属原子核外最外层电子数可为1/2/3/4/5/6/7 错误,原子核外最外层e-≤2的可以是He、H等非金属元素原子;目前金属原子核外最外层电子数可为1/2/3/4/5/6,最外层7e-的117好金属元素目前没有明确结论 6.非金属元素原子氧化性弱,其阴离子的还原性则较强 正确 7.质子总数相同、核外电子总数也相同的两种粒子可以是: (1)原子和原子;(2)原子和分子;(3)分子和分子; (4)原子和离子;(5)分子和离子;(6)阴离子和阳离子;

(7)阳离子和阳离子 错误,这几组不行: (4)原子和离子;(5)分子和离子;(6)阴离子和阳离子;(7)阳离子和阳离子 8.盐和碱反应一定生成新盐和新碱;酸和碱反应一定只生成盐和水 错误,比如10HNO3+3Fe(OH)2=3Fe(NO3)3+NO↑+8H2O 9.pH=2和pH=4的两种酸混合,其混合后溶液的pH值一定在2与4之间 错误,比如2H2S+H2SO3=3S↓+3H2O 10.强电解质在离子方程式中要写成离子的形式 错误,难溶于水的强电解质和H2SO4要写成分子 11.电离出阳离子只有H+的化合物一定能使紫色石蕊变红 错误,比如水 12.甲酸电离方程式为:HCOOH===H+ + COOH- 错误,首先电离可逆,其次甲酸根离子应为H COO- 13.离子晶体都是离子化合物,分子晶体都是共价化合物 错误,分子晶体许多是单质 14.一般说来,金属氧化物,金属氢氧化物的胶体微粒带正电荷 正确 15.元素周期表中,每一周期所具有的元素种数满足2n^2(n是自然 数) 正确,注意n不是周期序数

人教版初中化学基础知识: 基本概念和原理

初中化学基础知识| 基本概念和原理 【知识点精析】 1. 物质的变化及性质 (1)物理变化:没有新物质生成的变化。 ①宏观上没有新物质生成,微观上没有新分子生成。 ②常指物质状态的变化、形状的改变、位置的移动等。 例如:水的三态变化、汽油挥发、干冰的升华、木材做成桌椅、玻璃碎了等等。 (2)化学变化:有新物质生成的变化,也叫化学反应。 ①宏观上有新物质生成,微观上有新分子生成。 ②化学变化常常伴随一些反应现象,例如:发光、发热、产生气体、改变颜色、生成沉淀等。有时可通过 反应现象来判断是否发生了化学变化或者产物是什么物质。 (3)物理性质:物质不需要发生化学变化就能表现出来的性质。 ①物理性质也并不是只有物质发生物理变化时才表现出来的性质;例如:木材具有密度的性质,并不要求 其改变形状时才表现出来。 ②由感官感知的物理性质主要有:颜色、状态、气味等。 ③需要借助仪器测定的物理性质有:熔点、沸点、密度、硬度、溶解性、导电性等。 (4)化学性质:物质只有在化学变化中才能表现出来的性质。 例如:物质的金属性、非金属性、氧化性、还原性、酸碱性、热稳定性等。 2. 物质的组成

宏观 元素 组成 微观分子 原子核 质子原子 中子离子 核外电子 原子团:在许多化学反应里,作为一个整体参加反应,好像一个原子一样的原子集团。 离子:带电荷的原子或原子团。 元素:具有相同核电荷数(即质子数)的一类原子的总称。 3. 物质的分类 (1)混合物和纯净物 混合物:组成中有两种或多种物质。常见的混合物有:空气、海水、自来水、土壤、煤、石油、天然气、爆 鸣气及各种溶液。 28

纯净物:组成中只有一种物质。 ①宏观上看有一种成分,微观上看只有一种分子; ②纯净物具有固定的组成和特有的化学性质,能用化学式表示; ③纯净物可以是一种元素组成的(单质),也可以是多种元素组成的(化合物)。 (2)单质和化合物 单质:只由一种元素组成的纯净物。可分为金属单质、非金属单质及稀有气体。 化合物:由两种或两种以上的元素组成的纯净物。 (3)氧化物、酸、碱和盐 氧化物:由两种元素组成的,其中有一种元素为氧元素的化合物。 氧化物可分为金属氧化物和非金属氧化物;还可分为酸性氧化物、碱性氧化物和两性氧化物;酸:在溶液中电离出的阳离子全部为氢离子的化合物。酸可分为强酸和弱酸;一元酸与多元酸;含氧酸与无 氧酸等。 碱:在溶液中电离出的阳离子全部是氢氧根离子的化合物。碱可分为可溶性和难溶性碱。盐:电离时电离出金属阳离子和酸根阴离子的化合物。盐可分为正盐、酸式盐和碱式盐。 ì元素符号 ? ?化学式 4. 化学用语í

高中化学基础知识整理79065

高中化学基础知识整理 Ⅰ、基本概念与基础理论: 一、阿伏加德罗定律 1.内容:在同温同压下,同体积的气体含有相同的分子数。即“三同”定“一同”。2.推论 (1)同温同压下,V1/V2=n1/n2 同温同压下,M1/M2=ρ1/ρ2 注意:①阿伏加德罗定律也适用于不反应的混合气体。②使用气态方程PV=nRT有助于理解上述推论。 3、阿伏加德罗常这类题的解法: ①状况条件:考查气体时经常给非标准状况如常温常压下,1.01×105Pa、25℃时等。 ②物质状态:考查气体摩尔体积时,常用在标准状况下非气态的物质来迷惑考生,如H2O、SO3、已烷、辛烷、CHCl3等。 ③物质结构和晶体结构:考查一定物质的量的物质中含有多少微粒(分子、原子、电子、质子、中子等)时常涉及希有气体He、Ne等为单原子组成和胶体粒子,Cl2、N2、O2、H2为双原子分子等。晶体结构:P4、金刚石、石墨、二氧化硅等结构。 二、离子共存 1.由于发生复分解反应,离子不能大量共存。 (1)有气体产生。如CO32-、SO32-、S2-、HCO3-、HSO3-、HS-等易挥发的弱酸的酸根与H+不能大量共存。 (2)有沉淀生成。如Ba2+、Ca2+、Mg2+、Ag+等不能与SO42-、CO32-等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能与OH-大量共存;Fe2+与S2-、Ca2+与PO43-、Ag+与I-不能大量共存。 (3)有弱电解质生成。如OH-、CH3COO-、PO43-、HPO42-、H2PO4-、F-、ClO-、AlO2-、SiO32-、CN-、C17H35COO-、等与H+不能大量共存;一些酸式弱酸根如HCO3-、HPO42-、HS-、H2PO4-、HSO3-不能与OH-大量共存;NH4+与OH-不能大量共存。 (4)一些容易发生水解的离子,在溶液中的存在是有条件的。如AlO2-、S2-、CO32-、C6H5O-等必须在碱性条件下才能在溶液中存在;如Fe3+、Al3+等必须在酸性条件下才能在溶液中存在。这两类离子不能同时存在在同一溶液中,即离子间能发生“双水解”反应。如3AlO2-+Al3++6H2O=4Al(OH)3↓等。 2.由于发生氧化还原反应,离子不能大量共存。 (1)具有较强还原性的离子不能与具有较强氧化性的离子大量共存。如S2-、HS-、SO32-、I-和Fe3+不能大量共存。

材料力学各章重点内容总结汇编

材料力学各章重点内容总结 第一章绪论 一、 材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、 强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变 形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、 材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向 同性假设。 第二章轴向拉压 一、 轴力图:注意要标明轴力的大小、单位和正负号。 二、 轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴 力,轴力是内力,不适用于外力。 三、 轴向拉压时横截面上正应力的计算公式: 二 = F N 注意正应力有正负号, A 拉伸时的正应力为正,压缩时的正应力为负。 四、 斜截面上的正应力及切应力的计算公式:cos ? :?,. 一.. = jsin2〉 注意角度〉是指 斜截面与横截面的夹角。 Al g 七、 线应变」没有量纲、泊松比卩=一没有量纲且只与材料有关、 l g 胡克定律的两种表达形式:卞=E ;,厶"■F 也 注意当杆件伸长时l 为正, EA 缩短时l 为负。 八、 低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限 J ,弹性极限e )、屈服阶段(屈服 极限▽ s )、强化阶段(强度极限<^b )和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线 五、轴向拉压时横截面上正应力的强度条件 -■ max F N,max 六、利用正应力强度条件可解决的三种问题: 1? 强度校核 CJ max F N ,max A

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学基本概念(含答案)

材料力学基本概念 一、单项选择题 1.材料的失效模式 B 。 A 只与材料本身有关,而与应力状态无关; B 与材料本身、应力状态均有关; C 只与应力状态有关,而与材料本身无关; D 与材料本身、应力状态均无关。 2.下面有关强度理论知识的几个论述,正确的是 D 。 A 需模拟实际构件应力状态逐一进行试验,确定极限应力; B 无需进行试验,只需关于材料破坏原因的假说; C 需要进行某些简单试验,无需关于材料破坏原因的假说; D 假设材料破坏的共同原因,同时,需要简单试验结果。 3、 轴向拉伸细长杆件如图所示,__ A _。 A .1-1、2-2面上应力皆均匀分布; B .1-1面上应力非均匀分布,2-2面上应力均匀分布; C .1-1面上应力均匀分布,2-2面上应力非均匀分布; D .1-1、2-2面上应力皆非均匀分布。 4、塑性材料试件拉伸试验时,在强化阶段__ D ___。 A .只发生弹性变形; B .只发生塑性变形; C .只发生线弹性变形; D .弹性变形与塑性变形同时发生。 5、比较脆性材料的抗拉、抗剪、抗压性能:__ B ____。 A .抗拉性能>抗剪性能<抗压性能; B .抗拉性能<抗剪性能<抗压性能; C .抗拉性能>抗剪性能>抗压性能; D .没有可比性。 6、水平面内放置的薄壁圆环平均直径为d ,横截面面积为A 。当其绕过圆心的轴在水平面内匀角速度旋转时,与圆环的初始尺寸相比_ A ___。 A .d 增大,A 减小; B .A 增大,d 减小; C .A 、d 均增大; D .A 、d 均减小。 7、如右图所示,在平板和受拉螺栓之间垫上一个垫圈,可以提高___D __。 A .螺栓的拉伸强度; B .螺栓的挤压强度; C .螺栓的剪切强度; D .平板的挤压强度。 8、 图中应力圆a 、b 、c 表示的应力状态分别为 C A 二向应力状态、纯剪切应力状态、三向应力状态; B 单向拉应力状态、单向压应力状态、三向应力状态; C 单向压应力状态、纯剪切应力状态、单向拉应力状态; D 单向拉应力状态、单向压应力状态、纯剪切应力状态。 9.压杆临界力的大小 B , A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关; C 与压杆的长度大小无关; D 与压杆的柔度大小无关。 10.一点的应力状态如下图所示,则其主应力1σ、2σ、3σ分别为 D A 30MPa 、100 MPa 、50 MPa B 50 MPa 、30MPa 、-50MPa C 50 MPa 、0、-50MPa D -50 MPa 、30MPa 、50MPa 11. 对于静不定问题,下列陈述中正确的是( C )。 A 未知力个数小于独立方程数; B 未知力个数等于独立方程数 ;

初中化学基本概念

初中化学基本概念 1、化学:是一门在分子、原子层次上研究物质的组成、结构、性质以及变化规律的科学。 2、物理变化:这种没有生成其它物质的变化叫做物理变化。 3、化学变化:这种生成其它物质的变化叫做化学变化。(又叫化学反应)。 4、化学性质:将物质在化学变化中表现出来的性质叫做化学性质。 可燃性—助燃性、氧化性—还原性 活泼性---稳定性、酸性---碱性 5、物理性质:物质不需要发生化学变化就表现出来的性质叫做物理性质。 6、混和物:由两种或两种以上的物质混合而成的物质叫做混合物。 [ 由不同种分子构成的物质叫混合物。] 7、纯净物:只由一种物质组成的物质叫纯净物。[由同种分子构成的物质]。 8、单质:由同种元素组成的纯净物叫做单质。 9、化合物:由不同种元素组成的纯净物叫化合物。 10、氧化物:由两种元素组成的化合物中,其中一种元素是氧元素的化合物叫氧化物。 11、有机化合物:(包括蛋白质、糖类、油脂、维生素等) 12、无机化合物:(包括酸、碱、盐、氧化物) 13、化合反应:由两种或两种以上物质生成另一种物质的反应叫做化合反应。 14、分解反应:由一种物质反应后生成另一种的反应叫分解反应。 15、置换反应:由一种单质和一种化合物反应生成另一种单质和化合物的反应。 16、复分解反应:两种化合物相互交换成分生成另外两种化合物的反应叫做复分解反应。 17、氧化反应:物质与氧发生的反应叫做氧化反应。 18、还原反应:这种含氧化合物理的氧被夺去的反应叫做还原反应。 (1) 放热反应:反应后使体系温度升高。 包括:燃烧反应、氧化反应、中和反应、金属与酸反应、CaO与H2O反应等。 (2) 吸热反应:需要在不断提供热量的条件下才能发生的反应。 包括:加热分解制氧气。 19、中和反应:酸与碱作用生成盐和水的反应。 20、缓慢氧化:有些氧化反应进行很缓慢,甚至不容易被查觉,这种氧化叫做缓慢氧化。 21、燃烧:可燃物与氧气发生的一种发光发热的剧烈的氧化反应叫燃烧。 22、催化剂:这种在化学反应里能改变其它物质的化学反应速率,而本身的质量和化学性质 在反应前后不发生变化这种物质叫催化剂(又叫触媒)。催化剂所起的作用叫做 催化作用。 23、分子:是保持其化学性质的最小粒子。 24、原子:是化学变化中的最小粒子。 25、离子:是带电的原子或原子团。 26、相对原子质量:即以一种碳原子质量的1/12为标准,其他原子的质量与它相比较 所得的值叫做该原子的相对原子质量。 27、元素:是质子数(即核电荷数)相同的一类原子的总称。 28、硬水:含有较多的可溶性钙镁化合物的水叫做硬水。 29、软水:不含或含有较少可溶性钙镁化合物的水叫软水。 30、化学式:这种用元素符号和数字的组合表示物质组成的式子。 31、合金:在金属中加热融合某些金属或非金属,就可以制得具有金属特征的合金。 32、溶液:一种或几种物质分散到另一中物质里,形成均一的稳定的混和物,叫溶液。

高中化学基本概念与计算

巩固练习 完成下列化学方程式 1、铝与氢氧化钠溶液反应 2、氧化铝与硫酸的反应 3、氧化铝与烧碱的反应 4、氢氧化铝与盐酸的反应 5、氢氧化铝与苛性钠的反应 6、实验室制备氢氧化铝 7、氧化铁与硫酸的反应 8、氢氧化亚铁与硫酸的反应9、氯化铁中加入铁粉 10、氯化铁中加入铜粉 11、氯化亚铁中滴加氯水 12、铜与浓硝酸的反应 13、铜与稀硝酸的反应 1、二氧化硅与氢氟酸反应 2、二氧化硅与生石灰(CaO)反应 3、实验室制备氯气 二氧化硫与生石灰的反应 4、工业合成氨 5、碳酸氢铵受热分解 6、实验室制备氨气 7、铜与浓硫酸的反应 8、C与浓硫酸的反应 (一)化学基本概念 1、化合物:组成中含有不同种元素的纯净物叫化合物。如:CO 2、NaCl、H2O都是化合物 2、单质:有同种元素组成的纯净物叫单质。如:Fe、H2、N2都是单质 3、分子是由原子构成的 4、化合价:化合价是用来表示元素的原子之间相互化合时的数目。它有正价和负价之分。

规律 (1)金属元素与非金属元素化合时,金属元素显正价,非金属元素显负价 (2)氢元素通常显+1价,氧元素通常显—2价。 (3)在化合物中元素化合价的代数和为0 (4)在单质里,元素的化合价为0 5、化学式:用元素符号表示物质组成的式子,叫做化学式。如O2、H2O、CO2、KClO3等 化学式的含义(以H2O 为例): ①表示一种物质:水这种物质 ②表示这种物质的元素组成:水有氢氧两种元素 ③表示这种物质的一个分子:一个水分子 ④表示这种物质的一个分子的构成:一个水分子有2个氢原子和1个氧原子构成 【练习】:1、试写出下列物质的化学式 氯化钠硝酸氧化铝氯化铝氢氧化铝氨气 过氧化氢过氧化钠氯化亚铁硫酸钠碳酸氢钠硅酸钠2、下列化学用语与含义不相符的是( ) A.AlCl 3——氯化铝 B.Ca2+——钙离子 C.2 O——2个氧元素 D.2H 2 O——2个水分子 3、氯化钴(CoCl2)试纸常用来检验水是否存在,其中钴(Co)元素的化合价是( ) A.+2 B.+1 C.-2 D.-1 4、下列含氮化合物中,氮元素的化合价为+3价的是() A.NO B.NH 3 C.HNO 3 D.HNO 2 【解析】:由于氢元素通常显+1价,氧元素通常显-2价,根据化合物中正负化合价的代数和为0,可判断NO中氮元素化合价是+2,NH3中氮元素化合价是-3,HNO3中氮元素化合价是+5,HNO2中氮元素化合价是+3。 5、写出下列常考的离子 氢氧根离子()硫酸根离子()亚硫酸根离子() 硝酸根离子()硅酸根离子()氯离子()碳酸根离子() 碳酸氢根离子()铵根离子()三价铁离子()亚铁离子() 高锰酸根离子() 常见的酸与酸跟 (二)、物质的分类之酸碱盐 一、酸 1、酸是一类化合物的统称。酸在化学中狭义的定义是:在水溶液中电离出的阳离子全部都是氢离子的化合物,25℃时,其稀溶液的pH值小于7。这类物质大部分易溶于水中,少部分如硅酸()难溶于水。 常见的酸主要有 碳酸H2CO3 磷酸H3PO4 盐酸HCl 硝酸HNO3 氢硫酸H2S 氢溴酸HBr 氢氟酸HF 亚硫酸H2SO3 氢碘酸HI 硅酸H2SiO3 硫酸H2SO4

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

相关主题
文本预览
相关文档 最新文档