当前位置:文档之家› 管井出水量减少的原因和应对措施(徐江海) Word 文档

管井出水量减少的原因和应对措施(徐江海) Word 文档

管井出水量减少的原因和应对措施(徐江海) Word 文档
管井出水量减少的原因和应对措施(徐江海) Word 文档

管井出水量减少原因和对应措施

徐江海,0908070026,给水排水工程

摘要:管井出水量减少在生活中屡见不鲜,如何妥善处理好这一问题日渐重要。本文从地质、化学、取水工程等方面分析其原因,探讨处理措施,如何恢复管井出水量。对于节约水资源有着重要意义。

关键词:出水量减少:对应措施:节约水资源。

随着社会的进步,工业及人畜用水不断增加,水井在国民经济的建设中有着举足轻重的作用。但很多水井在施工和使用过程中(一般正常供水水井在使用3~6年的时间后),常常出现水量减少、水质变差和管井无法使用等问题,尤其是水量减少发生的最为频繁,因此,给人们的生产,生活带来很多的困难。

下面就供水井水量减少、水质变坏的原因进行分析:

影响出水量减少的因素

1、地质、水文地质条件

观景大多分布在第四冲击、山前冲洪积、湖积及河道一、二阶级地的松散沉积层。①其含水层岩性主要为中粗砾、砾沙、卵石、粉细砾,结局为沙质粉土,结构松散、厚度不一;隔水层多为粘土,粉质粘土或粉质土、淤泥等,并与含水层互层,造成层位不稳定,容易曾透镜体状。管井在长期使用或超量开采条件下,含水层结构易遭受破坏,导致沙粒混杂,细颗粒大量涌入管井外围含水层颗粒空隙内和井内,使得水中含沙量过多,经长时间沉淀后下部滤水管淤积掩埋,造成滤水管堵塞,阻碍了地下水的畅通,出水量减少。

而天气干旱降雨量减少,管井持续超量开采或采用大泵量、大降深开采,就会破坏滤网未产生出砂现象或者沙层与填砾不实的地方坍塌混合,导致出现地下水漏斗扩大或区域地下水水位下降而造成地下水资源枯竭。

2、水化学环境②

由于第四系地层结构松散,透水性强,管井上部水汽交替剧烈,在长期开采条件下,水动力条件变化打乱,可形成较深氧化带,在这种情况下,不管是酸性、中性或弱碱性的水都会生成较强的腐蚀作用;而地下水中游离的二氧化碳在金属氧化过程中起催化作用,游离二氧化碳含量越高,腐蚀性越强;再者,地下水含

有硫化氢和二氧化硫、铁以及硫酸盐和有机酸时,腐腐蚀会加快,因此,对管井的保护和利用非常不利。

然而,腐蚀与结垢是相互伴生的,在钙质结构较多,可溶性物质比例较大,含Fe、Mn、Ca、Mg较高的地层,含氧地下水可分离出可溶性离子,并在一定的自然环境下沉淀胶结,对过滤器形成化学堵塞。而腐蚀过程中产生的沉淀堆积于缝隙处,堆积物加速了缝隙腐蚀,也就造成空隙堵塞。

又根据地下水中常含有各种溶解盐类和气体,特别是高矿化度地下水,从电化学的角度分析,俨然是一种天然的电解液。井管材料一般是钢管或铸铁管,滤水管中的铜网、铁网在地下水中,铜为阴极,铁为阳极。便可在铜、铁间产生电解电场,铁离子则被吸附在铜滤网上,形成胶结造成滤网堵塞和钢管被腐蚀破坏。

在地下水尚未开采时,地下水的运动趋于平衡,含水层的各种因素都保持着天然的状态。一旦开采,便侵犯了它自身既定的法则,而且,人们在这方面热衷的是长期的利用,那么地下动力条件发生了变化,天然状态的含水层被破坏,细颗粒成分发生运移和累积形成阻水屏障。当细颗粒进入管井随水被抽出地表,长此以往,使得地下水水位下降和管井周围形成空洞,甚至出现管颈断裂等,以致于管井不能使用。

3、原井成井工艺

原井成井工艺直接影响管井的出水量和使用寿命,就好比做衣服要保证一定的做工方式与所用的材质一样。在管井的建造过程中必须保证钻孔质量、记录好钻孔的岩性垂直分布和厚度、正确设计井壁管和过滤器的位置和长度、准确计算填砾粒径级配和厚度及封井部位、合理选择洗井方法并严格洗井程序等。总言之,在施工过程中,必须严格按照设计的方案进行,不能有半点的含糊。

4、取水井变化

抽水设备损坏,或者是系统因素造成的影响。取水井本身的生命期限一定,超越其使用期限,会造成过滤器及其周围滤层堵塞、漏砂。近年来,非金属过滤器的使用有了发展,尤其是钢筋混凝土过滤器在农灌中取得很好的效果。虽然其抗腐蚀性大大的加强,不过还是存在很多缺陷:环向耐压强度低、热稳定性差等。从而造成设备的损坏,造成管井出水量减少。

5、井径对出水量的影响

由井的理论公式可知,井径r0对井的出水量Q有一定影响。在一定范围内,水流趋近井壁,进水断面缩小,流速变大,水流由层流转变为混合流或者紊流状态,且过滤器周围水流为三围流。由实验可知③:管井在500mm 以内时,井出水量收到紊流和三围流影响而下降,管径越小,则影响越大。

6、管井的使用与管理

能否正确使用和科学管理管井,将直接影响管井的质量和使用寿命。特别在严重干旱地区或是在缺水季节,往往所配水泵的额定流量大于水井的用水量,强抽将会造成过大的水力坡度、流速和水跃值,而超过了当初设计、建造是的上限,造成含水层坍塌、管井涌砂和过滤器堵塞,使出水量在短期内急剧下降。还有,无论什么物质,都拥有一个使用寿命,一般管井的使用期限是3~6年,当管井的使用时间达到这一规定的时间后,就应及时跟换,免得出现故障,措手不及。

而相应的应对措施则可归纳如下:

1、管井清淤的常用方式

对于管井的清淤,主要方法有以下几种:A、掏沙洗井清淤发掏沙管类似冲击钻机所配置的掏沙筒,又钢板卷或钢管制成,直径100mm、长约

1.5~2m,上部连接提引环或钻杆接头,底部金沙口有活门挡沙板,适用于深井;

B、单泵清淤法先用一台较大流量的清水泵,安放在水池旁,水泵吸水管放入池内,被水淹没,然后水泵出水口连接胶管,胶管最前端安装一部水枪并放入井内,水枪嘴接触管井淤泥面积,再开泵抽水压入井内,喷枪射出的高速水流将淤积物冲起,随着上涌的水流排入池内,沉于池底,由于清水不断压入井内,喷枪也不断下落,井底终将被洗净,该法适用于五六十米深的管井;

C、双泵清淤法一台泵供清水并搅冲井底淤积层,另一台泵抽沙排水,冲沙泵可选用高扬程清水泵,冲压大于搅冲淤泥层,抽沙的水泵应选用泥浆泵或砂石泵,易于将粗的颗粒物抽出,抽沙泵进水口应考经冲沙泵出水口,此方法适用于较大直径和较深的管井。

2、对管井设施的要求

管井建造过程中的设备必须严格按照国家制定的标准来执行,不可偷工减料,在特别重要的器件上,还不得不使用最优原则,在条件允许范围内,尽可

能的使用最好的材料,从长远来看,这样带来的利益远比使用劣质材料不断修葺多得多。

3、针对性的处理方法

通过长期的实验与工作经验的积累,得出了一下的处理方法:

a)井内淤积与沉淀通常使用高压机振荡洗井,主要作用是排渣

疏通含水层,有点在于效率高、成本低。

b)井壁结构与腐蚀通常使用钢刷刷洗井壁法,主要起到清除的作

用,有点事成本低、处理干净。

c)结垢与砾料胶结严重通常使用控制爆破二氧化碳洗井法,主要

作用是波坏其强度,优点在于效率高、成本低。

d)淤积与轻度结垢通常使用二氧化碳洗井法,主要作用是排渣、

形成负压,优点在于效率高、成本低。

e)碳酸岩地层及除锈主要使用盐酸洗井法,主要作用是产生化学

反应,其特点为工艺复杂、效果好。

f)轻度结垢主要用活塞拉孔法,其作用是重新排列砾料,优点在

于效率高、成本低。

4、从预防方面来分析

●有计划高速度的在管井分布区域及周边种植根系发达的树木,以涵

养水源;

●合理调整管井分布地区及周边的软、硬覆盖比例,保护现有树木及

绿地,减少雨水的流失和蒸发;

●加强宣传力度,提高城市居民及各建设部门的“保护地下水资源从

身边做起“的意识,提倡全民一起节约用水,并且多做一些可以彰显水资源逐渐匮乏的公益活动,让市民有一定的危机意识,以及让市民领悟到一定的责任感;

●加强地下水资源管理,杜绝无序地、无限度地开采,倡导可持续发

展方针政策;

●合理分配好生活用水与工业用水的供给,对排水管道做系统而科学

的设计,降低对优质地下水的污染。

结束语

通过对管井周围的地质环境、化学环境和管井自身的组成成分的分析,以及从管井管理方面进行探讨。总结以上6方面出水量减少的原因,和4个应对措施。当然,还有很多方面的原因造成出水量减少。但是,经过人类的不断总结,最后一定能完全解决这一水资源浪费问题。从而,人类在节约用水方面向前迈出重要的一步。

参考文献

①马树升,山东农业大学学报(自然科学类)。2005

②徐伟,曲琳。市政与路桥。2008

③董辅祥。高等学校试用教材(图6-36)1998

管井设计涌水量计算

管井设计涌水量计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大 小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算;q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; 目录

管井设计涌水量计算

11月整理 管井设计及出水量计算 稳定流完整井 / 吴成泽 2012-12-1 — 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m);K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水 层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; & N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); ' R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; %

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

供水管井设计施工及验收规范

范文范例指导参考 供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织 编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10- 86, 自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中 国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二早管井设计 第一 -节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层 或多层含水层时,可设计分段或分层取水井组;与 学习资料整理 范文范例指导参考 河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》

锅炉房用水量设计计算

锅炉房用水量设计计算 1、锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 2、生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃)热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。

如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉 0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程” 运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98%

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽 1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土( <=-4m),淤泥质粉质粘土(<=- 7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为- 0.5m 采用轻型井点降水施工。 1 井点布设根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总 管接 近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度L=50X 2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H 2>=H1 +h+IL= 4.0+ 0.5+ 0.1 x 5.75= 5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面

0.2m,埋入土中 5 . 8 m (不包括滤管)大于 5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算Q= 先求出H、K、R、x0 值。 H: 有效带深度H= 1.85(S,+L) s'=-6 0.2- 1.0= 4.8m 求得H: H= 1.85(s,+L)= 1.85( 4.8+ 1.0)= 10.73(m) 由于HO

10.73(m) K: 渗透系数,经实测K= 0.4m/d R: 抽水影响半径R=(m) xO:基坑假想半径,x0 = (m) 将以上数值代入公式得基坑涌水量Q:Q=( m3/d )

矿井涌水量的计算与评述 钱学溥

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

供水管井设计、施工及验收规范(精品范文).doc

【最新整理,下载后即可编辑】 供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计

第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。 第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料;

用水量计算

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第3.6.3、3.6.4条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第3.6.5条和第3.6.6条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数每户 Ng 345678910 qokh 350102009600890082007600———400910087008100760071006650——4508200790075007100665062505900—50074007200690066006250590056005350 55067006700640062005900560053505100 60061006100600058005550530050504850 65056005700560054005250500048004650 70052005300520051004950480046004450

注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第3.1.9条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第3.1.10条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。 3.6.1原规范2003版设计流量计算存在下列问题: a. 3000人以上支状管道计算无依据; b. 3000人以下环状管道计算无依据; c. 在3000人前提下按设计秒流量式(3.6.4)计算和按最大小时平均流量计算得到两种结果; d. 居住小区给水支管按最大小时平均秒流量计算偏小,与住宅按概率法计算设计秒流量不能銜接;

管井降水计算书

管井降水计算书 一、水文地质资料 二、计算依据及参考资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: 基坑降水示意图 Q=(2H-S)*S/(lgR-lgr0) Q为基坑涌水量; k为渗透系数(m/d):取综合渗透系数10m/d H为含水层厚度(m):主要为细砂层以上取 R为降水井影响半径(m):根据施工经验取15m r 0为基坑范围的引用半径(m):r =(r1+r2r+r3+r4+…+rn)1/n 降水干扰井 群分别至基坑中心点的距离; S为基坑水位降深(m):

D为基坑开挖深度(m):取 d 为地下静水位埋深(m):取 w sw为基坑中心处水位与基坑设计开挖面的距离(m):取 通过以上计算可得基坑总涌水量为2672m3。 2、降水井深度确定: 降水井深度按下式: H W =H1+ H2 + H3 + H4 + H5 + H6 H W—降水井深度(m); H1—基坑深度(m);(取) H2—降水水位距离基坑底要求的深度(m);(取) H3—iy0;i为水力坡度,在降水井分布范围内宜为1/10—1/15,y0为降水井分布范围内基坑等效半径;(计算得,取) H1—降水期间水位变幅(m);(取) H2—降水井过滤器工作长度(m);(取) H W—沉砂管工作长度(m);(取) 根据上式计算得:降水井深度为 3、降水井数量确定: 单井出水量计算: q = (l′d)/a*24 降水井数量计算: q为单井允许最大进水量(m3/d); d为过滤器外径(mm):取400mm l′为过滤器进水部分长度(m)(过滤器进水部分有效长度取); a为与含水层渗透系数有关的经验系数(根据渗透系数5—15m/d,含水层厚度≤20m,取100)

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

供水管井设计施工验收规范

供水管井设计施工验收规范

供水管井设计、施工及验收规范CJJ10—86 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中, 如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计 第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。

第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料; 五、管井的附属设施如测水管、填砾管等。 第2.3.2条井身结构应尽量简化。井身设计应首先根据成井要求,确定井的最终直径,然后考虑成井工艺、岩石可钻性等因素,确定每段井径大小与深度,最后,确定井的开口直径。 第2.3.2条松散层中管井的深度,应根据拟采含水层(组)的顶板埋藏深度、过滤器的合理长度、过滤器的安装位置、沉淀管的长度来确定。

供水管井设计、施工及验收规范

供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计 第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。

第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料; 五、管井的附属设施如测水管、填砾管等。 第2.3.2条井身结构应尽量简化。井身设计应首先根据成井要求,确定井的最终直径,然后考虑成井工艺、岩石可钻性等因素,确定每段井径大小与深度,最后,确定井的开口直径。 第2.3.2条松散层中管井的深度,应根据拟采含水层(组)的顶板埋藏深度、过滤器的合理长度、过滤器的安装位置、沉淀管的长度来确定。 基岩地区的管井,应尽量穿透拟采含水构造带(岩溶发育带、断裂破碎带、裂隙发育带)。 注:如有确切资料,部分揭露含水构造带,就能满足需水要求时,管井亦可不穿透含水构造带。 第2.3.4条设计井径时,应考虑管井的设计取水量和成井工艺等因素。并满足下列要求: 一、井径应比设计过滤器的外径大50mm,基岩地区在不下过滤器的裸眼井段,上部安泵段的井径应比抽水设备铭牌标定的井管公称内径大50mm。 二、松散层中的管井井径,应用允许入井渗透流速(Vj)复核,并满足下式要求:

矿井涌水量的计算

三、地下水动力学法 地下水动力学法的理论依据是地下水运动的线性渗透定律,即达西定律。根据这个原理和具体的水文地质条件,可选择不同的公式计算矿井井简的浦水量。 (一)垂直井筒涌水量的计算 1.潜水完整井涌水量计算 所谓潜水完整井是指开凿在潜水含水层中,井打穿含水层到隔水层底板的井筒 22 1.366lg lg H h Q K R r -=- 因为 h=H-S 所以 (2)1.366lg lg H S S Q K R r -=- 在井筒掘凿时,井筒中式不允许积水的,因此h=0,或者说S=H,这时, 2 1.366lg lg H Q K R r =- 式中 Q ——井筒涌水量(m3/d ) K ——含水层渗透系数(m/d ) H ——含水层厚度 h ——井中出水地段高度 S ——水位降低值 R ——影响半径 r ——井筒半径 2.承压水完整井涌水量计算 承压水完整井是指开凿在承压含水层中,并全部揭露含水层的井筒 ()2.73lg lg M H h Q K R r -=-或 2.73lg lg MS Q K R r =- 3.完整潜水承压井涌水量计算 当井筒穿过承压含水层水位下降很大,降到隔水顶板以下时,井筒附近变为无压水,这种情况称为潜水承压井 22(2)1.366lg lg HM M h Q K R r --=- 上述公式同样适用于钻孔涌水量计算 如果抽水试验是在井筒检查孔中进行,用钻孔涌水量可按下式换算成井筒涌水量 112122 lg lg lg lg R r Q Q R r -=- (二)水平尽道涌水量的预剐方法 计算水平巷道涌水量时,同样可将巷道看成为水平集水于程。因此,可利用地卞水向水平集水工程运动的公式计算。

供水管井技术要求规范

供水管井技术规范 前言 本规范是根据国家计委计综合〔1991〕290号文的要求,由原冶金工业部主编,具体由冶金工业部武汉勘察研究院会同中国市政工程西南设计研究院、中国煤田地质总局、冶金工业部勘察研究总院、中国有色金属工业总公司昆明勘察院和合肥工业大学等单位组成修订组,对原《供水管井工程施工及验收规范》GBJ 13—66进行修订而成。由于规范增加了管井设计的内容,故更名为《供水管井技术规范》,经建设部1999年4月13日以建标[1999] 101号文批准,并会同国家质量技术监督局联合发布。 在修订过程中,修订组进行了大量的调查研究,针对原规范在执行中发现的问题及生产中提出的新的要求,认真总结了我国供水管井设计和施工的实践经验,并广泛征求了全国有关单位和专家的意见,最后由原冶金工业部会同有关部门审查定稿。 本次修订的主要内容有:关于术语与符号的规定;增加了管井设计的要求;关于管井施工的技术要求等。 在执行本规范过程中,希望各单位结合工程实践和科学研究,认真总结经验,注意积累资料。如发现需要修改和补充之处,请将意见和有关资料寄交武汉市冶金大道177号冶金部武汉勘察研究院《供水管井技术规范》国家标准管理组[邮政编码430080,传真(027) 86861906],以供今后修订时参考。 本规范主编单位、参编单位和主要起草人: 主编单位:冶金工业部武汉勘察研究院 参编单位:中国市政工程西南设计研究院 中国煤田地质总局 冶金工业部勘察研究总院 中国有色金属工业总公司昆明勘察院 合肥工业大学 主要起草人:胡琏张锡范叶贵钧李天成蒋本昌邱掌珠 1 总则 1.0.1 为统一供水管井工程的设计和施工的技术要求,特制定本规范。 1.0.2 本规范适用于生活用水和工业生产用水管井工程的设计、施工及验收。 1.0.3 供水管井的设计与施工,应在取得现行国家标准《供水水文地质勘察规范》 GBJ 27规定的勘探阶段的水文地质资料后进行。当资料不能满足管井的设计或施工时,应补

隧道涌水量预算

隧道涌水量预测 准确预测隧道涌水量一直是国内外隧道建设的难点,目前尚无成熟的方法。为了使我们的预测尽可能接近实际,进行了大量的水文地质调查与测试,采集了较丰富的数据,拟采用多种方法进行预测。考虑各段含水带渗透系数的差异,采取分段预测隧道涌水量。并根据水文地质条件选用三种不同方法(公式)分别计算,以便比较。 8.2.1 竖井比拟法 裂隙网络具分段独立性,含水体上、下部均有隔水边界。设单个竖井居各段裂隙发育系统之中,完全可以达到疏干目的。又因在不同地段内均有代表性抽水试验孔,按钻孔涌水量曲线方程推求各段隧道底板的涌水量,然后比拟成竖井涌水量,将会较为接近实际。 本次根据ZK28-3、ZK29-1、CZK53-1、CZK53-2抽水试验Q~S曲线曲线方程下推预测涌水量如下表8.2.1: 隧道涌水量预测(一)表8.2.1

8.2.2 地下水动力学法 考虑隧道在长期排水的情况下,位于无限厚的潜水含水带中,按有限含水厚度计算涌水量。采用潜水非完整式水平巷道公式: Q =] ) (2)(4cos )(4ln[kS )(22121212 2 212 1R R R R лb R R лb R H R H kb +-++ + 式中:H 1=H 2 R 1=R 2 Q —预测涌水量(m 3/d ); H —由隧道路肩起算的含水层厚度(m ); R —隧道排水影响宽度(m ); b —隧道宽度(m ); S —降深(m ); k —隧道围岩渗透系数(m/d )。 隧道涌水量预测(二) 表8.2.2

8.2.3 降水入渗系数法 采用的计算公式为: Q=2.74×α×ω×A 其中:Q—计算涌水量(m3/d); α—入渗系数; ω—年降水量(mm); A—隧道集水面积(k㎡)。 中条山大部分基岩裸露,地表裂隙发育,有利于大气降水入渗。但地形陡峭,大气降水易排走不易补给地下水,冲沟地段地势低平有利地下水入渗,根据有关经验数据,中条山混合花岗片麻岩和片岩地区的综合入渗系数取0.20。 Q=2.74×0.20×600×3.08=1013(m3/d)

管井降水计算书

1、基坑总涌水量计算: 基坑降水示意图 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d )S d /ln(1+R/r o )=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r 为基坑等效半径(m); S d 为基坑水位降深(m); S d =(D-d w )+S D为基坑开挖深度(m); d w 为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q 0=120πr s lk1/3 降水井数量计算: n=q q 为单井出水能力(m3/d); r s 为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[k×(lgR -lg(nr n-1r w )/n]1/2

l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S 1=H-(H2-q/(πk)×Σln(R/(2r sin((2j-1)π/2n)))) S 1 为基坑中心处地下水位降深; q=πk(2H-S w ) S w /(ln(R/r w )+Σ(ln(R/(2r sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w = H 1 +s-d w +r o ×i =+根据计算得S 1 = >= S d =,故该井点布置方案满足施工降水 要求!

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数

W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2

相关主题
文本预览
相关文档 最新文档