当前位置:文档之家› 微积分(上)复习资料——概念

微积分(上)复习资料——概念

微积分(上)复习资料——概念
微积分(上)复习资料——概念

微积分(上)复习资料——概念

复习步骤——

1.概念

2.公式

3.解题格式

4.题型

知识网络——

1.函数

2.极限

3.导数

4.导数应用

5.微分

6.微分中值定理

7.洛必达法则

8.不定积分

1.函数

1.1邻域

设有实数a及b,b>0。{xIIx-aI}

若去掉点a,{xI0

a-b a a+b

1.2显函数和隐函数

明确因变量和自变量,可用y=f(x)表示的函数称为显函数。反之不明确因变量和自变量,不可用y=f(x)表示,即只是表示x于y关系的函数隐函数。

Tip: -1,x<1

符号函数y=sgnx= 0,x=1

1,x>0

取整函数y=[x]

1.3有界性

设f(x)在实数集D上有定义。若存在正数M,是对D中的任意x都有If(x)I≤M,则称f(x)在D上有界,f(x)是D上的有界函数,M称为f(x)在D上的一个界。若不存在满足上述条件的M,则无界。

2.极限

2.1数列极限

设数列,常数。若当n→∞,→常数,则称该数列收敛于或收敛数列,称为极限。记作或→,( n→∞)

若数列没有极限,则称不收敛,或称为发散数列

2.2收敛数列性质

性质1(唯一性):收敛数列只有一个极限

性质2(有界性):有界是收敛数列的必要条件

性质3(保号性):若数列极限为正(或负),则该数列从某一项开始的所有项也为正(或负)。

性质4:若数列收敛于a,则它的子数列也收敛于a。数列的任意一段数列称为子数列

2.3函数极限

设f(x)为区间D上的函数,A为任意值。若当x→,f(x)→A,则称是f(x)的极限,记作或f(x)→A (x→)

定理1

的充要条件是 —

定理2

的充要条件是 —

总结:极限存在的充要条件是左右极限存在且相等

2.4函数极限性质

性质1(唯一性):若存在,则极限是唯一的

性质2(局部有界性):若存在,则f(x)在的某去心邻域有界

性质3(局部保号性):若或,则存在正数b,

当00(或<0)

推论1若或,则存在正数b,当0 (或<)

推论2若在的某去心邻域内≥0(或≤0),且 或

2.5极限存在准则——两个重要极限

定理1(夹逼准则)

设数列{},{},{}满足

(1)

(2)存在正整数,当时,,则数列{}收敛,且

设函数f(x),g(x),h(x)

(1)

(2)在的某个邻域内,有,则

定理2(单调有界准则)单调有界数列必有极限。

2.6无穷小与无穷大

无穷小定义:

若,则称为当时的无穷小。

无穷小性质:

(1)若,为无穷小,则,为无穷小。

(2)若为无穷小,为有界函数,则仍为无穷小。

(3)是一个当时的无穷小。

无穷大定义:

若,则称为当时的无穷大。

定理1:在自变量x的同一变化过程中,若为无穷大,则为无穷小;反之若为无穷小,且,则为无穷大。

2.7无穷小的比较

设f及g是在自变量x的同一变化过程中的无穷小,且。

(1)若,则f是比g高阶的无穷小,或g是比f低阶的无穷大,记作;

(2)若,则f与g是同阶无穷小,记作。

特别地,若,则f与g是等阶无穷小,记作。

定理2:设,,且存在,则

2.8函数连续性

定义1

设在的某个邻域内有定义,若,则称在连续,并

称为的连续点。

定义2

设在的某个邻域内有定义,若,则称在连续。

定义3

若定义1中的具体化为或,支持则称在左连续或右连续。

定理1

在连续的充要条件是其左右极限存在且相等。

2.9间断点

定义4

设在的某个去心邻域内有定义,若在不连续,则称为的不连续点或间断点。据此,必有下列情况之一:

(1)在无定义;

(2)在有定义但不存在;

(3)在有定义,且存在,但。

可去间断点:上述(1)(3)

跳跃间断点:在的左右极限存在但不相等

可去间断点和跳跃间断点统称第一类间断点,其特点是左右极限都存在,其余间断点则称为第二类间断点,其特点是左右极限至少有一个不存在,如:

无穷间断点:的

震荡间断点:在时函数值在-1与1之间无限次的变动。

2.10连续函数的运算

定理2(四则运算)

若,在连续,则其四则运算的结果也在连续。

定理3(复合函数的运算)

如果在连续,在连续,且,则在连续。定理4(反函数的连续性)

若在单调连续则在连续。

推论1若在连续,则在有界。

定理6(介值定理)

若在连续,且,

则或

推论2(根的存在定理)

若在连续,且,则至少存在一个,使。

推论3在闭区间的连续函数必取得介于其最大值和最小值之间的任何值。

3.导数

3.1导数概念

设在的某个邻域内有定义,

若极限,

则称在可导,并该极限称为在的导数。

若具体化为或,支持则称在左极限或右极限,

统称单侧极限。

在可导的充要条件是其左右极限存在且相等。

3.2导函数

若在区间I上的点都可导,则称是在区间I上的导函数,对于在区间I上的每一个对应的导数记作或,有时也写成 ︱或︱。

定理若在可导则它一定在连续

3.3导数在经济学的应用

边际概念:

设可导,则导数叫做边际函数。成本函数的导数叫做边际成本;

收入函数的导数叫做边际收入;利润函数的导数叫做边际利润。

函数的弹性:

在经济学,的增量称为函数在x的绝对改变量,导数称为函数在x的绝对变化率。

相对改变量与之比的极限,表示在x函数y的相对变化率,称为在x的弹性,记作。

在经济学,将需求量对价格的相对变化率称为需求的价格弹性

3.4隐函数和参数方程的导数

隐函数:两边分别求导,有时可利用对数求导简化问题。

参数方程:设,则其导数为。

4 导数的应用

函数单调性

定理1:设函数在闭区间I连续,在开区间I可导。

若在开区间I内,那么在闭区间I单调递增;

反之在开区间I内,那么在闭区间I单调递减。

定理2.3:设曲线在闭区间I连续,在开区间I可导。

若在开区间I内(单调递增),那么在闭区间I是凹的;

反之在开区间I内(单调递减),那么在闭区间I是凸的。定义:拐点是曲线凹凸部分的分界点。

推论:由于拐点是曲线凹凸部分的分界线点,所以在拐点的两侧异号,在拐点处或不存在。

函数的极值

驻点(稳定点)定义:使的点。

定理1:设在处可导,且取得极值,则。

定理2(第一充分条件):设在处连续,且在的某个去心邻域内可导。

若当时,,而当时,,则在处取得最大值;反之取得最小值。

定理3(第二充分条件):设在处有二阶导数,且,, 则当时,在处取得最大值;反之取得最小值。

tip:应注意以上都是充分条件,要确定极值还需判断该点的定义。

曲率(经管系不要求掌握):用来描述曲线弯曲程度,

曲率计算公式,直线上任意一点的曲率,半径为a的圆上的任意一点的曲率,参数方程的曲率

设在的曲率为,在的曲线的法线上,在凹的一侧取一点D,使。以D为圆心,p为半径作圆,该圆叫曲率圆,D叫曲率中心,p 叫曲率半径。由此可见,p越大,曲率越小。

5 微分

定义1:设函数在的某个邻域有定义,对于,

若对应能表示成,其中是与无关的常数,则称在可微,并称为在的微分,记为 ︱或 ︱,即 ︱。由定义可见,函数的微分与增量仅相差一个关于的高阶无穷小量,由于是的线性函数,所以当时,也说微分是的线性部分。定理:在可微的充要条件是在可导,并且有如下关系:

若在区间I上都可微,则称为I上的可微函数,在I上的任一点的微分记作。它不仅依赖于,而且也依赖于x。特别当y=x 时,有,这表示自变量的微分就等于自变量的增量。于是有,(微商)。

几何意义:

的图像是一条曲线,当自变量x由变到时对应点M变到N。

,,过作曲线切线,它的倾斜角为,

则,。由此可见,对于可微函数,当是上的点的纵坐标的增量时,就是曲线切线上点的纵坐标的对应增量。当很小事比小得多。因此在的邻近,可以用切线线段来近似代替曲线线段。

6 微分中值定理

6.1罗尔定理

若满足

(1)在闭区间上连续;

(2)在开区间内可导;

(3)

则在内至少有一点,使得

由上面三个条件得在必有一点使即

tip:罗尔定理的三个条件是充要非必要的。若同时满足三个条件,结论一定成立;反之,若有一个不满足,则不能保证结论一定成立(及函数图像就可能不存在水平切线)。

6.2拉格朗日中值定理

若满足

(1)在闭区间上连续;

(2)在开区间内可导;

则在内至少有一点,使得,也可写成,则左端表示开区间内处局部变化率,右端表

示闭区间上整体变化的平均变化率。于是该公式反映了两者的关系,所以拉格朗日中值定理是连结局部与整体的纽带。

几何意义:

由上述定义得出罗尔定理是拉格朗日中值定理的特殊情况,所以我们可以设想对在作一次变形,使其符合罗尔定理。由于AB的斜率是,故考

虑将上的点沿竖直方向逐个下移一个x的线性量,这时端点A不变,端点B移动到,于是变形为。

推论1:若在区间I上的导数恒为零,那么在区间I上市一个常数。

推论2:若和在区间I上可导,且,在在I上有

为某一常数。

6.3柯西中值定理

设参数方程,若和满足:

(1)在闭区间上连续;

(2)在开区间内可导;

(3)在内每一处都不为零,则在内至少有一点,使得

。表示弦AB的斜率,表示点的斜率。

7洛必达法则

7.1 式未定式

定理1设和满足

(1);

(2)在的某个去心邻域内,和都存在,且;

(3)存在(或为无穷大),

则存在(或为无穷大),且

式未定式

7.2 ∞

定理2设和满足

(1);

(2)在的某个去心邻域内,和都存在,且;

(3)存在(或为无穷大),

则存在(或为无穷大),且

7.3其它类型未定式

具体做法:(1)对乘积形式未定式,和差形式未定式,可通过恒等变形成式和式;(2)对幂指形式未定式,,,则通过取对数方式,化成式和式。取对数方式,详看P100

8 不定积分

8.1 不定积分概念

定义1:设为区间I上的已知函数,若存在是对于任意的都有或则称是在区间I上的一个原函数。

定义2:的所有原函数(即带有任意常数的原函数)称为的不定积分,记作。称为积分号,x称为积分变量,称为被积函数,称为被积表达式,C称为积分常数。

8.2不定积分性质

性质1或

性质2或

性质3

性质4,可推广到n个函数的和差:

8.3换元积分法

第一类换元积分法(凑微分法)

,

第二类换元积分法

,

8.4分部积分法

设具有连续函数,根据微分的乘积公式,

即(1)

(2)

对上式两边积分得

(3)

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求 ∞∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分.

大学高等数学重点绝密通用复习资料,绝对有用

高等数学(通用复习) 师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意 第一章 函数与极限 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δ δ=-< (U a 1.由n x ∴N 2.即对?∴x ∞ →lim ○x →1.由(f ∴δ=2.即对?∴x x →0 lim ○→x 1.由(f ∴X 2.即对?∴x ∞ →lim 第三节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且 ()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2. →x (→x 3(x →0lim x x → 3 9 x x →-【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()() 2 3 3 3 33 11lim lim lim 9 333 6 x x x x x x x x x →→→--==== -+-+ 其中3x =为函数()2 39 x f x x -= -的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

(完整)同济版高等数学下册练习题(附答案)

第八章 测 验 题 一、选择题: 1、若a → ,b → 为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) ()(); (); ()A Q xoy B Q yoz C Q xoz D Q xoz ⊥r r r r 面; 面面面 5、2 ()αβ→ → ±=( ) (A)22αβ→→±; (B)2 2 2ααββ→→→ →±+; (C)2 2 ααββ→→→ →±+; (D)2 2 2ααββ→→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴;x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)2 2 2 6160x y z z ++++=; (B)222 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2 2 2 1x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距离的一半,试求该动点轨迹曲面与yoz 面的交线方程 . 七、求直线L :31258x t y t z t =-?? =-+??=+? 在三个坐标面上及平面 π380x y z -++=上的投影方程 . 八、求通过直线 122 232 x y z -+-==-且垂直于平面3250x y z +--=的平面方程 .

微积分下册知识点

微积分(下)知识点 第 1 页 共 18 页 微积分下册知识点 第一章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、 共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 222z y x r ++= ; 2) 两 点 间 的 距 离公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

微积分(下)知识点 第 1 页 共 18 页 大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面: yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(2 2=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 3、 柱面: ),(=y x F 表示母线平行于 z 轴,准线为 ?????==0 ),(z y x F 的柱面 4、 二次曲面(不考) 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:122 222 2=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 4) 双叶双曲面:122 22 2 2 =--c z b y a x

大一微积分复习资料教学教材

大学的考试比较简单,主要以书本为主,下面的复习指导可作提引作用。 10—11学年第一学期“微积分”期末复习指导 第一章 函数 一.本章重点 复合函数及分解,初等函数的概念。 二.复习要求 1、 能熟练地求函数定义域;会求函数的值域。 2、理解函数的简单性质,知道它们的几何特点。 3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中 ⑴. 对于对数函数ln y x =不仅要熟记它的运 算性质,还能熟练应用它与指数函数 x y e =互为反函数的关系,能熟练将幂指函数作如下代数运算: ln v u v u e = ⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值. 4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。 5、 知道分段函数,隐函数的概念。 . 三.例题选解 例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2 sin x y e = ⑵.2 1 arctan( )1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。 解: ⑴.2,,sin u y e u v v x ===⑵.21 arctan ,, 1.y u u v x v == =+ 例 2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答: cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是 (,)f D =-∞+∞,值域为(0,)f Z π=. cot14 arc π = 四.练习题及参考答案 1. ()arctan f x x = 则f (x )定义域为 ,值域为 f (1) = ;(0)f = . 2.()arcsin f x x = 则f (x )定义域为 ,值域为 f (1) = ;f = . 3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3 ln(1)y x =- 答案: 1.(-∞ +∞), (, )2 2 π π - , ,04 π

微积分下册期末试卷附答案

中南民族大学06、07微积分(下)试卷 及参考答案 06年A 卷 评分 阅卷人 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 0 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则= ')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 评分 阅卷人 6 知dx e x p ?∞ +- 0 )1(与?-e p x x dx 1 1 ln 均收敛, 则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >

7 数???? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8、若 2 2223 11 1x y I x y dxdy +≤= --?? ,22223212 1x y I x y dxdy ≤+≤=--??, 2 2223 324 1x y I x y dxdy ≤+≤=--?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分) 评分 评分 评阅人 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

大一经典高数复习资料经典最新经典全面复习

大一经典高数复习资料经典最新(经典全面复习)

————————————————————————————————作者: ————————————————————————————————日期: ?

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小, 则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分子 分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

微积分下册期末试卷及答案[1]

1、已知22 (,)f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,则常数p 的取值范围是( c ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数 ?? ?? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( b ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8 、若2 211 x y I +≤= ?? ,2 2 212x y I ≤+≤= ?? , 2 2 324x y I ≤+≤= ?? ,则下列关 系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( d ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分) 1、2(1)1x y y -+. 2 3、) 32 ,31(-. 4、1. 5、"6'0y y y -+=. 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解: 32 y x =的函数为

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

微积分下册主要知识点

微积分下册主要知识点

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11) (arctan )(arctan 11 )(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2)0()()(1 )(.12 2 221==========+=-=-=+-==-=?=?=?=?=?≠=≠++= +??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

大一经典高数复习资料经典最新经典全面复习

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

微积分(下册)期末试卷与答案

中南民族大学06、07微积分(下)试 卷及参考答案 06年A 卷 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=' )0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,

则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数?? ?? ?=+≠++=0 ,0 0 ,4),(222 222y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8 、若 2211 x y I +≤= ?? , 22212 x y I ≤+≤= ?? , 22324 x y I ≤+≤= ?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分)

微积分(下)期末复习题完整版

期末复习题 一、填空题 1、=?→x t t x x 0 20 d cos lim . 2、若)(x f 在],[b a 上连续, 则=?b x x x f x 2d )(d d . 3、已知)(x F 是)(x f 的原函数,则?>+x x t a t f t )0( d )(1 等于 . 4、若2 e x -是)(x f 的一个原函数,则 ='? 10 d )(x x f . 5、 =++?-112d 1| |x x x x . 6、已知2 1)(x x x f +=,则)(x f 在]2,0[上的平均值为 . 7、设 ? =+π0 ),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f . 8、设曲线k x y =(0,0>>x k )与直线1=y 及y 轴围成的图形面积为3 1 ,则=k . 9、设y x y y x y x f arcsin )1()2(),(22---=,则 =??) 1,0(y f . 10、设y x z 2e =,则 =???y x z 2 . 11、交换积分次序 =? ?x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =? ? ---x x y y x f x 11 1 2 2d ),(d . 13、交换积分次序 ? ?-2 210 d ),(d y y x y x f y = . 二、选择题 1、极限x t t x x cos 1d )1ln(lim 2sin 0 -+?→等于( ) (A )1 (B )2 (C )4 (D )8 2、设x x t t f x e d )(d d e 0=?-,则=)(x f ( ) (A) 2 1x (B) 21x - (C) x 2e - (D) x 2e -- 3、设)(x f 是连续函数,且C x F x x f +=?)(d )(,则必有( )B (A ))(d )(x F t t f x a =? (B ))(]d )([x F t t F x a ='? (C ) )(d )(x f t t F x a ='? (D ))()(]d )([a f x f t t F x a -=''?

微积分(下册)主要知识点汇总

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11)(arctan )(arctan 11 ) (arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2) 0()()(1 )(.12 2221==========+=-=-=+-==-=?=?=?=?=?≠=≠++=+??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

大一上学期微积分复习资料

易错点 10—11学年第一学期“微积分”期末复习指导 第一章 函数 一.本章重点 复合函数及分解,初等函数的概念。 二.复习要求 1、 能熟练地求函数定义域;会求函数的值域。 2、理解函数的简单性质,知道它们的几何特点。 3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中 ⑴. 对于对数函数ln y x =不仅要熟记它的运算性质,还能熟练应用它与指数函数 x y e =互为反函数的关系,能熟练将幂指函数 作如下代数运算: ln v u v u e = ⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值. 4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。 5、 知道分段函数,隐函数的概念。 . 三.例题选解 例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2 sin x y e = ⑵.2 1 arctan( )1y x =+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。 解: ⑴. 2, ,sin u y e u v v x ===⑵.21 arctan , , 1.y u u v x v == =+ 例2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答: cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是 (,)f D =-∞+∞,值域为(0,)f Z π=. cot14 arc π = 四.练习题及参考答案 1. ()arctan f x x = 则f (x )定义域为 ,值域为 f (1) = ;(0)f = . 2.()arcsin f x x = 则f (x )定义域为 ,值域为 f (1) = ; 2 f = . 3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3 ln(1)y x =- 答案:

相关主题
文本预览
相关文档 最新文档