当前位置:文档之家› 汽车EOBD诊断系统

汽车EOBD诊断系统

汽车EOBD诊断系统
汽车EOBD诊断系统

汽车EOBD诊断系统

EOBD(European On-Board Diagnostics),简称OBD(On-Board Diagnostics),即“车载诊断技术”或简称“车载诊断”。欧I和欧II排放法规阶段的发动机管理系统都带有车载故障诊断功能,但是在欧III排放法规中,OBD隐含着专门用於排放控制的意思,根据定义,它是“用於排放控制的车载诊断系统”,而且必须能够通过储存在计算机存储器中的失效代码来识别故障的可能范围。

美国加利福尼亚州率先于1994年以立法的形式提出了利用车载诊断技术对排放控制装置实行故障监测的要求,称为OBDⅡ。后来,欧洲也制订了从2000年跟欧III同时生效的指令70/220/EEC(98/69/EC)附件XI。该指令适用于欧III和欧IV排放法规,内容包括:

(1)所有车辆必须装备OBD系统,其设计、制造和安装应能确保车辆在整个生命期内识别劣化类型和故障类型。

(2)当排放控制系统(与发动机电子管理系统以及排气系统或蒸发物控制系统中,任何与排放有关、向电子控制单元提供输入信号或从电子控制单元接受输出信号的零部件)失效导致排放超过规定的极限值(下文称为失效限值)时,OBD系统必须指示它们的失效。(3)汽油机OBD系统必须监测下列项目:三效催化转化器;发动机在一定工况区域内出现的缺火;氧传感器劣化;排放控制系统中其它一旦失效就会导致排放超过失效限值的零部件;排放控制系统中传感器和执行器电路是否接通;对于蒸发排放物控制系统中的炭罐控制阀,至少应监测其电路是否接通。

(4)每次发动机起动时,都必须开始一系列的诊断检测。

(5)OBD系统应带有能让驾驶者感知故障存在的故障指示器,该器件只能用於指示启动了紧急程序或跛行回家程序(发动机管理系统发生故障时放弃部分控制功能,在不完备的状态下勉强维持车辆行驶的功能)。

排放一旦超过失效限值,发动机控制进入永久性排放失效模式(发动机管理控制器永久性地切换到以设定值代替一种失效零部件或系统输入信号的情形。在这情形下,失效的零部件或系统将导致车辆排放超出规定的失效限值),故障指示器应在两个运转循环(运转循环指由发动机起动、足以检测到可能存在的故障的运转模式以及发动机关闭这三部分组成的循环)以内激活。如果制造商有充分的理由,可以放宽到十个运转循环以内激活。

当发动机缺火达到制造商指定的程度,而可能引起催化转化器损坏时,故障指示器必须以明显的警示模式工作,例如灯光闪烁。

当汽车的点火开关处於接通位置,在发动机被起动或被拖转之前,故障指示器必须激活;发动机起动后,如果先前没有检测故障,故障指示器必须熄灭。?

(6)OBD系统必须记录指示排放控制系统状态的代码。使用各种专设的状态代码来标识正确地工作的排放控制系统,以及那些需要进一步运转车辆才能全面地评价的排放控制系统。必须将由於劣化或故障或永久性排放失效模式引起故障指示器激活的失效代码储存起来,该失效代码必须标识故障的类型。故障指示器激活期间,车辆行驶经过的距离必须随时通过标准数据连接器的串行口读出。

(7)如果不再出现可能损坏催化转化器的缺火水平,或者如果发动机转入其缺火水平不会损坏催化转化器的其它转速和负荷条件之后继续运转,那麽故障指示器可以切换回到先前

检测到缺火的第一个运转循环的激活状态(该激活状态也可能是其它故障引起),并在后续的运转循环中切换到正常的被激活模式。如果故障指示器切换回到先前的激活状态,那麽相应的失效代码和储存的冻结帧状况可以被擦除。对於缺火以外的所有其它故障,如果负责激活故障指示器的监测系统在三个相继的运转循环中不再检测到故障,并且没有识别到其它能独立地激活故障指示器的故障,那麽故障指示器可以被解除激活。

(8)如果在至少40个发动机暖机循环(在本指令中指充分运转车辆,使得冷却液温度从发动机起动时算起至少升高了22K,且至少达到70℃)内没有出现相同的失效,那麽OBD 系统可以擦除失效代码、行驶过的距离和冻结帧信息。

(9)OBD系统在下列情况可以自动地临时停止工作:OBD系统的监测能力因燃油箱液位过低而受到影响,但是只要燃油量超过燃油箱名义容量的20%,OBD系统就不得停止工作;发动机起动时环境温度低於-7℃,或海拔高于2500m时,制造商可以让OBD系统停止工作;道路的路面情况十分恶劣;对于装有功率输出装置的车辆,允许让受到影响的监测系统停止工作,条件是当功率输出装置在工作时,监测系统才停止工作。

(10)型式认证主管机关除了对新车型进行型式认证以外,还要对已经行驶了超过新车型型式认证的Ⅴ型耐久性试验里程的车辆,进行OBD系统的型式认证,该项试验在Ⅴ型耐久性试验结束时进行。进行这类试验时,制造商必须提供有缺陷的零部件和/或用于模拟失效的电气装置。但是,这些有缺陷的零部件或用于模拟失效的电气装置,在按照新车型型式认证试验程序中的Ⅰ型测试循环进行试验时引起的车辆排放值,不得比规定的失效限值超出20%。

应当试验的失效模式包括:将催化转化器替换为劣化或有缺陷的催化转化器,或模拟相应失效模式的电气装置;符合发动机缺火监测要求的发动机缺火工况范围;将氧传感器替换为劣化或有缺陷的氧传感器,或模拟相应失效模式的电气装置;断开蒸发物排放控制系统清洗电子控制装置(如果装有的话)的电路。对于这种特定的失效模式,不得进行Ⅰ型测试;断开其它任何与排放有关、跟动力系管理计算机相连的零部件的电路。上述前4项失效模式均足以引起排放超过失效限值,在任何一种情形下进行试验时,故障指示器都必须在Ⅰ型测试结束之前被激活。技术部门也可以采取类似断开电路的其它方法来替代上述情形。但在OBD系统型式认证时,以模拟失效替代真正劣化或有缺陷的零部件的情形不得多於四项。相应地,对於诊断信号的形成、储存和调用等也有严格的要求。

即使OBD系统包含一个或多个不足(deficiency),不能完全满足规定的要求,制造商也可以要求型式认证主管机关接受该OBD系统的型式认证。型式认证主管机关在考虑这类要求时,应确定顺从本附件的各项要求是否不切实际或不合理。型式认证主管机关将考虑制造商所提出、详细地描述了如技术可行性、订货至交货时间和生产周期等各种因素的数据,包括发动机或车辆设计以及计算机程序升级的逐步导入和逐步导出,以及所形成的OBD系统在顺从本指令的要求方面有效到什麽程度和制造商在顺从本指令的要求方面所付出的努力。但是,型式认证主管机关不接受完全没有排放控制系统诊断监测功能的情况,也不接受不顾及OBD失效限值的OBD系统。

允许在自新车型型式认证之日起的两年内携带某项不足。如果能充分地证明,为了纠正该项不足对车辆必须进行的重大硬件改进和额外的导入时间超过两年,携带该项不足的期限可

以宽容,但是最多不得超过三年。如果OBD系统通过型式认证之后才发现某种不足,制造商可以要求原来的型式认证主管机关事后补办批准不足的手续。

(11)制造商向任何一家授权的经销商或修理厂提供维修资料后,应当在三个月内支付合理和非歧视性的费用之后向他人提供这些资料(包括后续的改进和补充资料),并相应地向型式认证主管机关通报。

EOBD使管理更复杂

EOBD在控制排放的硬件方面,对发动机管理系统提出一些要求,至少包括:

* 将发动机转速传感器安装在发动机离合器侧,以通过发动机转速的细微波动监测发动机缺火时避免受到曲轴扭振的影响;

* 车身垂直的加速度传感器(允许跟ABS系统的加速度传感器共用)用于在道路十分差的条件下关闭EOBD功能;

* 在三效催化转化器的后面增添一个氧传感器,以便用“浓”和“稀”混合气交替的方法监测三效催化转化器的储氧能力;对氧传感器监测其信号电压是否超出可能范围、响应速度是否过低、跳变时间之比是否超出规定范围、波动频率是否过低、氧传感器是否活性不足、氧传感器加热器是否加热过慢;

* 采用排气再循环系统的场合,要在进气岐管内安装压力传感器,以便进行对排气再循环率的控制,并在汽车海拔高度超过2,500米时关闭EOBD功能;

* 在炭罐新鲜空气入口处安装截止阀,作为执行器和在密闭燃油箱加设压差传感器,以监测蒸发排放物控制系统的密封性。

需要说明的是,本文阐述的欧III排放法规中有关OBD的规定,并非中国政府公布的正式法律文本,所以仅供参考。但总体概念和操作程序没有太大出入。

EOBD带来的启示

大量的开发和引进工作急待完成:各整车厂必须根据本厂产品的特点,如汽车的整备质量、发动机的排量、汽车动力性目标等确定其满足欧III的发动机应当如何配置。相应地,发动机管理系统的承包商也要配合整车厂对发动机管理系统做出调整,包括在硬件和软件两方面如何引入OBD系统;

必须准备维修和保养资料:根据指令70/220/EEC(98/69/EC)附件XI的规定,制造商必须向任何一家授权的经销商或修理厂提供维修和保养的资料,而且为此收取的费用必须在合理的范围内,并且不带歧视性;

对技术人员的要求更高:根据指令的规定,不再是过去那样完全根据Ⅰ型测试中转鼓试验台的排放测试数据定终身,这种局面要求各方的技术人员精通汽油机电子控制技术和OBD系统。有关各方都应当加强技术人员的培训。

OBDII车载自动诊断系统简介

OBDII简介 OBDII(the Second On—Board Diagnostics), ,美国汽车工程师协会(SAE,Society of Automotive Engineers)1988年制定了OBD-II标准。OBDII实行标准的检测程序,并且具有严格的排放针对性,用于实时监测汽车尾气排放情况。 中文名 :汽车诊断第二代系统 .外文名 :OBDII 目录: 1:OBDII简介 2:OBDII工作原理 3:OBDII通讯协议 ? ISO9141-2 ? ISO14230 ? ISO15765 4:OBDII数据连接口 5:OBDII终端产品功能 6:应用领域 7:故障码 一、OBDII简介 自从20世纪50年代汽车技术与电子技术开始相结合以来,电子技术在汽车上的应用范围越来越广泛。ECU作为汽车发动机电控系统的核心具有速度快捷、功能强大、可靠性高、成本低廉的特点,故此ECU的引入极大地提高了汽车的动力性、舒适性、安全性和经济性。然而,由于现代发动机电 OBDII 模块 控系统越来越复杂,将ECU引入发动机电控系统之后,在提高汽车性能的同时也引发了故障类型难以判定的问题。针对该情况,从20世纪80年代起,美、同、欧等地的汽车制造企业开始在其生产的电喷汽车上配备车载自诊断模块(On—Board Diagnostics Module)。 自诊断模块能在汽车运行过程中实时监测电控系统及其电路元件的工作状况,如有异常,根据特定的算法判断出具体的故障,并以诊断故障代码(DTC,Diagnostic Trouble Codes)的形式存储在汽车电脑芯片内阳1。系统自诊断后得到的有用信息可以为车辆的维修和保养提供

发动机电控自诊断系统

发动机电控自诊断系统

发动机电控自诊断系统 一、概述: 1994 年产生的标准OBDⅡ协议为世界许多汽车生产厂家所采用,它统一了各车型诊断接口的标准,还统一了故障码的定义。那么这些故障码是如何设定的呢?其实不同的车型产生故障码的条件都差不多,大同小异。当你理解了一种车型的OBDⅡ故障码产生的条件,那么在另外一种车型上发现相同故障码的时候,也可以认为产生的原理是类似的。电控自诊断系统产生故障码的条件主要有以下几种: 1、值域法:电控单元接收到的传感器信号超出规定的数值范围,自诊断系统就判定为输入信号故障。 2、时域法:电控单元检测时发现某一输入信号在一定的时间范围内没有发生应该发生的变化或变化没有达到规定的数值时, 自诊断系统就确定该信号出现故障。 3、功能法:电控单元向执行器发出驱动指令时,相应传感器或反馈信号的输出参数变化没有按照程序规定的趋势变化,自诊断系统就判定执行器或相应电路故障。 4、逻辑法:电控单元对两个或两个以上具有相互联系的传感器进行数据比较,当发现它们之间逻辑关系违反设定条件时,就判定它们之间有故障. 二、常见数据流分析 汽车电控系统运行过程中,控制单元将以一定的时间间隔不断地接收各个传感器传送的输入信号, 同时控制单元对这些信号进行计算处理,再向各个执行元件发出控制指令.这些信号或指令,都是在一定的工作范围或状态内运行的,超过了这个范围或出现跟电控系统不符合的状态,电控系统就会出现异常现象,而这异常现象,很大一部分是可以通过电控系统的数据流反映出来的。 在分析数据流时,要考虑三个方面的内容: 1.要考虑传感器的工作数值,也要分析其响应的速率. 2.要考虑电控元件之间的数据响应情况和相应的速度.在电控系统中,各传感器或执行器元件数据会相互影响,因为电控系统收到一个输入信号之后,肯定要输出一个相应的指令,在分析故障时一定要将这些参数数值联系起来分析. 3.要考虑几个相关传感器信号的关系,当发现它们之间的关系不合理时,电控自诊断系统会给出一个或几个故障码,此时不要轻易判断是某传感器不良,需要根据它们之间的相互关系做进一步分析,以得到正确结论。下面还是以水温传感器为例做一下说明: 发动机水温是一个数值参数,其单位为℃或 OF。在单位为℃时其变化范围为-40~199。该参数表示发动机控制电脑根据水温传感器送来的信号计算后得出的水温数值。该参数的数值在发动机冷车起动至热车的过程中逐渐升高,在发动机完全热车后怠速运转时的水温应为时 85~105℃。当水温传感器线路断路时,该参数显示为-40℃;若显示的数值超过185℃,则说明水温传感器线路短路. 在有些车型中,发动机水温参数的单位为V.该电压和水温之间的比例关系

(完整版)汽车故障诊断方案分析系统的开发

交通部西部交通建设科技项目 交通编号: 合同号:2001 398 365 76 单位编号: 密级:内部 分类号:U47 U48 汽车故障诊断分析系统的开发 研究报告简本 承担单位:中国汽车维修行业协会 项目负责人:康文仲 起止年限:2001年10月至2003年8月

二○○三年八月 目录 第一章绪论 (2) 第二章课题的研制进程 (3) §2-1硬件课题的研制进程 (3) §2-2软件课题的研制进程 (10) 第三章结论与建议 (14) 致谢 (14) 参考文献 (15)

第一章绪论 一、课题背景及必要性 汽车安全、节能及污染控制已成为我国汽车工业发展的三大主题,国家积极推荐汽车生产企业使用汽车电子技术、新工艺、新材料,一批新技术已在汽车上广泛采用:如,电控燃油喷射装置(EFI)、自动变速器(AT)、防抱死装置(ABS)、安全气囊系统(SRS)、车轮差速控制系统(ATA)、空调系统(AC)、电子巡航导向控制系统(CCS)等;传统的检测、诊断技术和设备就已不能满足现代光—机—电一体化的汽车检测、维护及诊断修理的需要。 为了适应现代汽车的检测、诊断和维修技术的发展,解决在用汽车安全、节能和污染控制等问题,就需要开发一套适合中国国情的适用于汽车检查维护(IM)制度的检测、诊断设备。与此同时,相应的软件建设,诸如现代化的管理软件、与时俱进的行业政策和提高行业从业人员素质的培训体系等也是我们亟待研究解决的问题。 二、课题研究意义 本课题的立项研究的意义在于通过汽车检测、诊断维修设备的研究,可以提高我国西部汽车维修行业的技术水平、推进汽车维修质量、防治汽

车排放污染;通过建立西部地区道路运输车辆技术管理指标系统可构筑全国统一的道路运输车辆技术管理的技术规范;通过改进维修管理工作模式,正确引导我国汽车维修业的持续健康发展;通过建立汽车维修业职业培训体系可以提高行业从业人员的整体素质,从而推动行业的整体进步。 第二章课题的研制进程 §2-1 硬件课题的研制进程 一、汽车电控系统故障综合分析诊断仪和故障诊断模块的浓缩化的开发研究 汽车电控系统诊断仪在国际市场已被广泛的使用,国外性能先进的几类产品有美国OTC公司的IMPORT2000,TECH-II;美国Snap-on的ScannerMi-2500;德国的Audivw1553;瑞典Sweden Autodiagons ltd 的Multi-Tester Pro等,在国内也有几家公司生产的几十种品牌。但国外产品有未汉化的障碍,即便是汉化了的其性价比也比较差,而国内的产品在性能上有待提高,并存在着储存资料少(特别是进口车型)的问题。因此研制一种既能满足我国进口轿车多、品牌多、车型复杂的现状,又能有着良好性价比的电控系统诊断仪就显得十分必要。 广西梧州三原高新技术有限公司研发的汽车电控系统诊断仪结合我国汽车发展的现状,实现了对欧洲、美国、亚洲(日、韩)、和国产的四大车系的ENG引擎系统,自动变速箱(AT)系统,防抱刹车(ABS)系统

车载自诊断的原理及使用

车载自诊断的原理及使用 自诊断是微机(微机是电控单元 ECU 的核心)的故障自诊断系统(微机中的识别故障和故障运行控制软件,故障监测电路和故障运行后备电路)自己诊断汽车电控系统(电控单元、传感器、执行器)的技术状态是否良好的过程。自诊断系统的功能如下: ① 监测电控系统的工作状态; ② 将监测到的故障以代码的形式储存到随机存储器RAM 中,以便维修时调用; ③ 起用备用系统,使电控系统处于应激状态; ④ 自诊断系统能及时停止其它执行机构的工作,以确保汽车行驶安全或避免造成其它部件的损坏。 1、自诊断系统的工作原理 当接通点火开关时,自诊断系统开始进人工作状态。首先是微机进人初始化程序,并对系统进行自检,此时故障灯会闪亮,发动机起动后故障灯应该熄灭。车辆运行过程中,自诊断系统一直工作,当检测到故障时,微机就将此故障以故障代码的形式存入随机存储器RAM 中并点亮故障灯。自诊断系统组成如图 1 所示。 1.1传感器的故障自诊断 微机对传感器的故障自诊断不需要专 门的线路,只需在软件中编制传感器输入信 号识别程序,即可实现对传感器的故障自诊 断。工作时,各传感器的信号不断地进入到 微机,微机根据其内部设置的传感器信号, 由监测软件判别输入的信号是否有异常。如 果某一传感器信号的电压超出设定的范围 或信号丢失,监测软件就判定该传感器有故 障或有关线路有问题,驱动故障灯闪亮,并将该故障以代码形式储存到微机内的RAM 中。如水温传感器的正常输入信号电压变化 范围为0.3~4.7V ,对应的发动机冷却水温度为-30 ~l20℃。微机检测到的信号电压长时间超出此范围时,则传感器信号识别监测软件即判定发动机冷却水温度传感器或其电路存在故障。微机将此故障以代码的形式存入RAM 中,同时点亮仪表板上的故障灯。 1.2微机系统的故障自诊断 微机内部如果发生故障,控制程序的例行程序就不可能正常运行,微机就处于异常工作状态,汽车将无法行驶。为了保证汽车在微机本身出现故障时,仍能继续运行。采用后备回路系统,使汽车进入简易控制运行状态,使车辆行驶。在微机内部出现异常情况时,微机自诊断系统也能显示其故障,并记录下故障代码,将故障灯点亮。后备回路系统原理图如图2所示。 图2 后备回路系统原理图 微机工作是否正常是由被称为监视回路的电路(监视器)进行监视的, 监视器中安装有独立于微机 图1 自诊断系统组成图

正确理解汽车自诊断系统-范本

正确理解汽车自诊断系统 有些维修人员在使用汽车电控系统检测设备时碰到以下情况:读出多个故障码、故障灯亮却无故障码、有故障却没有产生相应故障码、有故障码却查不出相应故障时,往往会感到困惑和无从下手,进而开始抱怨检测设备的质量或者性能有问题。实际上,维修人员只有在对汽车电控系统的原理、自诊断系统的原理、汽车电控系统诊断设备的原理有透彻的理解后,才能有效地使用仪器。 摘要该文简要介绍了汽车电控系统检测设备的使用原理、汽车自我诊断系统的原理及特点,以及汽车自诊断系统对故障的确认的值域判定法、时域判定法、功能判定法、逻辑判定法四种方法;重点介绍汽车故障自诊断系统异常诊断产生原因及其故障排除实例,最后介绍依靠自诊断系统排除故障的有关技巧和注意事项。 关键词?テ?车自诊断系统原理应用故障排除 1汽车自诊断系统的原理 1.1汽车控制系统异常情况 汽车控制系统在正常工作时,电控单元ECU的输入和输出信号都是在一个规定的范围内运行,当控制电路的信号出现异常时,ECU中的诊断系统就判定该电路信号出现故障。电路的异常情况分为3种: 第一种是电路的信号超出规定范围。例如:冷却液温度传感器(CTS)在正常工作时,其输出电压在0.1V~4.8V内,如超出这一范围,诊断系统则判定

为故障信号; 第二种是电控单元ECU在一段时间内接收不到传感器的信号或接收到的信号在一段时间内不变,诊断系统也会判定为故障信号。例如:氧传感器在正常工作时,其输入电压应在0.1V~0.9V内,波动不少于8次/10秒; 第三种是电控单元ECU中的诊断系统偶然发现一次不正常的输入信号时,不会诊断为故障信号,只有不正常的输入信号多次出现或持续一定时间,才会判定为故障信号。例如:转速信号(Ne)是一个脉冲信号,发动机转速在100r/min以上时,丢失几个信号,ECU不会判定为故障。?ァ? 1.2汽车自诊断系统对故障的确认方法 1.2.1值域判定法 当电控单元接收到的输入信号超出规定的数值范围时,自诊断系统就确认该输入信号出现故障。例如:某车水温传感器设计在正常使用温度范围-30—120℃(或范围更大些)内,输出电压为0.30—4.70V,所以当电控单元检测出信号电压小于0.15V或大于4.85v时就判定水温传感器信号系统发生短路或断路故障。 1.2.2时域判定法 当电控单元检测时发现某一输入信号在一定的时间内没有发生变化或变化没有达到预先规定的次数时,自诊断系统就确定该信号出现故障。例如:氧传感器在发动机达到正常工作温度,控制系统进入闭环后,电控单元检测不到氧传感器的输出信号超过一定时间或者氧传感器信号在0.45V上下的情

车辆控制单元诊断系统开发 --- UDS 诊断数据流解析

车辆控制单元诊断系统开发 --- UDS 诊断数据流解析 屌丝小蚂蚁 4 个月前 之前在专栏里面写过一篇关于UDS诊断协议的介绍,对比于专栏文章的热度与一位朋友的咨询,决定在上篇文章的基础上,对UDS诊断协议开发进行进一步的解析。 UDS 的诊断数据的发送与接收都是基于CAN,所以每个数据流都包含基本的CAN Message 的架构 CAN Message = CAN ID + CAN DATA CAN ID 分为标准与扩展,两种类型,具体大家可以百度,百度上老多了。 在UDS的协议里面 ID 的类型并没有对其进行具体的定义,可以根据自己的需求进行自己定义,在Autosar里面是个两个配置变量,一个配置ID值,一个配置ID类型,大家自己配置一下就可以 ,对于UDS数据流来说,需要重点分析一下CAN DATA. CAN DATA的最终形成是在 网络层实现的,遵循ISO15765-2的规则,在这个层里面吸收应用层的UDS诊断数据,同时增加了这个CAN 信息的控制信息,最终形成一个帧的CAN消息,放入物理层的数据收发器里面。 根据上篇UDS文章的叙述,每一个PDU 包含控制信息PCI,数据信息Data. 具体如下图所示: 综上所述,N_PDU =N_PCI+N_DATA, N_PCI的值主要集中的前三个字节,N_DATA值主要集中在后面7位字节。其中,SF_DL 代表单帧中数据的个数,FF_DL代表 连续帧中的数据总数,SN代表此帧为连续帧

中的第几帧, FS参数控制发送端是否能继续传输数据,BS规定发送端允许持续传输连续帧数目的最大值,STmin限定连续帧相互之间所允许 的最小值。 先面用连个例子进行说明,请参考! 例子 1--- 单帧的数据传输与接收 数据发送:27 09 数据反馈:7F 27 7E --- 负反馈 数据发送: 10 40 数据反馈: 50 40 00 32 01 F4 下图为在Canlyzer里面的数据截图,请参考 由于这个数据发送与接收都是单帧传输,所以第一个数据的高四位均为0,四个数据流中的第一个数据位,02,03,02,06代表的为此帧数据含有几个数据位,多余的数据位都用 00或者AA行填充。 例子2 --- 多帧的数据接收与传输 数据发送:19 04 00 01 00 00 数据反馈:59 04 00 01 00 27 00 0B FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 下图为在Canlyzer里面的数据截图,请参考

汽车电子控制自诊断系统

汽车电子控制自诊断系统 摘要:汽车技术的发展愈来愈呈现出电子化的趋势,传统的维修诊断方式已远远不能满足汽车技术飞速发展的步伐。本文对汽车电子控制自诊断系统进行了深入的阐述。 关键词:汽车电子;ABS;诊断系统;故障代码 1引言 汽车电子技术在汽车上的应用越来越广泛,使汽车在动力性、经济性、安全性、舒适性以及排污控制等方面都有了极大的提高和改善。然而,由于汽车控制的电子化,给汽车故障的诊断和维修工作带来了越来越多的困难,对汽车维修技术人员的要求也越来越高。因此,现代汽车在进行电于控制系统设计的同时,增设了系统故障自诊断功能。自诊断功能就是利用ECU监视电子控制系统各组成部分的工作情况,发现故障后自动启动故障运行程序,这不仅可以保证发动机在有故障的情况下继续行驶,而且还可向驾驶员和维修人员提供故障情况,便于使用和维修。 2组成与工作原理 电控汽车自诊断系统的组成与电控系统相仿,主要由故障自诊断电路(输入信号电路、输出信号控制电路等)、电控单元(ECU)组成,其核心也是电控单元。 输入信号电路按使用情况可分为: (1)描述各电控总成工况参数的信号 如电控发动机的冷却水温度信号,这类信号的特点是各信号的数值都有正常的工作范围,因此确认此等输入信号值是否正常,即可判定此信号是否有故障。 (2)描述汽车操作情况的信号 凡可由驾驶员直觉判断是否有故障的,如点火开关信号、空调开关信号等等,自诊断系统并不对其进行诊断。 (3)来自相关电控系统的信号 若有故障,自诊断系统将立即报警。 输出控制电路可分为开环和闭环2类。属于闭环控制的有氧传感器电路和点火器控制电路。闭环控制的电路有信号反馈,一旦发生故障,电控单元就能很快确认;开环控制的电路无信号反馈,其输出控制电路若发生故障,电控单元只有通过对各种输入信号进行判断才能确认故障,其他电路的故障自诊断系统无法确认。 诊断的输出接口由发动机警告灯、超速档指示灯或ABS警告灯与电控系统检测插座(CHECK CONNECTOR)、故障诊断插座(TDCL)等组成。电控系统利用警告灯或指示灯作为其有无故障的信号灯。检测插座一般位于发动机舱内,可供测试和调整使用。此外,再通过检测插座和信号灯可以读取故障代码,即可进行随车诊断。故障诊断插座通常位于仪表板下方,他是各电控系统诊断信号的专用连接器,主要用于与专用的故障检测仪或电脑解码器相连接,进行车外诊断,以扩充随车诊断系统的诊断信息和诊断功能,也可用于随车诊断。 以电控汽油喷射系统的故障诊断为例,说明该电控系统一旦发生故障,其诊断与处理的过程如下: (1)传感器系统的故障诊断

汽车EOBD诊断系统

汽车EOBD诊断系统 EOBD(European On-Board Diagnostics),简称OBD(On-Board Diagnostics),即“车载诊断技术”或简称“车载诊断”。欧I和欧II排放法规阶段的发动机管理系统都带有车载故障诊断功能,但是在欧III排放法规中,OBD隐含着专门用於排放控制的意思,根据定义,它是“用於排放控制的车载诊断系统”,而且必须能够通过储存在计算机存储器中的失效代码来识别故障的可能范围。 美国加利福尼亚州率先于1994年以立法的形式提出了利用车载诊断技术对排放控制装置实行故障监测的要求,称为OBDⅡ。后来,欧洲也制订了从2000年跟欧III同时生效的指令70/220/EEC(98/69/EC)附件XI。该指令适用于欧III和欧IV排放法规,内容包括: (1)所有车辆必须装备OBD系统,其设计、制造和安装应能确保车辆在整个生命期内识别劣化类型和故障类型。 (2)当排放控制系统(与发动机电子管理系统以及排气系统或蒸发物控制系统中,任何与排放有关、向电子控制单元提供输入信号或从电子控制单元接受输出信号的零部件)失效导致排放超过规定的极限值(下文称为失效限值)时,OBD系统必须指示它们的失效。(3)汽油机OBD系统必须监测下列项目:三效催化转化器;发动机在一定工况区域内出现的缺火;氧传感器劣化;排放控制系统中其它一旦失效就会导致排放超过失效限值的零部件;排放控制系统中传感器和执行器电路是否接通;对于蒸发排放物控制系统中的炭罐控制阀,至少应监测其电路是否接通。 (4)每次发动机起动时,都必须开始一系列的诊断检测。 (5)OBD系统应带有能让驾驶者感知故障存在的故障指示器,该器件只能用於指示启动了紧急程序或跛行回家程序(发动机管理系统发生故障时放弃部分控制功能,在不完备的状态下勉强维持车辆行驶的功能)。 排放一旦超过失效限值,发动机控制进入永久性排放失效模式(发动机管理控制器永久性地切换到以设定值代替一种失效零部件或系统输入信号的情形。在这情形下,失效的零部件或系统将导致车辆排放超出规定的失效限值),故障指示器应在两个运转循环(运转循环指由发动机起动、足以检测到可能存在的故障的运转模式以及发动机关闭这三部分组成的循环)以内激活。如果制造商有充分的理由,可以放宽到十个运转循环以内激活。 当发动机缺火达到制造商指定的程度,而可能引起催化转化器损坏时,故障指示器必须以明显的警示模式工作,例如灯光闪烁。 当汽车的点火开关处於接通位置,在发动机被起动或被拖转之前,故障指示器必须激活;发动机起动后,如果先前没有检测故障,故障指示器必须熄灭。? (6)OBD系统必须记录指示排放控制系统状态的代码。使用各种专设的状态代码来标识正确地工作的排放控制系统,以及那些需要进一步运转车辆才能全面地评价的排放控制系统。必须将由於劣化或故障或永久性排放失效模式引起故障指示器激活的失效代码储存起来,该失效代码必须标识故障的类型。故障指示器激活期间,车辆行驶经过的距离必须随时通过标准数据连接器的串行口读出。 (7)如果不再出现可能损坏催化转化器的缺火水平,或者如果发动机转入其缺火水平不会损坏催化转化器的其它转速和负荷条件之后继续运转,那麽故障指示器可以切换回到先前

汽车诊断系统及方法与制作流程

图片简介: 本技术介绍了一种汽车诊断系统及方法,包括有一上位机及一下位机,所述上位机与下位机通过有线或无线通信连接,所述上位机上设有用户应用程序,所述下位机上设有汽车诊断程序,其中,所述下位机根据上位机的用户应用程序所获取的诊断指令与待测汽车交互而获取诊断信号,所述汽车诊断程序调用存储于所述下位机中的相应算法和汽车文本数据对诊断信号进行运算而得出诊断结果,并将该诊断结果反馈回所述上位机。该汽车诊断系统及方法中,汽车诊断运算过程在下位机中进行,上位机用于获取诊断指令及显示诊断结果,上位机采用具有输入、显示及通讯功能的电子设备即可,形式多样;且基于下位机的系统平台开发一套诊断程序,研发成本低且不易破解。 技术要求 1.一种汽车诊断系统,其特征在于,包括有一上位机及一下位机,所述上位机与下位机通过有线或无线通信连接,所述上位机上设有用户应用程序,所述下位机上设有汽车诊断 程序,其中,所述下位机根据上位机的用户应用程序所获取的诊断指令与待测汽车交互 而获取诊断信号,所述汽车诊断程序调用存储于所述下位机中的相应算法和汽车文本数 据对诊断信号进行运算而得出诊断结果,并将该诊断结果反馈回所述上位机。

2.如权利要求1所述的汽车诊断系统,其特征在于,所述下位机还设有一汽车诊断数据库,所述汽车诊断数据库用于存储所述算法和/或所述汽车文本数据。 3.如权利要求1或2所述的汽车诊断系统,其特征在于,所述上位机设有USB接口、蓝牙或无线WI-FI,所述下位机对应设有USB接口、蓝牙或无线WI-FI。 4.如权利要求1或2所述的汽车诊断系统,其特征在于,所述上位机为手机、平板或电脑。 5.一种汽车诊断方法,其特征在于,包括步骤: 上位机通过用户应用程序获取诊断指令并发送给下位机; 下位机的汽车诊断程序根据该诊断指令与待测汽车交互而获取诊断信号; 下位机的汽车诊断程序调用存储于下位机中的相应算法和汽车文本数据对诊断信号进行运算而得出诊断结果; 下位机将诊断结果反馈回上位机。 技术说明书 一种汽车诊断系统及方法 技术领域 本技术涉及汽车诊断技术领域,尤其涉及一种汽车诊断系统及方法。 背景技术 汽车诊断系统由上位机和下位机两个部分构成。上位机主要负责与用户进行交互,其形式有很多种,例如Windows电脑、Windows平板、安卓手机、安卓平板、苹果手机、苹果平板等等。下位机主要与汽车进行交互,通常是一个单片机,其中一个功能就是可以处理与汽车进行交互的通讯信号,例如CAN信号。

汽车自诊断系统的原理

汽车自诊断系统的原理两人之间的感情就像织毛衣,建立的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。汽车自诊断系统的原理 湖南万通汽修学校 1 汽车自诊断系统的原理 1.1 汽车控制系统异常情况汽车控制系统在正常工作时,电控单元的输入和输出信号都是在一个规定的范围内运行,当控制电路的信号出现异常时,中的诊断系统就判定该电路信号出现故障。电路的异常情况分为3种:第一种是电路的信号超出规定范围。例如:冷却液温度传感器()在正常工作时,其输出电压在0.1V~4.8V内,如超出这一范围,诊断系统则判定为故障信号;第二种是电控单元在一段时间内接收不到传感器的信号或接收到的信号在一段时间内不变,诊断系统也会判定为故障信号。例如:氧传感器在正常工作时,其输入电压应在0.1V~0.9V内,波动不少于8次/10秒;第三种是电控单元中的诊断系统偶然发现一次不正常的输入信号时,不会诊断为故障信号,只有不正常的输入信号多次出现或持续一定时间,才会判定为故障信号。例如:转速信号()是一个脉冲信号,发动机转速在100r/以上时,丢失几个信号,不会判定为故障。 1.2 汽车自诊断系统对故障的确认方法 1.2.1 值域判定法当电控单元接收到的输入信号超出规定的数值范围时,自诊断系统就确认该输入信号出现故障。例如:某车水温传感器设计在正常使用温度范围-30—120℃(或范围更大些)内,输出电压为0.30—4.70V,所以当电控单元检测出信号电压小于0.15V或大于4.85v 时就判定水温传感器信号系统发生短路或断路故障。 1.2.2 时域判定法当电控单元检测时发现某一输入信号在一定的时间内没有发生变化或变化没有达到预先规定的次数时,自诊断系统就确定该信号出现故障。例如:氧传感器在发动机达到正常工作温度,控制系统进入闭环后,电控单元检测不到氧传感器的输出信号超过一定时间或者氧传感器信号在0.45V上下的情况已超过一定时间,自诊断系统就判定氧传感器信号系统出现故障。 1.2.3 功能判定法当电控单元给执行器发出动作指令后,检测相应传感器的输出参数发生变化,若传感器输出信号没有按照程序规定的参数变化,就确认执行器或电路出现故障。例如:一般汽车系统装有阀高度传感器,用以检测阀是否正常工作。但有的汽车并没设置阀高度传感器,当电控单元发出开启阀命令后,通过检测进气压力传感器输出信号是否有相应变化,也可以确定阀有无动作,若没有变化,则确认阀及电路有故障。 1.2.4 逻辑判定法电控单元对两个具有相互联系的传感器进行数据比较,当发现两个传感器信号之间的逻辑关系违反设定条件时,就断定其一定有故障。例如:电控单元检测到发动机转速大于某个转速时,节气门位置传感器输出信号小于某个值,则判定节气门位置传感器出现故障。当电控单元中的诊断系统检测到故障信号后,便立刻将故障信息以故障代码的形式存储到储存器中,同时点亮故障警告灯,以显示故障信息。电控系统在提高汽车性能的同时,也使汽车的故障诊断变得复杂起来。汽车维修人员通过读故障码,大多数情况下都可以诊断出故障以及故障可能发生的原因和部位。在对汽车维修时,若一味依靠故障码诊断故障,往往会出现判断上的失误造成不必要的损失。故障码仅仅是电控单元()程式的界定系统是否“正常”的结论,在复杂多变的情况下,电控单元()不一定能够真正的判明故障所在部位。

车载自动诊断系统(OBD)

2015年中国车载自动诊断系统(OBD)市场深度调研报告 Special Statenent特别声明 本报告由华经视点独家撰写并出版发行,报告版权归华经视点所有。本报告是华经视点专家、分析师调研、统计、分析整理而得,具有独立自主知识产权,报告仅为有偿提供给购买报告的客户使用。未经授权,任何网站或媒体不得转载或引用本报告内容,华经视点有权依法追究其法律责任。如需订阅研究报告,请直接联系本网站客服人员(8610-56188812 56188813),以便获得全程优质完善服务。 华经视点是中国拥有研究人员数量最多,规模最大,综合实力最强的研究咨询机构(欢迎客户上门考察),公司长期跟踪各大行业最新动态、资讯,并且每日发表独家观点。 目前华经视点业务范围主要覆盖市场研究报告、投资咨询报告、行业研究报告、市场预测报告、市场调查报告、征信报告、项目可行性研究报告、商业计划书、IPO上市咨询等领域,同时也为个阶层人士提供论文、报告等指导服务,是一家多层次、多维度的综合性信息研究咨询服务机构。 Report Description报告描述 本研究报告由华经视点公司领衔撰写。报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。Report Directory报告目录 第一章OBD市场研究定义 1.1 OBD产品定义 1.2 OBD发展历程 1.2.1 第一代车载诊断系统 1.2.2 第二代车载诊断系统 1.2.3 第三代车载诊断系统

汽车发动机电喷系统的诊断与维修分析

目录 摘要 .............................................. 错误!未定义书签。关键词 ............................................ 错误!未定义书签。前言 .............................................. 错误!未定义书签。 1. 汽车电喷系统简介及分类 (3) 2. 汽车电喷系统的工作原理 (4) 3. 电喷发动机故障的诊断 (7) 4. 电喷故障维修技巧 (9) 5.主要易损件常见故障特点分析 (10) 6.正确清除故障码 (11) 7. 结束语 (12) 8. 参考文献 (12)

汽车发动机电喷系统的诊断与维修分析 () 摘要:随着电脑控制系统在汽车山规定普遍应用,汽车故障自诊断已经成为汽车维修人员必备的技术资料。众所周知,电子控制燃油喷射汽车发动机的控制电脑ECU,设置了故障自诊断系统,它主要用来监测电子控制系统各部件的工作状态,并且根据电子控制系统的配置情况,确定诊断故障的数量多少。当电喷汽车自诊断系统监测到一个故障时,一方面它启用故障的保护功能,对控制系统进行必要的保护;另一方面,它将该故障以故障代码的形式存储在随机存储器(RAM)中,并且同时点亮故障指示灯(CHECK ENGING)。汽车维修人员可按照一定的操作程序,读取该故障的故障码,再通过查对有关的技术资料,将代码所示故障了解仔细,便可对汽车电控系统故障进行有目的的维修。因此,电喷故障自诊断的操作技巧和一些容易被忽视的小细节就显的重要了。 关键词:电子控制系统故障指示灯节气门故障码各种传感器燃油泵点火系压力 前言:随着社会的发展,现代轿车逐步进入了家庭。本文拟介绍诊断现代轿车电喷发动机故障遵循的原则,常见故障的原因分析、特征和工作参数;电控喷射系统元件故障规律及其排除方法等。相信对现代家庭保养汽车与专业人员维修汽车有益。 一.汽车电喷系统简介及分类(auto electronic fuel injection system ) 1.按燃油供应方式分类 (1)单点喷射(SPI)系统:在进气管节流阀上方装1个中央喷射装置,用l~2个喷油器集中喷射。汽油喷人进气气流中,形成的可燃混合气由进气歧管分配到各个气缸中。单点喷射又称为节流阀体喷射(TBI)或中央燃油喷射(CFI)。单点喷射系统成本较低,仅略高于传统的化油器。目前,在国内外普及型轿车上被广泛应用。

新能源汽车VCU 诊断软件系统开发

10.16638/https://www.doczj.com/doc/a816080457.html,ki.1671-7988.2019.10.020 新能源汽车VCU诊断软件系统开发* 周亚芬,钟日敏,黄祖朋 (上汽通用五菱汽车股份有限公司技术中心,广西柳州545007) 摘要:近年来,随着新能源汽车技术特别是智能化汽车技术的发展,汽车电子领域发生了重大的变革—汽车电子系统日趋复杂,电控元器件日益增加。汽车电子的变革导致了汽车软件开发平台化及标准流程化占据了更重要地位。对汽车整车控制器(VCU)软件开发,功能安全及诊断模块的开发需要对更多的电子控制单元进行诊断监控,保证车辆的安全与舒适性。基于此,文章对汽车诊断功能软件、平台化的软件开放式架构、功能安全评估手段进行了深入的研究。 关键词:新能源汽车;整车控制器;功能安全;诊断;AUTOSAR 中图分类号:U472.9 文献标识码:A 文章编号:1671-7988(2019)10-55-03 A Developing Method of New Energy vehicle Diagnostic System* Zhou Yafen, Zhong Rimin, Huang Zupeng ( SAIC GM Wuling Automobile Co., Ltd., Guangxi Liuzhou 545007 ) Abstract: In recent years, with the development of new energy vehicle technology, especially intelligent vehicle technology, great changes have taken place in the field of automotive electronics. The reform of automotive electronics has led to the automobile software development platform and process standards occupy a more important position. In order to ensure the safety and comfort of the vehicle, more electronic control units should be used for the development of the software of the vehicle controller, functional safety and diagnostic module. Based on this, this paper makes an in-depth study of the automo -tive diagnostic software, the open architecture of the platform software, and the means of functional safety assessment. Keywords: New-energy vehicle; VCU; Functional safety; Diagnosis; AUTOSAR CLC NO.: U472.9 Document Code: A Article ID: 1671-7988(2019)10-55-03 前言 近年来,随着智能化新能源汽车技术的发展,汽车电子领域发生了巨大的变化,汽车电子系统日趋复杂,采用的电控元器件也日益增加。为了降低开发成本,整车控制器软件平台化开发遵循一种开放、标准化的体系结构—汽车开发系统架构AUTOSAR。此外,越来越多的电控元器件会带来总线的负载率提高、功能安全失效性增大等问题,因此,汽车行业的发展对整车功能安全需求提出了更高需求。整车控制器作为汽车的控制大脑,在诊断系统的设计上需要遵循功能安全规范ISO26262,目标减少车辆失效可能性、提高功能安全可靠性。 1 功能安全 ISO26262功能安全标准是目前较前沿、全面的标准,是一个囊括整个产品开发生命周期的功能需求的标准,从系统、 作者简介:周亚芬,女,电动车控制工程师,广西柳州人,就职于 上汽通用五菱汽车股份有限公司,研究方向为新能源汽车VCU软件 开发。*基金项目:广西科技计划资助项目(桂科AC16380043);柳 州市科学研究与技术开发计划项目(2017AA10103)。 55

汽车EOBD诊断系统

汽车EOBD诊断系统 EOBD(European On-Board Diagnostics),简称OBD(On-Board Diagnostics),即“车载诊断技术”或简称“车载诊断”。欧I和欧II排放法规阶段的发动机管理系统都带有车载故障诊断功能,但是在欧III排放法规中,OBD隐含着专门用於排放控制的意思,根据定义,它是“用於排放控制的车载诊断系统”,而且必须能够通过储存在计算机存储器中的失效代码来识别故障的可能范围。 美国加利福尼亚州率先于1994年以立法的形式提出了利用车载诊断技术对排放控制装置实行故障监测的要求,称为OBD?。后来,欧洲也制订了从2000年跟欧III同时生效的指令70/220/EEC(98/69/EC)附件XI。该指令适用于欧III和欧IV 排放法规,内容包括: (1)所有车辆必须装备OBD系统,其设计、制造和安装应能确保车辆在整个生命期内识别劣化类型和故障类型。 (2)当排放控制系统(与发动机电子管理系统以及排气系统或蒸发物控制系统中,任何与排放有关、向电子控制单元提供输入信号或从电子控制单元接受输出信号的零部件)失效导致排放超过规定的极限值(下文称为失效限值)时,OBD系统必须指示它们的失效。 (3)汽油机OBD系统必须监测下列项目:三效催化转化器;发动机在一定工况区域内出现的缺火;氧传感器劣化;排放控制系统中其它一旦失效就会导致排放超过失效限值的零部件;排放控制系统中传感器和执行器电路是否接通;对于蒸发排放物控制系统中的炭罐控制阀,至少应监测其电路是否接通。 (4)每次发动机起动时,都必须开始一系列的诊断检测。

(5)OBD系统应带有能让驾驶者感知故障存在的故障指示器,该器件只能用於指示启动了紧急程序或跛行回家程序(发动机管理系统发生故障时放弃部分控制功能,在不完备的状态下勉强维持车辆行驶的功能)。 排放一旦超过失效限值,发动机控制进入永久性排放失效模式(发动机管理控制器永久性地切换到以设定值代替一种失效零部件或系统输入信号的情形。在这情形下,失效的零部件或系统将导致车辆排放超出规定的失效限值),故障指示器应在两个运转循环(运转循环指由发动机起动、足以检测到可能存在的故障的运转模式以及发动机关闭这三部分组成的循环)以内激活。如果制造商有充分的理由,可以放宽到十个运转循环以内激活。 当发动机缺火达到制造商指定的程度,而可能引起催化转化器损坏时,故障指示器必须以明显的警示模式工作,例如灯光闪烁。 当汽车的点火开关处於接通位置,在发动机被起动或被拖转之前,故障指示器必须激活;发动机起动后,如果先前没有检测故障,故障指示器必须熄灭。 ? (6)OBD系统必须记录指示排放控制系统状态的代码。使用各种专设的状态代码来标识正确地工作的排放控制系统,以及那些需要进一步运转车辆才能全面地评价的排放控制系统。必须将由於劣化或故障或永久性排放失效模式引起故障指示器激活的失效代码储存起来,该失效代码必须标识故障的类型。故障指示器激活期间,车辆行驶经过的距离必须随时通过标准数据连接器的串行口读出。 (7)如果不再出现可能损坏催化转化器的缺火水平,或者如果发动机转入其缺火水平不会损坏催化转化器的其它转速和负荷条件之后继续运转,那麽故障指示器可以切换回到先前 检测到缺火的第一个运转循环的激活状态(该激活状态也可能是其它故障引起),并在后续的运转循环中切换到正常的被激活模式。如果故障指示器切换回到先前的激活状态,那麽相应的失效代码和储存的冻结帧状况可以被擦除。对於缺火

现代发动机自诊断系统的探讨

现代发动机自诊断系统的探讨 系名:汽车系 专业班级: 0841 学生: 学号: 指导教师: 指导教师职务: 年月

目录 引言 (1) 第一章汽车发动机故障自诊断系统概述 (2) 1.1汽车发动机故障自诊断系统的基本组成 (2) 1.1.1传感器 (2) 1.1.3数据存储器ROM/RAM (3) 1.1.4故障诊断插座 (3) 1.1.5后备系统 (3) 1.2汽车发动机故障自诊断系统历史及发展趋势 (4) 1.2.1电控汽车自诊断技术发展历程 (4) 1.2.2发展趋势 (5) 第二章汽车发动机故障自诊断系统概述 (7) 2.1 汽车发动机自诊断工作系统的工作原理 (7) 2.2 发动机故障显示方式 (7) 第三章汽车故障自诊断系统使用实例 (9) 3.1 发动机窜烧机油的故障现象排除实例 (9) 3.1.1造成发动机窜机油故障的原因分析 (9) 3.1.2故障排除过程分析 (10) 3.2 发动机自检测系统的应用实例 (11) 结论 (13) 致 (14)

现代发动机自诊断系统的探讨 专业班级:学生: 指导教师:职称: 摘要电子技术的迅猛发展和广泛应用,促进了汽车技术的现代化。随着更为先进的、智能化的汽车技术潮水般的涌入国,传统的维修思想、维修方式和落后的技术力量已无法满足这类科技密集型现代汽车的维修。修理工作也由此发生了极大的变化,已不可能再像以前那样仅靠看、听、摸及经验就可完成修理作业。面对分门别类的发动机种类,与日益复杂的故障,我们必须掌握一定的理论基础,依靠相应的检测仪器和检测手段,按照一定的故障排除步骤,才可能正确的完成修理作业。 现代发动机自诊断系统是一套自动化程度很高的发动机故障诊断系统,由于它的出现节约了大量的维修时间就,降低了维修的难度。本文首先对汽车故障诊断系统进行系统的概述,并且介绍了汽车故障自诊断技术的最新发展。然后主要介绍了电控汽车发动机故障自诊断系统的工作原理及故障信息的显示方式和清除方法,最后例举了电控发动机自诊断系统的使用实例。 关键词:汽车故障自诊断系统、工作原理、使用实例、最新发展

车辆控制单元诊断系统开发 --- UDS 诊断数据流解析

车辆控制单元诊断系统开发--- UDS 诊断数据流解析 屌丝小蚂蚁 4 个月前 之前在专栏里面写过一篇关于UDS诊断协议的介绍,对比于专栏文章的热度与一位朋友的咨询,决定在上篇文章的基础上,对UDS诊断协议开发进行进一步的解析。 UDS 的诊断数据的发送与接收都是基于CAN,所以每个数据流都包含基本的CAN Message 的架构 CAN Message = CAN ID + CAN DATA CAN ID 分为标准与扩展,两种类型,具体大家可以百度,百度上老多了。 在UDS的协议里面ID 的类型并没有对其进行具体的定义,可以根据自己的需求进行自己定义,在Autosar里面是个两个配置变量,一个配置ID值,一个配置ID类型,大家自己配置一下就可以,对于UDS数据流来说,需要重点分析一下CAN DATA. CAN DATA的最终形成是在网络层实现的,遵循 ISO15765-2的规则,在这个层里面吸收应用层的UDS诊断数据,同时增加了这个CAN 信息的控制信息,最终形成一个帧的CAN消息,放入物理层的数据收发器里面。 根据上篇UDS文章的叙述,每一个PDU 包含控制信息PCI,数据信息Data. 具体如下图所示:

综上所述,N_PDU =N_PCI+N_DATA, N_PCI的值主要集中的前三个字节,N_DATA值主要集中在后面7位字节。其中,SF_DL 代表单帧中数据的个数,FF_DL代表连续帧中的数据总数,SN代表此帧为连续帧中的第几帧,FS参数控制发送端是否能继续传输数据,BS规定发送端允许持续传输连续帧数目的最大值,STmin限定连续帧相互之间所允许的最小值。 先面用连个例子进行说明,请参考! 例子1--- 单帧的数据传输与接收 数据发送:27 09 数据反馈:7F 27 7E --- 负反馈 数据发送:10 40 数据反馈:50 40 00 32 01 F4 下图为在Canlyzer里面的数据截图,请参考

相关主题
文本预览
相关文档 最新文档