当前位置:文档之家› 西安交通大学电介质物理姚熹、张良莹课后习题答案第一章

西安交通大学电介质物理姚熹、张良莹课后习题答案第一章

第一章 静电场中的电介质

1-1 半径为a 的 球带电量为q ,电荷密度正比于距球心的居里。求空间的电位和

电场分布。

解: 由题意可知,可设kr =ρ

再由于 ?=q dv ρ,代入可以求出常数k 即 ?=424ka krdr r ππ 所以 4a q k π= r a q 4

πρ= 当 a r >.时 由高斯定理可知 0

24επq

r E =

? ; 2

04r

q E πε=

?∞

=

?=r

r

q dr E U 04πε

当 a r <<0时 由高斯定理可知 4

042

0400

2

41

1

4a

qr dr r r a q dv r E r

r

εππερεπ=?==

???

4

02

4a qr E πε= dr r qr dr a qr dr E U a r a

r

???

∞∞

+=?=20

2

40244πεπε

a

q r a a q 0334

04)(12πεπε+

-=

)4(12334

0r a a q -=

πε

1-2 电量为q 的8个点电荷分别位于边长为a 的立方体的各顶角。求其对以下

各点的电距:(1)立方体中心;(2)某一面的中心;(3)某一顶角;

(4)某一棱的中点。若8个点电荷中4个为正电荷、4个为负电荷,重新计算上述问题

解 :由电矩的定义 ∑∑==i

i i i

i i r q r q μ

(一)八个电荷均为正电荷的情形

(1)立方体的在中心: 八个顶点相对于立方体中心的矢量和为∑==8

1

0i i r ,故0==∑i

i i r q μ

(2)某一面心: 该面的四个顶点到此面心的矢量和

∑==41

0i i r ,对面的四个顶点到此点的矢量和∑==8

5

4i i a r

故qa 4=μ;

(3)某一顶角 :其余的七个顶点到此顶点的矢量和为:

∑==7

5

34i i

a r

故qa 34=μ;

(4)某一棱的中心 ;八个顶点到此点的矢量和为∑==7

5

24i i a r

故qa 24=μ;

(二)八个电荷中有四个正电荷和四个负电荷的情形与此类似; 1-3 设正、负电荷q 分别位于(0,0,l /2)、(0,0,-l /2),如图所示。求

场点P 处电势计算的近似表达式,试计算在场点(0,0,l 23),(0,0,l 2

5

处电势的近似值,并与实际值比较 解:P 点的电势可以表示为: ? =-++??=

)1

1(

40

-

+-r r q πε

其中2cos θl r r -=+, 2

cos θ

l r r +=- 2

04cos r

ql πεθ?=

取场点分别为P 1 (0,0,l 23) P 2(0,0,l 2

5

)

则对于P 1点来说 l r =+, l r 2=- 1? =

l q

l l q

008)211(4πεπε=- 对于 P 2来说 l r l r 3,2==-+ 2? =

)3121(

40

l l q -πε =l

q

024πε 多极展开项去前两项

?=)]2cos 32cos 5(cos 2cos 2[34

32θθθθ-'+'r

r q r r q 其中 θθcos ,0==1 , 2

l r =

' 把P 1 (r=

23l )点和P 2 (r=25l

)点代入上式可得 )81494(

4101l

q

l q +=

πε? =l q πε8110

)6254254(

410

2l

q

l q +=

πε? =l q πε62526

比较可得 P 1点 , 实际值

l

q

l

q 0081108πεπε>

近似值 P 2点 , 实际值 l

q

l

q 006252624πεπε>

近似值

1-4

分别绘出电偶极子、电四极子和电八极子的图形,并给出其相应的电偶

极子强度,电四极子强度,电八极子强度。 解 : 参考课本P 21 图1-10

偶极子强度 ql ; 四极子强度21l ql ; 八极子强度321l l ql

1-5 试证明位于(0,0,l )的点偶极子(方向沿Z 轴)μ在场点的r 的展开式

为 ),(θ?r =

)(cos 411

θπεμ

Pn r l n n n n +-∞

='

解 : 点电荷的多极展开式为

)(r '? =[ )21

cos 2

3(cos 2322-''+''+'r z q r z q r q θ+......]

对于正电荷+q 来说 z '=l 3/2

+? =[ )21cos 23()2/3(cos )2/3(2

3

22-'+'+

'r l q r l q r q θ+......] 对于负电荷-q 来说 z '=l /2

-? =[ )21cos 23()2/(cos )2/(2

3

22-'-'-

'-r l q r l q r q θ+......] -++=???

= )21

cos 2

3(2cos [42320-'+'r l r l q

θπε+......]

=

)21

cos 2

3(2cos 1[4230-'+'r l r θπεμ+......] = )21

cos 23(2)(cos 0[422121************-'+'+'+-+-+-P r l P r l P r l θπεμ+...]

=

)(cos 411

θπεμ

Pn r l n n n n +-∞

='

证毕

1-6 (1)试证明电偶极子μ(=ql )在电场E 中的转矩M 势能W 分别为:

E M ?=μ ; W =-E ?μ

(2)指出偶极子在电场中的平衡位置、稳态平衡位置。

(3)当μ和E 的夹角从1θ变到2θ时,求电场力所做的功和偶极子的势能变 化。

解 (1)转矩 -+?-?=f r f r M = )(qE r qE r -?-?

= 2q E r ? = q E l ? = E ?μ 势能 W = -q -++??q =-q l E ? =-E ?μ (2)M=0 ,θ=0, π 平衡位置

θ=0, W = -μE 能量最低,稳态平衡 θ=π, W = μE 能量最大,不稳定 (3)电场力做功,是θ减少 因此 d θ为负

A=??=-=-1

2sin θθθθμθd E Md )cos (cos 12θθμ-E

势能变化 △W = W 2- W 1 = )cos (cos 21θθμ-E 因此 : 保守力做功等于势能增量的负值 A = -△W

1-7 两个电偶极子1μ、2μ相距R ,讨论两偶极子间的相互作用能。 解: 先假定 两个偶极子均与R 成θ角,其他情形与此类似 W μ=-121E ?μ=?1μ▽12? 偶极子2μ在1μ处的电势为 12?=

3024R R πεμ? ∴ ▽12

?=5

023024)(34R R

R R πεμπεμ?-

W μ= ?1μ▽12?=

])

)((3[

415

213

2

10

R R R R ?-

?μμμμπε

=

]cos )cos(32cos [43

3021R

R θ

θπθπεμμ--- =

)2cos cos 3(423

02

1θθπεμμ-R

=

)cos 1(423

02

1θπεμμ+R

1-8 什么是电介质的极化?介质极化是由哪些因素决定的? 答案略

1-9 什么叫退极化场?试用极化强度P 来表示一个介电常数的为r ε的平板介质

电容器的退极化场,宏观平均电场和极板上的重点电荷电场。

解 : 极化电荷形成的电场来削弱自由电荷建立的电场为退极化电场 0/εp E P -= P E E E +=0=

)1(0-r P

εε

=

0E )

1(0-r P

εε-P E =

)

1(0-r r P

εεε

1-10 在均匀电场0E 中放一个半径为a 的导体球,求球的感应电荷在远场处的电

势及球内的电势、电场。由此证明导体球的引入,对于远场来言相当于引入了一个电偶极子。并求出导体球的极化率。 解: 导体球外 ▽2? = 0 r>a )(cos )(10θ?n n n

n n n P r

B r A +∞

=+

=∑ 边界条件为 :(1)由于导体球为一个等势体 因此 ?r=a

=0?

(2)?∞→r =θcos 0r E -

有 A 1=-E 0 A n = 0 (n 1≠) 代入边界条件可知: B 0 = a 0? Bn ?0 (n 1,0≠) -E 0a + B 1/a =0 因此 B 1=30a E

所以 θθ??cos cos 23

000r

a E r E r a +-= 如果导体球接地 则00=? 从而有

θθ?cos cos 23

00r

a E r E +-=

所以 极化电荷产生的电势,电场为

θ?cos 23

0r

a E P = P E =-▽?P

θ?cos 23

30r a E r E r

P =??-= θθsin 0E E P =

导体球的偶极矩为:0304E a πεμ= 导体球的极化率为:304a πεα=

1- 11 试证明在电场0E 中引入一偶极矩为0μ的分子,则该分子具有的极化势能

为2

0002

1E E W ?-?-=αμ,其中α为分子的极化率。

解 :假定 分子固有偶极矩0μ沿分子长轴取向

分子在电场0E 感生偶极矩μ的长轴和短轴方向上的分量分别为 θααμcos 01111E E ==

θααμsin 02222E E == 其中 21E E E += 21μμμ+==2211E E αα+ E μθμθμsin cos 21+=

= (θαθα2221sin cos +)0E = (△22cos αθα+)0E

分子的势能为固有偶极矩势能(-00E ?μ)和感生偶极矩(-021

E E ?μ)之和

E E W ?-?-=μμμ2

1

00

1-12 H 2O 分子可以看成是半径为R 的-2O 离子与两个质子(+H )组成,如图所

示,其中R l >,+H -2O +H 间夹角为2θ,试证明分子偶极矩值为

μ=)1(cos 233

l

R el -θ

解 : 分子的 固有偶极矩为: θμcos 20el =

由于O 2-受到H ++H +的作用,使之发生位移极化,使O 2-的正负电荷中心发生位 移为x

原子核的库仑吸引力 F '=-x R

e R x q 3

02

302444πεπε-= 2H +

产生的电场力 为: 2

024cos 4l

e F πεθ

-= 由于F '=F 所以 2

33cos l

R x θ

= 此时的分子偶极矩为 :

μ=)1(cos 2)cos (233

l

R el x l e -=-θθ

感生偶极矩为 e e e E ?=μ 由于 2

04cos 2l

e E e πεθ

-=

,304R e πε=? 所以 2

3cos 2l

eR e θ

μ-= 总的偶极矩为 μ=0μ+e μ

1-13 在无限大电介质(1ε)中有均匀电场0E ,若在该介质中有一半径为a 、介

电常数为2ε介质球,求球内外的电势、电场及介质球内电偶极矩μ。讨论

介质球带来的影响,并将结果推广到 : (1)1ε=1 (2)2ε=1 解 : 由题意可解得:

θεεεε?cos )12(03

3

21121r E r a -+-=

θεεε?cos 2302

11

2r E +-

=

=1E -▽1? θεεεεθcos 2)(2cos 03

3

121201E r a E E r +-+=

θεεεεθθsin 2sin 03

3

211201E r

a E E +-+-= =2E -▽2? =

02

11

23E εεε+

(1)当 11=ε时 ; 空腔球

θεε?cos )121(03

3

221r E r

a -+-= θε?cos 23

02

2r E +-

= 03

220

12

14E a +-=εεπεμ (2)当 12=ε时 ;

θεε?cos )1221(03

3

111r E r a -+-= θεε?cos 1

23011

2r E +-

= 03

110

21

214E a +-=εεπεμ 1-14 (1)求沿轴向均匀极化的介质棒中点的退极化场,已知细棒的截面积为

S ,长度为l ,极化强度为P ,如图(a )所示。

(2)一无限大的电介质平板,其极化强度为P ,方向垂直于平板面。求板 中点O 处的退极化场。已知板厚为d ,如图(b )所示。

(3)求均匀极化的电介质球在球心的产生的退极化场。已知球半径为r , 极化强度为P ,如图(c )所示。

(4)从(1)、(2)、(3)的计算结果,可以给出什么样的结论(电介质 地退极化场的大小与电介质的纵、横线度的关系)? 解 (a )有题意可知 : q = σs = Ps 重点处的场强为: 2

02

02

02)2

(4)2

(4l

ps

l q l q E P πεπεπε=

+

=

由于存在 ,2s l >> 因此 0≈P E (b )由于 P ='σ 所以 : 0

0εεσP E P ='=

(c) θσcos P = ?θθd d r ds sin 2= ?θθθσd d ds q d sin cos Pr 2='=' ?θθθπεπεd d P

r q d p E d sin cos 441

02

0='=

' ?θθθπεθd d P p E d pz E d sin cos 4cos 20

=

'='

20

20

3sin cos 4ε?θθθπεπ

π

P

d d P Epz -=

=

?

? 可见沿着极化方向,纵向尺度越大,横向尺度越小,退极化电场越弱;反 之,纵向尺度越小,横向尺度越大,退极化电场越强。

1-15 试证明,昂沙格有效电场也适用于非极性介质,即昂沙格有效电场概括了

洛伦兹有效电场。

解 : 对于非极性电介质来说有 00=μ 即 e e e e E E ααμμ=+=0

e

e r r r r e E n gE a gE E αεεεμ

εεπε1

2)

1(2312)

1(241

0030+-+

=+-+

=(由于,13

4

30=a n π)

再由于 E P E n r e e )1(00-==εεα

所以 :E E E E r r r r r e 32

)12(3)1(21232+=+-++=εεεεε

这是 昂沙格有效电场等于洛仑兹有效电场。证毕

1-16 为什么说克-莫方程师表征介质宏、微观参数的关系式。由该方程可以看

出,随材料密度的提高,r ε将如何变化。并给出克-莫佯谬;即当密度到一定值时∞=ε;密度再提高时0<ε。并论证这在实际情况中使不可能 的。

解 :有克-莫方程

0321εα

εεn r r =+- 其中0,εεr 是宏观参数,α,0n 为电介质微观粒子极化性质的微观极化参数; 故称克-莫方程为介质宏微观参数的关系式; 由摩尔极化表征 :

0321εα

ρεεN M r r =+-

M

N r r ρ

εαεε00321=+- 由此式可得, 当介质密度升高到 ,

1300=M

N εαρ

, 则有 ∞→r ε 当介质密度升高到 ,

M

N 003εαρ

>1, 则有 r ε < 0

对于电介质来说显然r ε不可能为无穷大和为负值.

1-17 已知CO 2 在T =300K 时,0076.1=ε , 3250/107.2-?=m N ,n =

1.000185,求其固有的偶极矩0μ。

解 : 对于 CO T = 300K 时,ε=1.0076,n = 1.000185, n 0=325/107.2m ?

光频时 克-莫方程

1300=M N εαρ 0

0321εαεεe

n =+-∞∞ 对于极性气体来说,克-莫方程则为:)3(3210

200KT

n e r r μαεεε+=+-

)(3]2121[920

00002n n KT

n KT r r r -≈+--+-=

∞∞εεεεεεεμ= 29.4?10-30

所以 : D m c 63.1.10425.5300=?=-μ

1-18 在某一种偶极子气体中,若每个偶极子的极化强度为1Debye ,计算在室温

下使此气体达到%1.0取向极化饱和值时所需要的电场。 解 : 由题意可知 m c D ??==-3001033.31μ K T 300= K J k /1038.123-?= =

e E KT

30

μ 再令 = 0.1%0μ

则有 m V KT KT

E e e /107.3/3001.03600

2?=?=><=

μμμ

1-19 (XO )H 2C -CH 2(OX )这类分子由两个理想基团“CH 2OX ”通过一个碳碳单

键“C -C ”相连接。已知每个分子基团“-CH 2OX ”的偶极矩为2.50Debye ,相对中间碳键成45o 角。在标准状态下对该气体实验测量表明r ε为1.01 光学折射率为1.0005,试确定两个分子基团间的相对取向。

解 : )(320

02n n KT r -=

εεμ 由于 001.12=n 226025

12230

2

106.3610

7.21085.83001038.13m C ??=??????=----μ

D 82.11005.6300=?=-μ

D D o 76.145cos 5.20

=?='μ 由 517.02

cos

2

cos 20

=∴='θ

μθ

μ

所以 θ=117.7o

1-20 已知He 原子(单原子气体)的极化率为2411019.2m F ??-,计算在标准状

态下,其介电常数r ε及折射率n ,并与实验数据000074.1=r ε,n =1.000035相比较。

解 : 对于非极性气体来说有 : 0

1εα

εo r n +

=

其中 411019.2-?=α,250107.2?=n

000067.110

85.81019.2107.2112

41

25=????+=--r ε 所以 000033.1==r n ε 与实验数据 000035.1=n 相符合 1-21 试说明为什么TiO 2晶体具有较高的r ε

答案略

1-22 试证明对非极性气体电介质

0>dp d r ε,0

d r ε

式中p 为气体压力,T 为气体的温度。

解 :由题意可知 : KT n p 0=

003321εα

εαεεKT p n r r ==+-

近似有 0

31εα

εKT p r +

= 所以有 当T 不变时 把r ε对p 求导可得 :

εα

εKT dp d r = > 0 当p 不变时 把r ε对T 求导可得 :

T KT p dT d r r )1(0

2--=-=εεα

ε < 0 1-23 介电常数为1ε的电介质充满整个空间,且其中存在均匀电场E 0(见图

(a ))今在其中引入一个介电常数为2ε的电介质球,图(b )(c )(d )为三种情况,其中线条为电力线,讨论三种情况下的介电常数与1ε的关系及其相互作关系。 解 : 由题意可 知 : 01

21

23E E εεε+=

(b )12εε< 0E E > 内部电场大,球内电场对外产生向外 的斥力,退极化场P E 与0E 方向一致;

(c )12εε> 0E E < 退极化电场P E 与0E 方向相反,削弱 了原电场;

(d )12εε>> E 很小,当∞→r ε ,0=E 相当与金属导体 球,球体对电场产生屏蔽。

1-24 对于离子晶体,若两个离子间的斥力取波恩函数时,试证明一对正、

负离子的位移极化率为)

1(43

0-=n R n πεα,其中Ro 为两离子间的距离,n

为波恩函数1 n n

r

b 中的常数。

答案略

1-25 列举一些材料的极化类型以及在各种频率下所能发生的极化形式。 答案略

思 考 题

第 一 章

1-1 什么是电介质的极化?表征介质极化的宏观参数是什么?

答:电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现 束缚电荷的现象称为电介质的极化。其宏观参数为介电常数ε。 1-2 什么叫退极化电场?如何用极化强度P 表示一个相对介电常数为r ε的 平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电 电荷所产生的电场。

答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产 的、与外电场方向相反的电场,起削弱外电场的作用,所以称为 退极化电场。 退极化电场:0

0εεσP E d -=-

= 平均宏观电场:)

1(0--

=r P

E εε

充电电荷所产生的电场:0

0000εεεεεσP

E P E D E e +=+===

1-3 氧离子的半径为m 101032.1-?,计算氧的电子位移极化率。 提示:按公式304r πεα=,代入相应的数据进行计算。

1-4 在标准状态下,氖的电子位移极化率为2101043.0m F ??- 。试求出氖的 相对介电常数。

解: 氖的相对介电常数:

单位体积的离子数:N =253

23

1073.24

.221010023.6?=?

?

而 e r N αεε=-)1(0 所以:0000678.110

?+

=εαεe

r N

1-5 试写出洛伦兹有效电场表达式。适合洛伦兹有效电场时,电介质的介 电常数ε和极化率α有什么关系?其介电常数的温度系数的关系式又如 何表示。

解:洛伦兹有效场:E E E e ''++=3

2

ε

ε和α的关系:

αεεεN 0

31

21=+- 介电常数的温度系数为:L βεεα3

)

2)(1(+--

=

1-6 若用1E 表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电 场中1E =0时的情况。

解:1E =0时, 洛伦兹的有效场可以表示为E E e 3

2

+=

ε

1-7 试述K -M 方程赖以成立的条件及其应用范围。 答:克-莫方程赖以成立的条件:0=''E

其应用的范围:体心立方、面心立方、氯化钠型以及金刚石结构 的晶体;非极性以及弱极性液体介质。

1-8 有一介电常数为ε的球状介质,放在均匀电场E 中。假设介质的引入 不改变外电场的分布,试证: e E E 2

3

+=

ε 解; 按照洛伦兹有效电场模型可以得到:在0=''E 时

E E e 3

2

+=

ε

所以 e E E 2

3

+=

ε 1-9 如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温 度系数的数学表达式。

答:温度变化一度时,介电常数的相对变化率称为介电常数的温度 系数。 dT d εεαε1=

, dT

dC

C εα1= L βε

εεαε)

2)(1(+--

=

1-10 列举一些介质材料的极化类型,以及举出在给中不同的频率下可能发 生的极化形式。

答:如高铝瓷,其主要存在电子和离子的位移极化,而掺杂的金红石 和钛酸钙陶瓷却除了含有电子和离子地位移极化外,还存在电子和离 子的弛豫极化。在光频区将会出现电子和离子的位移极化,在无线电 频率区可出现弛豫极化、偶极子的转向极化和空间电荷极化。

1-11 什么是瞬间极化、缓慢式极化?它们所对应的微观机制各代表什么? 答:极化完成的时间在光频范围内的电子、离子的位移极化称为瞬时 极化。而在无线电频率范围的弛豫极化、自发式极化都称作缓慢式极 化。电子、离子的位移极化的极化完成时间非常短,在s 151210~10-- 范围内,当外电场在光频范围内时,极化能跟的上外电场的变化,不 会产生极化损耗。而弛豫极化的完成所需要的时间比较长,当外电场

的频率比较高时,极化将跟不上外电场的频率变化,产生极化滞后的 现象,出现弛豫极化损耗。

1-12 设一原子半径为R 的球体,电子绕原子核均匀分布,在外电场E 作用 下,原子产生弹性位移极化,试求出其电子位移极化率。

答案参考课本简原子结构模型中关于电子位移极化率的推导方法。 1-13 一平行板真空电容器,极板上的自由电荷密度为σ,现充以介电系数为 r ε的介质。若极板上的自由电荷面密度保持不变,则真空时:平行板 电容器的场强E =______,电位移D =______,极化强度P______;充 以介质时:平行板电容器的场强E =______,电位移D =______,极 化强度P______,极化电荷所产生的场强______。 解:0

0εσ

=

E , σ=0D ,00=P r J E εεσ0=

, σ=J D ,)1

1(r

J P εσ-= r

r J ji E E E εεεσ00)

1(-=

-= 1-14 为何要研究电介质中的有效电场?有效电场指的是什么?它由哪几部 分组成?写出具体的数学表达式。 参考课本有效电场一节。

1-15 氯化钠型离子晶体在电场作用下将发生电子、离子的位移极化。试解 释温度对氯化钠型离子晶体的介电常数的影响。 解:温度对介电常数的影响可以利用式:

)(31212

0k

q N e e ++=+--

+

ααεεε

对温度求导可得:

dT

dk

k q N dT d L 2

2029)2()2)(1(21εεεβεεεεεαε+++--== 由上式可以看出,由于电介质密度的减少使得电子位移极化率以及离 子位移极化率所贡献的极化强度都减少,第一项为负值。但是温度的 升高又使得离子晶体的弹性联系减弱,离子位移极化加强,也就是第 二项为正值。然而第二项又与第一项相差不多。所以氯化钠型离子晶 晶体的介电常数是随着温度的升高尔增加,但增加的非常缓慢。 1-16 试用平板介质电容器的模型(串、并联形式),计算复合介质的介电 系数(包括双组分、多组分)。 解:串联时:

2

1111c c c += d

s

c 101εε=

, d

s

c 202εε=

,2

10d d s

c +=

εε

1211y d d d =+, 22

12

y d d d =+

可得

2

2

1

1

1εε

εy y +

=

同理可得并联时: 2211εεεy y +=

1-17 双层介质在直流电场的作用下,其每一层电场在电压接通的瞬间、稳 态、电压断开的情形下是如何分布的?作图表示(注意ε、γ的大小; 电场的方向)。 答案略

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

电介质物理习题

思 考 题 第 一 章 1.1 什么是电介质的极化?表征介质极化的宏观参数是什么? 1.2 什么叫退极化电场?如何用极化强度P 表示一个相对介电常数为r ε的平 行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷所产生的电场。 1.3 氧离子的半径为m 101032.1-?,计算氧的电子位移极化率。 1.4 在标准状态下,氖的电子位移极化率为2101043.0m F ??- 。试求出氖的相 对介电常数。 1.5 试写出洛伦兹有效电场表达式。适合洛伦兹有效电场时,电介质的介电 常数ε和极化率α有什么关系?其介电常数的温度系数的关系式又如何表示。 1.6 若用1E 表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电场 中1E =0时的情况。 1.7 试述K -M 方程赖以成立的条件及其应用范围。 1.8 有一介电常数为ε的球状介质,放在均匀电场E 中。假设介质的引入 不改变外电场的分布,试证: e E E 23+= ε 1.9 如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温度 系数的数学表达式。 1.10 列举一些介质材料的极化类型,以及举出在给中不同的频率下可能发生 的极化形式。 1.11 什么是瞬间极化、缓慢式极化?它们所对应的微观机制各代表什么? 1.12 设一原子半径为R 的球体,电子绕原子核均匀分布,在外电场E 作用下, 原子产生弹性位移极化,试求出其电子位移极化率。答案参考课本简原子结构模型中关于电子位移极化率的推导方法。

1.13 一平行板真空电容器,极板上的自由电荷密度为σ,现充以介电系数为r ε的介质。若极板上的自由电荷面密度保持不变,则真空时:平行板电容器的场强E =______,电位移D =______,极化强度P______;充以介质时:平行板电容器的场强E =______,电位移D =______,极化强度P______,极化电荷所产生的场强______。 1.14 为何要研究电介质中的有效电场?有效电场指的是什么?它由哪几部分 组成?写出具体的数学表达式。 1.15 氯化钠型离子晶体在电场作用下将发生电子、离子的位移极化。试解释 温度对氯化钠型离子晶体的介电常数的影响。 1.16 试用平板介质电容器的模型(串、并联形式),计算复合介质的介电系数 (包括双组分、多组分)。 1.17 一平行板真空电容器,极板上的电荷面密度为26/1077.1m C -?=σ。现充 以相对介电常数9=r ε的介质,若极板上的自由电荷密度保持不变,计算真空和介质中的E 、P 、D 为多少?束缚电荷产生的场强为多少? 1.18 一平行板介质电容器,其板间距离cm d 1=,210cm s =,介电系数ε=2, 外界V 5.1的恒压电源。求电容器的电容量C ;极板上的自由电荷q ;束缚电荷q ';极化强度P ;总电矩μ;真空时的电场0E 以及有效电场Ee 。 1.19 边长为10mm 、厚度为1mm 的方形平板介质电容器,其电介质的相对介 电系数为2000,计算相应的电容量。若电容器外接V 200的电压,计算: (1)电介质中的电场; (2)每个极板上的总电量; (3)存储在介质电容器中的能量。 1.20 试说明为什么TiO 2晶体具有较高的r ε。 1.21 列举一些材料的极化类型以及在各种频率下所能发生的极化形式。

西安交通大学大学物理教学大纲(128)汇总

“大学物理(A)”课程教学大纲 英文名称:University Physics 课程编号:PHYS1009 课程类型:必修 学时:128 学分:8 适用对象:理工科各专业学生 先修课程:高等数学高中物理 使用教材及参考书: 教材:大学物理(吴百诗主编)科学出版社 参考书:吴锡珑主编“大学物理教程”高教出版社 程守洙主编“普通物理学”高教出版社 张三慧主编“大学物理学”清华大学出版社 一、课程的性质、目的及任务 物理学是研究物质的基本结构﹑相互作用和物质最基础最普遍运动形式(机械运动,热运动,电磁运动,微观粒子运动等)及其相互转化规律的学科。 物理学的研究对象具有极大普遍性,它的基本理论渗透在自然科学的一切领域、应用于生产技术的各个部门,它是自然科学许多领域和工程技术发展的基础。 以物理学基础知识为内容的大学物理课程,它所包括的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员必备的。因此,大学物理课是我校理工科各专业学生的一门重要必修基础课。 开设大学物理课程的目的,一方面在于为学生较系统地打好必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法,这对开阔思路、激发探索和创新精神、增强适应能力、提高人才素质等,都会起到重要作用。学好物理课,不仅对学生在校的学习十分重要,而且对学生毕业后的工作和进一步学习新理论﹑新技术﹑不断更新知识等,都将发挥深远影响。 二、课程的基本要求 1.使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。 2.通过教学环节,培养学生严肃的科学态度和求实的科学作风。根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。 3.在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲 授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。

大学物理(第四)课后习题及答案磁介质

大学物理(第四)课后习题及答案磁介质

————————————————————————————————作者:————————————————————————————————日期:

磁介质 题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22 f r R I I ππ= ∑ 得 2 1 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 2 1012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222 22 3f R r R R I I I --- =∑ππ 得 ) (2)(2 22 322 33R R r r R I H --=π 同样忽略导体得磁化,有 03=M ) (2) (2 22322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

电介质物理学

电介质物理学 dielectric physics 研究电介质宏观介电性质及其微观机制以及电介质的各种特殊效应的物理学分支学科。基本内容包括极化机构、标志介电性质的电容率与介质的微观结构以及与温度和外场频率间的关系、电介质的导热性和导电性、介质损耗、介质击穿机制等。此外,还有许多电介质具有的各种特殊效应。 电介质性质电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。电介质极化时,电极化强度矢量P与总电场强度E的关系为P=ε χe E,ε0为真空 电容率,χ e 为电极化率,ε r =1+χ e 称为相对电容率(见电极化强度,电极化率)。电极化率或 电容率与外电场的频率有关。对静电场或极低频电场,上述3种极化类型都参与极化过程,一定电介质的电容率为常量。电场频率增加时,转向极化逐渐跟不上外电场的变化,电容率变为复数,虚部的出现标志着电场能量的损耗,称为介电损耗。频率进一步增加时,转向极化失去作用,电容率减小。在红外线波段,电介质正、负电中心的固有振动频率往往与外场频率一致,从而产生共振,表现为电介质对红外线的强烈吸收。在吸收区,电容率的实部和虚部均随频率发生大起大落的变化。在可见光波段,位移极化也失去作用,只有畸变极化起作用。光频区域的电容率实部进一步减小,它对应电介质的折射率,虚部决定了对光波的吸收。在强电场(如激光)作用下,极化强度P与电场强度E不再有线性关系,这使电介质表现出种种非线性效应(见非线性光学)。各向异性晶体的电容率不能简单地用一个数来表示,需用张量表示。 电介质特殊效应对电介质特殊效应的理论和应用构成了电介质物理学另一方面的研究内容。这些特殊效应包括:①压电效应。一些晶体因受外力而产生形变时,会发生极化现象,在相对两面上形成异号束缚电荷,称为压电效应。压电晶体种类很多,常见的有石英、酒石酸钾钠(罗谢耳盐)、磷酸二氢钾(KDP)、磷酸二氢铵(ADP)、钛酸钡,以及砷化镓、硫化锌等半导体和压电陶瓷等。压电晶体的机械振动可转化为电振动,常用来制造晶体振荡器,其突出优点是振荡频率的高度稳定性,无线电技术中可用来稳定高频振荡的频率,这种振荡器已广泛用于石英钟。压电晶体还普遍用于话筒、电唱头等电声器件中。利用压电现象可测量各种情形下的压力、振动和加速度等。 ②电致伸缩。是压电效应的逆效应。一些晶体在电场作用下会发生伸长或缩短形变,称电致伸缩。利用电致伸缩效应可将电振动转变为机械振动,常用于产生超声波的换能器,以及耳机和高音喇叭等。 ③驻极体。除去外电场或外加机械作用后,仍能长时间保持极化状态的电介质称为驻极体。驻极体同时具有压电效应和热电效应。技术上大多采用极性高分子聚合物作为驻极体材料。驻极体能产生30千伏/厘米的强电场。驻极体能存储电荷的性能已被用于静电摄影术和吸附气体中微小颗粒的气体过滤器。

电介质物理课后答案

思 考 题 第 一 章 1-1 什么是电介质的极化?表征介质极化的宏观参数是什么? 答:电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现 束缚电荷的现象称为电介质的极化。其宏观参数为介电常数ε。 1-2 什么叫退极化电场?如何用极化强度P 表示一个相对介电常数为r ε的 平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电 电荷所产生的电场。 答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产 的、与外电场方向相反的电场,起削弱外电场的作用,所以称为 退极化电场。 退极化电场:0 0εεσP E d -=- = 平均宏观电场:) 1(0-- =r P E εε 充电电荷所产生的电场:0 0000εεεεεσP E P E D E e +=+=== 1-3 氧离子的半径为m 101032.1-?,计算氧的电子位移极化率。 提示:按公式304r πεα=,代入相应的数据进行计算。 1-4 在标准状态下,氖的电子位移极化率为2101043.0m F ??- 。试求出氖的 相对介电常数。 解: 氖的相对介电常数: 单位体积的离子数:N =253 23 1073.24 .221010023.6?=?? 而 e r N αεε=-)1(0

所以:0000678.110 ?+ =εαεe r N 1-5 试写出洛伦兹有效电场表达式。适合洛伦兹有效电场时,电介质的介 电常数ε和极化率α有什么关系?其介电常数的温度系数的关系式又如 何表示。 解:洛伦兹有效场:E E E e ''++=3 2 ε ε和α的关系: αεεεN 0 31 21=+- 介电常数的温度系数为:L βεεα3 ) 2)(1(+-- = 1-6 若用1E 表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电 场中1E =0时的情况。 解:1E =0时, 洛伦兹的有效场可以表示为E E e 3 2 +=ε 1-7 试述K -M 方程赖以成立的条件及其应用范围。 答:克-莫方程赖以成立的条件:0=''E 其应用的范围:体心立方、面心立方、氯化钠型以及金刚石结构 的晶体;非极性以及弱极性液体介质。 1-8 有一介电常数为ε的球状介质,放在均匀电场E 中。假设介质的引入 不改变外电场的分布,试证: e E E 2 3 += ε 解; 按照洛伦兹有效电场模型可以得到:在0=''E 时 E E e 3 2 += ε 所以 e E E 2 3 += ε 1-9 如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温 度系数的数学表达式。 答:温度变化一度时,介电常数的相对变化率称为介电常数的温度 系数。

大学物理课后习题答案

大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流 在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱 (半径为a )和同轴的导体圆管(内、外半 径分别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间 (b r a <<)的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

材料物理性能课后习题答案北航出版社田莳主编(供参考)

材料物理习题集 第一章固体中电子能量结构和状态(量子力学基础) 1.一电子通过5400V电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni晶体(111)面(面间距d=2.04×10-10m)的布拉格衍射角。(P5) 1 2 34 1 31192 11 11 o' (2) 6.610 = (29.1105400 1.610) =1.6710 2 K 3.7610 sin sin218 2 h h p mE m d d λ π λ θλ λ θθ - -- - = ? ????? ? =? = =?= 解:(1)= (2)波数= (3)2 2.有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 22623 22626102610 (1)1、22p、33p (2)1、22p、33p3d、44p4d ,请分别写出n=3的所有电子的四个量子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0 F 。(P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

西安交通大学大学物理仿真实验

大学物理仿真实验 偏振光的观察与研究 姓名: 班级: 学号:

实验原理: 1.偏振光的概念和产生:

2.改变偏振态的方法和器件: 常见的起偏或检偏的元件构成有两种: 1.光学棱镜。如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的; 2.偏振片。它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光. 马吕斯定律:马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为I1 = I0 cos2α,其中的 是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角:

波晶片:又称位相延迟片,是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度v o ,v e不同,所以造成o光和e光通过波晶片的光程也不同.当两光束通过波晶片后o 光的位相相对于e光多延迟了Δ=2π(n0-n1)d/λ,若满足(n e-n o)d=±λ/4,即Δ=±π/2我们称之为λ/4片,若满足(n e-n o)d=±λ/2,即Δ=±π,我们称之为λ/2片,若满足(n e-n o)d=±λ,即Δ=2π我们称之为全波片。

3.借助检偏器和λ/4波晶片检验光的5种偏振态: 1. 只用检偏器(转动): 对于线偏光可以出现极大和消光现象。

对于椭圆偏光和部分偏光可以出现极大和极小现象。 对于圆偏光和非偏光各方向光强不变。 2. 用λ/4波晶片和检偏器(转动): 对于非偏光(自然光)各方向光强不变。 对于圆偏光出现消光现象(原因)。 对于部分偏光仍出现极大和极小现象。 对于椭圆偏光,当把λ/4波晶片的快慢轴放在光强极大位置时出现消光现象(原因)。 检验偏振光的光路 实验内容: 1.研究λ/4波片对偏振光的影响: 本实验所用仪器有:光源、偏振片(2个)、λ/4波片、光屏等。 光路图 (1)按光路图使偏振片A和B 的偏振轴正交(消光)。然后插入一片λ/4波

大学物理习题集加答案

大学物理习题集 (一) 大学物理教研室 2010年3月 目录 部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10 练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14 练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 部分物理常量 万有引力常量G=×1011N·m2·kg2 重力加速度g=s2

电介质物理基础孙目珍版最完整课后习

第一章 电介质的极化 1.什么是电介质的极化?表征介质极化的宏观参数是什么? 若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。 为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的 电容量C 与真空时的电容量C0的比值为该电介质的介电系数,即 0r C C = ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。 2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电 场。 电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。 退极化电场:0 0εεσP E d -='- = 平行宏观电场:)1(0-= r P E εε 充电电荷产生的电场:) 1()1(0000000-= +-=+=== +=r r r d P P P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-?,计算氧原子的电子位移极化率 按式304r πεα=代入相应的数据进行计算。 240310121056.2)1032.1()1085.8(14.34m F ??≈?????=---α 4.在标准状态下,氖的电子位移极化率为2101043.0m F ??-。试求出氖的相对介电常数。 单位体积粒子数253 23 1073.24 .221010023.6?=??=N e r N αεε=-)1(0 12 40 250 1085.81043.01073.211--????+=+ =∴εαεe r N 5.试写出洛伦兹有效电场的表达式。适合洛伦兹有效电场时,电介质的介电系数 r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。

西安交通大学大学物理试题

物理篇 西安交通大学考试题 课 程 大 学 物 理 学 院 考 试 日 期 2007 年 1 月 26 日 专业班号 姓 名 学 号 期中 期末 一 选择题 (每题3分,共30分) 1.一定量的理想气体经历acb 过程时吸热500J ,且a b T T =。则经历acbda 过程时,吸热为 (A) 1200J - (B) 700J - (C) 400J - (D) 800J [ ] 2.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 2 O ()p v 和 2 H ()p v 分别表示氧气和氢气的最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; 22O H ()/()4 p p =v v 。 (B) 图中a 表示氧气分子的速率分布曲线;22O H ()/()1/4p p =v v 。 (C) 图中b 表示氧气分子的速率分布曲线;22O H ()/()1/4p p =v v 。 (D) 图中b 表示氧气分子的速率分布曲线;22O H ()/()4 p p =v v 。 [ ] 3.理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为1S 和2S ,则二者的大小关系是 (A) 12S S > (B) 12S S < (C) 12S S = (D)无法确定 [ ]

4.两个质点各自作简谐振动,它们的振幅相同、周期 相同。第一个质点的振动方程为1cos()x A t ωα=+。当 第一个质点从相对于其平衡位置的正位移处回到平衡位 置时,第二个质点正在最大正位移处。 则第二个质点的振动方程为 (A) 21cos(π)2x A t ωα=++ (B) 21 cos(π) 2x A t ωα=+- (C) 23 cos(π) 2x A t ωα=+- (D) 2cos(π)x A t ωα=++ [ ] 5.在长为L ,两端固定的细绳上形成驻波,则此驻波的基频波(波长最长的波)的波长为 (A )2L (B) 3L (C) 4L (D) 5L [ ] 6.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 (A) 使屏靠近双缝。 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄。 (D) 改用波长较小的单色光源 [ ] 7.光强为0I 的自然光依次通过两个偏振片1P 和2P 。若1P 和2P 的偏振化方向的夹角030α=,则透射偏振光的强度I 是 (A) 0/4I (B ) 03/4I (C) 0/8I (D) 03/8I [ ] 8.普朗克量子假说是为了解释 (A) 光电效应实验规律而提出的。 (B)X 射线散射实验规律而提出的。 (C) 黑体辐射的实验规律而提出的。 (D) 原子光谱的规律而提出的。 [ ] 9.波长500nm λ=的光沿x 轴正向传播,若光的波长的不确定量4 10nm λ-?=,则利用 不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为(-9 1nm=10m ) (A )25cm (B) 50cm (C) 250cm (D) 500cm [ ] 10. 根据玻尔理论,氢原子中的电子在4n =的轨道上运动的动能与在基态的轨道上运动的动能之比为 (A )1/4 (B) 1/8 (C) 1/16 (D) 1/32 [

《大学物理》习题册题目及答案第13单元磁介质(最新整理)

? ? ? ? ? ? ? 第 13 单元 磁介质 第九章 电磁场理论(二) 磁介质 麦克斯韦方程组 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 顺磁物质的磁导率: (A)比真空的磁导率略小 (B)比真空的磁导率略大(C)远小于真空的磁导率 (D)远大于真空的磁导率 [ C ]2. 磁介质有三种,用相对磁导率r 表征它们各自的特性时, (A ) 顺磁质r (B ) 顺磁质r (C ) 顺磁质r (D ) 顺磁质 r > 0 ,抗磁质r < 0 ,铁磁质r > 1,抗磁质r = 1 ,铁磁质r > 1,抗磁质r < 1,铁磁质r > 0 ,抗磁质r < 0 ,铁磁质r >> 1 >> 1 >> 1 > 1 [ B ]3. 如图,平板电容器(忽略边缘效应)充电时,沿环路 L1,L2 磁场强度H 的环流中, 必有: (A ) H ? d l > H ? d l L 1 L 12 (B ) H ? d l = H ? d l L 1 L 12 (C ) H ? d l < H ? d l L 1 L 12 (D ) H ? d l = 0 L 12 [ D ]4. 如图,流出纸面的电流为 2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) (C) H ? d l = 2I L 1 H ? d l = -I L 3 (B) (D) H ? d l = I L 2 H ? d l = -I L 4 4二 填空题 1. 图示为三种不同的磁介质的 B ~H 关系曲线,其中虚线表示的是 B = 0H 的关系。试说明 a 、b 、c 各代 表哪一类磁介质的 B ~H 关系曲线: a 代表 铁磁质 的 B ~H 关系曲线。 b 代表 顺磁质 的 B ~H 关系曲线。 c 代表 抗磁质 的 B ~H 关系曲线。 o 2. 一个单位长度上密绕有 n 匝线圈的长直螺线管,每 H B a b c L 1 L 2 L 1 ⊙ × L 2 L 3 ? ? ? ?

【西安交通大学】【电介质物理】【姚熹、张良莹】【课后习题答案】【第一章】

第一章 静电场中的电介质 1-1 半径为a 的 球带电量为q ,电荷密度正比于距球心的居里。求空间的电位和 电场分布。 解: 由题意可知,可设kr =ρ 再由于 ?=q dv ρ,代入可以求出常数k 即 ?=424ka krdr r ππ 所以 4a q k π= r a q 4 πρ= 当 a r >.时 由高斯定理可知 0 24επq r E = ? ; 2 04r q E πε= ?∞ = ?=r r q dr E U 04πε 当 a r <<0时 由高斯定理可知 4 042 0400 2 41 1 4a qr dr r r a q dv r E r r εππερεπ=?== ??? 4 02 4a qr E πε= dr r qr dr a qr dr E U a r a r ??? ∞∞ +=?=20 2 40244πεπε a q r a a q 0334 04)(12πεπε+ -= )4(12334 0r a a q -= πε 1-2 电量为q 的8个点电荷分别位于边长为a 的立方体的各顶角。求其对以下 各点的电距:(1)立方体中心;(2)某一面的中心;(3)某一顶角;

(4)某一棱的中点。若8个点电荷中4个为正电荷、4个为负电荷,重新计算上述问题 解 :由电矩的定义 ∑∑==i i i i i i r q r q μ (一)八个电荷均为正电荷的情形 (1)立方体的在中心: 八个顶点相对于立方体中心的矢量和为∑==8 10i i r ,故0==∑i i i r q μ (2)某一面心: 该面的四个顶点到此面心的矢量和 ∑==4 1 0i i r ,对面的四个顶点到此点的矢量和∑==8 5 4i i a r 故qa 4=μ; (3)某一顶角 :其余的七个顶点到此顶点的矢量和为: ∑==7 5 34i i a r 故qa 34=μ; (4)某一棱的中心 ;八个顶点到此点的矢量和为∑==7 5 24i i a r 故qa 24=μ; (二)八个电荷中有四个正电荷和四个负电荷的情形与此类似; 1-3 设正、负电荷q 分别位于(0,0,l /2)、(0,0,-l /2),如图所示。求 场点P 处电势计算的近似表达式,试计算在场点(0,0,l 23),(0,0,l 2 5 ) 处电势的近似值,并与实际值比较 解:P 点的电势可以表示为: ? =-++??= )1 1(40 - +-r r q πε

大学物理 第十五章 磁介质的磁化习题解答

第十五章 磁介质的磁化习题解答(仅作为参考) 15.1 一均匀磁化的磁介质棒,直径为25mm ,长为75mm ,其总磁矩为12000A·m 2.求棒的磁化强度M 为多少? [解答] 介质棒的面积为S = πr 2, 体积为 V = Sl = πr 2l , 磁矩为p m = 12000A·m 2,磁化强度为 m m p p M V V ∑==? 323 12000(2510/2)7510π--=??? =3.26×108(A·m -1). 15.3 一螺绕环中心周长l = 10cm ,线圈匝数N = 200匝,线圈中通有电流I = 100mA .求: (1)管内磁感应强度B 0和磁场强度H 0为多少? (2)设管内充满相对磁导率μr = 4200的铁磁质,管内的B 和H 是多少? (3)磁介质内部由传导电流产生的B 0和由磁化电流产生的B`各是多少? [解答](1)管内的磁场强度为 3 02 200100101010NI H l --??==? = 200(A·m -1). 磁感应强度为 B = μ0H 0 = 4π×10-7×200 = 2.5×10-4(T). (2)当管内充满铁磁质之后,磁场强度不变H = H 0 =200(A·m -1). 磁感应强度为 B = μH = μr μ0H = 4200×4π×10-7×200 = 1.056(T). (3)由传导电流产生的B 0为2.5×10-4T .由于B = B 0 + B`,所以磁化电流产生的磁感应强度为 B` = B - B 0 ≈1.056(T). 15.5 一根磁棒的矫顽力为H c = 4.0×103A·m -1,把它放在每厘米上绕5匝的线圈的长螺线管中退磁,求导线中至少需通入多大的电流? [解答]螺线管能过电流I 时,产生的磁感应强度为 B = μ0nI . 根据题意,螺线管产生的磁场强度至少要与磁棒的矫顽力大小相等,但方向相反, 因此 B = μ0H c , 所以电流强度为 I = H c /n = 4.0×103/500 = 8(A).

【交通运输】【西安交通大学】【电介质物理】【姚熹张良莹】【课后习题答案】

第二章变化电场中的电介质 2-1什么是瞬时极化、缓慢极化?它们所对应的微观机制代表什么? 极化对电场响应的各种情况分别对何种极化有贡献? 答案略 2-2何谓缓慢极化电流?研究它有何意义?在实验中如何区分自由电荷、束缚电荷随产生的传到电流? 答案略 2-3何谓时域响应、频域响应?两者的关系如何?对材料研究而言,时域、频域的分析各由什么优缺点? 答案略 2-4已知某材料的极化弛豫函数,同时材料有自由电荷传导,其电导率为,求该材料的介质损耗角正切。 解:由弛豫函数可知德拜模型 极化损耗,漏导损耗 如果交变电场的频率为; 则= = 该材料的介质损耗正切为:=+ 2-5在一平板介质(厚度为d,面积为S)上加一恒定电压V,得

到通过介质的总电流为,已知介质的光频介电常数为 ,求单位体积内的介质损耗、自由电子的电导损耗、极化弛豫与时间的关系。若施加频率为的交变电场,其值又为多少?并求出介质极化弛豫函数f(t)。 解:在电场的作用下(恒场)介质中的功率损耗即为介质损耗 电功 单位体积中的介电损耗: 自由电子电导损耗: 极化弛豫损耗: 电导率:, 电流: 其中为传导电流 为极化电流 另一方面 故 有 因而,加交变电场时:

极化损耗: 电导损耗: 单位体积中的极化损耗功率: 单位体积中的电导损耗功率: 弛豫函数: 2-6若介质极化弛豫函数,电导率为,其上施加电场 E(t)=0 (t<0); E(t)=at (t>0 , a为常数) 求通过介质的电流密度。 解:已知: j(t)= 2-7求德拜弛豫方程中吸收峰的半高宽?吸收峰高为多少?出现在什么频率点上?吸收峰中(以半高宽为范围)的变化 为多少?占总变化量的百分之几? 解:令可得 半高

大学物理(第四版)课后习题及答案 磁介质

题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22f r R I I ππ=∑ 得 21 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 21012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222223f R r R R I I I ---=∑ππ 得 )(2)(222322 33R R r r R I H --= π 同样忽略导体得磁化,有 03=M ) (2)(222322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

相关主题
文本预览
相关文档 最新文档