当前位置:文档之家› 新课标人教A版_选修2-3__独立性检验的基本思想及其初步应用

新课标人教A版_选修2-3__独立性检验的基本思想及其初步应用

新课标人教A版_选修2-3__独立性检验的基本思想及其初步应用
新课标人教A版_选修2-3__独立性检验的基本思想及其初步应用

3.2独立性检验的基本思想及其初步应用

一、教学内容与教学对象分析

通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。

①通过对典型案例(如“患肺癌与吸烟有关吗”等)的探究。了解独立性检验(只要求2×2

列联表)的基本思想、方法及初步应用。

②通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及其初步应用。

二. 学习目标

1、知识与技能

通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。

2、过程与方法

在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。最后介绍了独立性检验思想的综合运用。

3、情感、态度与价值观

通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。明确数学在现实生活中的重要作用和实际价值。教学中,应多给学生提供自主学习、独立探究、合作交流的机会。养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。

三.教学重点、难点

教学重点:理解独立性检验的基本思想;独立性检验的步骤。

教学难点;1、理解独立性检验的基本思想;

2、了解随机变量K2的含义;

3、独立性检验的步骤。

四、教学策略

教学方法:诱思探究教学法

学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:多媒体辅助教学

五、教学过程:

对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.在现实生活中,分类变量是大量存在的,例如是否吸烟,宗教信仰,国籍,等等.在日常生活中,我们常常关心两个分类变量之间是否有关系.例如,吸烟与患肺癌是否有关系?性别对于是否喜欢数学课程有影响?等等.

为调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)

表3-7 吸烟与肺癌列联表

像表3一7 这样列出的两个分类变量的频数表,称为列联表.由吸烟情况和患肺癌情况的列联表可以粗略估计出:在不吸烟者中,有0.54 %患有肺癌;在吸烟者中,有2.28%患有肺癌.因此,直观上可以得到结论:吸烟者和不吸烟者患肺癌的可能性存在差异.

与表格相比,三维柱形图和二维条形图能更直观地反映出相关数据的总体状况.图3. 2 一1 是列联表的三维柱形图,从中能清晰地看出各个频数的相对大小.

图3.2一2 是叠在一起的二维条形图,其中浅色条高表示不患肺癌的人数,深色条高表示患肺癌的人数.从图中可以看出,吸烟者中患肺癌的比例高于不吸烟者中患肺癌的比例.

为了更清晰地表达这个特征,我们还可用如下的等高条形图表示两种情况下患肺癌的比例.如图3.2一3 所示,在等高条形图中,浅色的条高表示不患肺癌的百分比;深色的条高表示患肺癌的百分比.

通过分析数据和图形,我们得到的直观印象是“吸烟和患肺癌有关”.那么我们是否能够以一定的把握认为“吸烟与患肺癌有关”呢?

为了回答上述问题,我们先假设

H 0:吸烟与患肺癌没有关系.用A 表示不吸烟, B 表示不患肺癌,则“吸烟与患肺癌没有关系”独立”,即假设 H 0等价于

PAB )=P(A )+P(B) .

把表3一7中的数字用字母代替,得到如下用字母表示的列联表: 表

在表3一8中,a 恰好为事件AB 发生的频数;a+b 和a+c 恰好分别为事件A 和B 发生的频数.由于频率近似于概率,所以在H 0成立的条件下应该有

a a

b a

c n n n

++≈?, 其中n a b c d =+++为样本容量, (a+b+c+d)≈(a+b)(a+c) ,

即ad ≈bc.

因此,|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad -bc|越大,说明吸烟与患肺癌之间关系越强.

为了使不同样本容量的数据有统一的评判标准,基于上面的分析,我们构造一个随机变量

()

()()()()

2

2n ad bc K a b c d a c b d -=++++ (1)

其中n a b c d =+++为样本容量.

若 H 0 成立,即“吸烟与患肺癌没有关系”,则 K “应该很小.根据表3一7中的数据,利用公式(1)计算得到 K “的观测值为

()2

2996577754942209956.63278172148987491

K ?-?=≈???,

这个值到底能告诉我们什么呢?

统计学家经过研究后发现,在 H 0成立的情况下,

2( 6.635)0.01P K ≥≈. (2)

(2)式说明,在H 0成立的情况下,2

K 的观测值超过 6. 635 的概率非常小,近似为0 . 01,是一个小概率事件.现在2

K 的观测值k ≈56.632 ,远远大于6. 635,所以有理由断定H 0不成立,即认为“吸烟与患肺癌有关系”.但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系” .

在上述过程中,实际上是借助于随机变量2

K 的观测值k 建立了一个判断H 0是否成立的规则: 如果k ≥6. 635,就判断H 0不成立,即认为吸烟与患肺癌有关系;否则,就判断H 0成立,即认为吸烟与患肺癌没有关系.

在该规则下,把结论“H 0 成立”错判成“H 0 不成立”的概率不会超过

2( 6.635)0.01P K ≥≈,

即有99%的把握认为从不成立.

上面解决问题的想法类似于反证法.要确认是否能以给定的可信程度认为“两个分类变量有关系”,首先假设该结论不成立,即

H 0:“两个分类变量没有关系” 成立.在该假设下我们所构造的随机变量2

K 应该很小.如果由观测数据计算得到的2

K 的观测值k 很大,则在一定可信程度上说明H 0不成立,即在一定可信程度上认为“两个分类变量有关系”;如果k 的值很小,则说明由样本观测数据没有发现反对H 0 的充分证据.

怎样判断2

K 的观测值 k 是大还是小呢?这仅需确定一个正数0k ,当0k k ≥时就认为 2

K 的观测值k 大.此时相应于0k 的判断规则为:

如果0k k ≥,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”. 我们称这样的0k 为一个判断规则的临界值.按照上述规则,把“两个分类变量之间没有关系”错误地判断为“两个分类变量之间有关系”的概率为20()P K k ≥.

在实际应用中,我们把0k k ≥解释为有20(1())100%P K k -≥?的把握认为“两个分类变量之间有关系”;把0k k <解释为不能以2

0(1())100%P K k -≥?的把握认为“两个分类变量之间有关系”,或者样本观测数据没有提供“两个分类变量之间有关系”的充分证据.上面这种利用随机变量2

K 来确定是否能以一定把握认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验.

利用上面结论,你能从列表的三维柱形图中看出两个变量是否相关吗?

一般地,假设有两个分类变量X 和Y ,它们的可能取值分别为{12,x x }和{12,y y }, 其样本频数列联表(称为2×2列联表)为:

表3一 9 2×2列联表

若要推断的论述为

H l :X 与Y 有关系,

可以按如下步骤判断结论H l 成立的可能性:

1.通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.

① 在三维柱形图中,主对角线上两个柱形高度的乘积ad 与副对角线上的两个柱形高度的乘积bc 相差越大,H 1成立的可能性就越大.

② 在二维条形图中,可以估计满足条件X=1x 的个体中具有Y=1y 的个体所占的比例a a b

+,也可以估计满足条件X=2x 的个体中具有Y=2y ,的个体所占的比例

c

c d

+.“两个比例的值相差越大,H l 成立的可能性就越大.

2.可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体做法是:

① 根据实际问题需要的可信程度确定临界值0k ;

② 利用公式( 1 ) ,由观测数据计算得到随机变量2

K 的观测值k ;

③ 如果0k k >,就以20(1())100%P K k -≥?的把握认为“X 与Y 有关系”;否则就说样本观测数据没有提供“X 与Y 有关系”的充分证据.

在实际应用中,要在获取样本数据之前通过下表确定临界值: 表3一10

(四)、举例:

例1.在某医院,因为患心脏病而住院的 665 名男性病人中,有 214 人秃顶,而另外 772 名不是因为患心脏病而住院的男性病人中有 175 人秃顶.

(1)利用图形判断秃顶与患心脏病是否有关系.

(2)能够以 99 %的把握认为秃顶与患心脏病有关系吗?为什么? 解:根据题目所给数据得到如下列联表:

(1)相应的三维柱形图如图3.2一4所示.比较来说,底面副对角线上两个柱体高度的乘积要大一些,可以在某种程度上认为“秃顶与患心脏病有关”.

(2)根据列联表3一11中的数据,得到

21437(214597175451)3891048665772

k ??-?=???≈16.373>6 .

因此有 99 %的把握认为“秃顶与患心脏病有关” .

例2.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:

表3一12 性别与喜欢数学课程列联表

由表中数据计算得2

K 的观测值 4.514k ≈.能够以95%的把握认为高中生的性别与是否喜欢数学

课程之间有关系吗?请详细阐明得出结论的依据.

解:可以有约95%以上的把握认为“性别与喜欢数学课之间有关系”.作出这种判断的依据是独立性检验的基本思想,具体过程如下:

分别用a , b , c , d 表示样本中喜欢数学课的男生人数、不喜欢数学课的男生人数、喜欢数学课的女生人数、不喜欢数学课的女生人数.如果性别与是否喜欢数学课有关系,则男生中喜欢数学课的比例

a

a b

+与女生中喜欢数学课的人数比例c c d +应该相差很多,即

|

|||()()

a c ad bc

a b c d a b c d --=++++ 应很大.

将上式等号右边的式子乘以常数因子

,

然后平方得

2

2

()()()()()

n ad bc K a b c d a c b d -=++++,

其中n a b c d =+++.因此2

K 越大,“性别与喜欢数学课之间有关系”成立的可能性越大.

另一方面,在假设“性别与喜欢数学课之间没有关系”的前提下,事件A ={2

K ≥3. 841}的概率为P (2

K ≥3. 841) ≈0.05,

因此事件 A 是一个小概率事件.而由样本数据计算得2

K 的观测值k=4.514,即小概率事件 A 发生.因此应该断定“性别与喜欢数学课之间有关系”成立,并且这种判断结果出错的可能性约为5 %.所以,约有95 %的把握认为“性别与喜欢数学课之间有关系”. (四) 课堂小结 1.知识梳理

2.规律小结

(1)三维柱形图与二维条形图 (2)独立性检验的基本思想 (3)独立性检验的一般方法 (五) 作业:

独立性检验中的列表与用表

独立性检验中的列表与用表 224100 江苏省盐城市大丰区南阳中学 潘锦明 独立性检验基本思想中的2×2列联表是考查的重点,其中列表、填表与用表是独立性检验的基本步骤之一。本文就从以下三方面剖析。 一、列表: 关键理清两个分类变量关系,能合理列出分类变量列联表。 例1、网络对现代人的影响较大,尤其是青少年,为了了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了515人调查,发现其中经常上网的有220人,这220人中有37人期末考试不及格,而另外295人中有21人不及格。问:能否有99%的把握认为经常上网会影响学习? 分析:通过阅读,本题包括两个变量,一类是娱乐方式,一类是成绩。 假设“上网与是否影响学习无关”,则2 K 应该很小,由公式得2 K 的观测值 863.11220 29558457)3727421183(5152≈????-??=k ,且01.0)635.6(2≈≥K P . 所以,我们有99%的把握认为“中学生经常上网影响学习”。 点评:在使用2 K 统计量作2×2列联表的独立性检验时,要求表中的4个数据都大于5. 二、填表与用表 这类题首先根据表格数值进行补充,再求解计算。 例2、富士康某生产车间在发年终奖金的时候,为了体现多劳多得的原则,需要对全车 (1)如果随机抽查这个车间的一名工人,那么抽到主动参加车间培训的工人的概率是多少?抽到不太主动参加车间培训的且工作积极性一般的工人的概率是多少? (2)试运用独立性检验的方法分析:工人的工作积极性与对待车间培训的态度是否有 解:(1)主动参加车间培训的工人有24人,总人数为50人,概率25 50== P .

高中选修1-2回归分析和独立性检验知识总结与联系

高中选修1-2回归 分析和独立性检验 知识总结与联系 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====? ---??==??--??=-??∑∑∑∑选修1-2第一部分 变量间的相关关系与统计案例 【基础知识】 一、回归分析 1.两个变量的线性相关:判断是否线性相关 ①用散点图 (1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关. (2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. ②用相关系数r (3)除用散点图外,还可用样本相关系数r 来衡量两个变量x ,y 相关关系的强弱, n i i x y nx y r -?= ∑当r >0,表明两个变量正相关,当r <0,表明两个变量负相关,r 的绝对值越接近于1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |0.75>时,认为这两个变量具有很强的线性相关关系. 2.回归方程: 两个变量具有线性相关关系,数据收集如下: 可用最小二乘法得到回归方程?y bx a =+,其中 3.回归分析的基本思想及其初步应用 (1)回归分析是对具有相关关系的两个变量进行统计分析的方法,其常用的 研究方法步骤是画出散点图,求出回归直线方程,并利用回归直线方程进行预报. (2)对n 个样本数据(x 1,y 1)、(x 2,y 2)、…、(xn ,yn ),(,)x y 称为样本点的中心.样本点中心一定落在回归直线上。 4、回归效果的刻画:

1.1《独立性检验》习题

1-1《 统计案例》习题 1.1 独立性检验 双基达标 限时15分钟 1.下面是一个2×2的列联表 则表中a ,b 解析 由a +21=73,得a =52, 由a +5=b ,得b =57. 答案 52,57 2.为了检验两个事件A 与B 是否相关,经计算得χ2=3.850,我们有________ 的把握认为事件A 与B 相关. 答案 95% 3.为了考查高中生的性别与是否喜欢数学课程之间的关系,某市在该辖区内 的高中学生中随机地抽取300名学生进行调查,得到表中数据: 解析 由χ2 =300 47×123-35×95 2142×158×82×218≈4.512. 答案 4.512 4.下列关于独立性检验的4个叙述,说法正确的是________. ①χ2 的值越大,说明两事件相关程度越大; ②χ2 的值越小,说明两事件相关程度越小; ③χ2 ≤3.841时,有95%的把握说事件A 与B 无关; ④χ2 >6.635时,有99%的把握说事件A 与B 有关. 解析 在独立性检验中,随机变量χ2 的取值大小只能说明“两分类变量有关”,这一结论 的可靠程度,即可信度,而不表示两事件相关的程度,故①②不正确.χ2 >6.635说明有99%的把握认为二者有关系,χ2≤3.841时,若x 2 >2.706则有90%的把握认为事件A 与B 有关系.因

此可知③中说法是不正确的. 答案 ④ 5.想要检验是否喜欢参加体育活动是不是与性别有关,应该假 设________________. 解析 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时 的χ2应该很小,如果χ2很大,则可以否定假设;如果χ2 很小,则不能够肯定或者否定假设. 答案 H 0:喜欢参加体育活动与性别无关 6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行 了3年的跟踪研究,调查他们是否发作过心脏病,调查结果如下表所示: 解 提出假设H 0:两种手术对病人又发作心脏病没有影响.由列联表,得 χ2=392× 39×167-157×29 2196×196×68×324 ≈1.780<2.706. 因为当H 0成立时,χ2 ≥1.780的概率大于10%,这个概率比较大,所以根据目前的调查数 据,不能否定假设H 0,故我们没有理由说这两种手术与“又发作过心脏病”有关,故可以认为病人是否发作心脏病跟他做过何种手术无关. 综合提高 限时30分钟 7. 2008年10月8日为我国第十一个高血压日,主题是“在家测量您的 血压”.某社区医疗服务部门为了考察该社区患高血压病是否与食盐摄入 量有关,对该社区的1 633人进行了跟踪调查,得出以下数据: 计算χ2有关系.

2独立性检验

1.2独立性检验的基本思想及其初步应用 根据表中数据得到 2 50181589 27232426 k () ??-? =≈ ??? 5.059,因为p(K2≥5.024)=0.025, 则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为() (A)97.5% (B) 95% (C)90% (D)无充分根据 2.(2011?湛江一模)利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅表格来确定“X和Y有关 A.5% B.75% C.99.5% D.95% 3.(2012?泰安一模)下列说法: ①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位; ③线性回归方程必过; ④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系; 其中错误的个数是() A.0 B.1 C.2 D.3 4.(2010?泰安二模)某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H0:“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出P(Χ2≥6.635)≈0.01,则下列说法正确的是() A.这种疫苗能起到预防甲型H1N1流感的有效率为1% B.若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1 C.有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用” D.有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用” 5.(2012?枣庄一模)通过随机询问100名性别不同的大学生是否爱好踢毪子运动,得到如下的列联表: 随机变量,经计算,统计量K2的观测值k≈4.762,参照附表,得到的正

高中数学 选修1-2 3.独立性检验

3.独立性检验 教学目标 班级____姓名________ 1.了解分类变量、列联表、随机变量2 K . 2.了解独立性检验的基本思想和方法. 教学过程 一、知识要点. 1.分类变量:变量不同的值表示个体所属的类别不同. 2.列联表:两个分类变量的频数表. 3.随机变量:) )()()(()(22 d b c a d c b a bc ad n K ++++-=,010.0)635.6(2 ≈≥K P (小概率事件) 4.独立性检验:运用统计分析的方法确定分类变量的关系. (1)要判断“两个分类变量有关系”; (2)假设结论不成立,即“0H :两个分类变量没有关系”; (3)确定一个判断规则的临界值0k :当02k K ≥时,认为“两个分类变量有关系”,否则认为“两个分类变量没有关系”;(0k 是根据允许误判概率的上限来确定的) (4)按照上述规则,误判概率为)(02k K P ≥. 0k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82 )(02k K P ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 (5)拓展: ①令|| d c c b a a W +-+=,则) )(() )((22d b c a d c b a n W K ++++?=; ②令) )(() )((00d c b a n d b c a k w ++++? = ; ③02 k K ≥等价于0w W ≥,所以)(0w W P ≥等价于)(02 k K P ≥; ④可以用)(0w W P ≥来作为判断依据. 二、例题分析. 例1:研究吸烟与患肺癌的关系. 1.确定研究对象:吸烟与患肺癌的关系.

独立性检验的基本思想及其初步应用习题及答案

数学·选修1-2(人教A版) 独立性检验的基本思想及其初步应用 ?达标训练 1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( ) A.散点图B.等高条形图 C.2×2列联表 D.以上均不对 答案:B 2.在等高条形图形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( ) 与 d c+d 与 a c+d 与 c c+d 与 c b+c 答案:C 3.对分类变量X与Y的随机变量K2的观测值k,说法正确的是( ) A.k越大,“ X与Y有关系”可信程度越小 B.k越小,“ X与Y有关系”可信程度越小 C.k越接近于0,“X与Y无关”程度越小 D.k越大,“X与Y无关”程度越大 答案:B 4.下面是一个2×2列联表:

则表中a、b的值分别为( ) A.94、96 B.52、50 C.52、54 D.54、52 答案:C 5.性别与身高列联表如下: 那么,检验随机变量K2的值约等于 ( ) A. B. C.22 D. 答案:C 6.给出列联表如下: 根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是( ) A.B.0.5 C.D. 答案:B

?素能提高 1.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲,下列说法中正确的是( ) A .男人、女人中患有色盲的频率分别为、 B .男人、女人患色盲的概率分别为19240、3 260 C .男人中患色盲的比例比女人中患色盲的比例大,患色盲是与性别有关的 D .调查人数太少,不能说明色盲与性别有关 解析:男人患色盲的比例为38480,比女人中患色盲的比例6 520 大, 其差值为?? ???? 38480-6520≈ 6,差值较大. 答案:C 2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 由K 2=算得, K 2=≈. 附表: 参照附表,得到的正确结论是( ) A .有99%以上的把握认为“爱好该项运动与性别有关” B .有99%以上的把握认为“爱好该项运动与性别无关” C .在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别有关” D .在犯错误的概率不超过%的前提下,认为“爱好该项运动与性

独立性检验讲解

独立性检验基础训练题 姓名: 分数: 1.独立性检验中的统计假设就是假设两个事件A 、B ( ) A 互斥 B 不互斥 C 相互独立 D 不独立 2.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就 ( ) A. 越大 B. 越小 C.无法判断 D. 以上都不对 3.2010年3月26日,韩国军舰“天安”号发生不明原因爆炸事故离奇沉没,5月20日韩国军民联合调查团公布的调查结果说天安舰是遭受朝鲜小型潜水艇发射的鱼雷攻击而沉没的。对此,许多网民表达了自己的意见,有的网友进行了调查,在参加调查的4258名男性公民中有2360名认为是朝鲜所为,3890名女性公民中有2386人认为朝鲜是遭陷害,在运用这些数据说明天安舰事件中朝鲜是否冤枉时用什么方法最有说服力?( ) A 平均数 B 回归分析 C 独立性检验 D 方差 4.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。如果k>5.024,那么就有把握认为“X 和Y 有关系”的百分比为 A.25% B.75% C.2.5% D.97.5% 5.假设有两个分类变量X 和Y ,它们的值域分别为},{21x x 和},{21y y ,其2×2列联表为: A .5=a ,4=b ,3=c ,2=d B .5=a ,3=b ,4=c ,2=d C .2=a ,3=b ,4=c ,5=d D .2=a ,3=b ,5=c ,4=d 6.考察玉米种子经过药物处理跟生病之间的关系得到如下表数据: A. 玉米种子经过药物处理跟是否生病有关; B. 玉米种子经过药物处理跟是否生病无关;

高中数学选修2-3-独立性检验

3.2独立性检验的基本思想及其初步应用 (共计3课时) 授课类型:新授课 一、教学内容与教学对象分析 通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。 ①通过对典型案例(如“患肺癌与吸烟有关吗”等)的探究。了解独立性检验(只要 求2×2列联表)的基本思想、方法及初步应用。 ②通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及其初步应用。 二. 学习目标 1、知识与技能 通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。 2、过程与方法 在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。最后介绍了独立性检验思想的综合运用。 3、情感、态度与价值观 通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。明确数学在现实生活中的重要作用和实际价值。教学中,应多给学生提供自主学习、独立探究、合作交流的机会。养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。 三.教学重点、难点 教学重点:理解独立性检验的基本思想;独立性检验的步骤。 教学难点;1、理解独立性检验的基本思想; 2、了解随机变量K2的含义; 3、独立性检验的步骤。 四、教学策略 教学方法:诱思探究教学法 学习方法:自主探究、观察发现、合作交流、归纳总结。 教学手段:多媒体辅助教学 五、教学过程:

高考试题回归分析,独立性检验

回归分析与独立性检验 1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看, ①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化碳排放量的效果最显着 B .2007年我国治理二氧化碳排放显现成效 C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关 3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程???y bx a =+ ,其中???0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )] A .万元 B .万元 C .万元 D .万元 4.在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在 y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上 5 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

不得病 61 213 274 合计 93 314 407 ( ) A .种子经过处理跟是否生病有关 B .种子经过处理跟是否生病无关 C .种子是否经过处理决定是否生病 D .以上都是错误的 6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问 题中,y 的预报最大取值是10,则x 的最大取值不能超过 ( ) A .16 B .17 C .15 D .12 7.在研究身高和体重的关系时,求得相关指数≈2 R ___________,可以叙述为“身高解释了64%的体重变化,而随 机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。 8.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 (I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到),预测2016年我国生活垃圾无害化处理量。 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑, 7 2 1 ()0.55i i y y =-=∑,7≈. 参考公式:相关系数1 2 2 1 1 ()() ()(y y)n i i i n n i i i i t t y y r t t ===--= --∑∑∑, 回归方程 y a bt =+) )) 中斜率和截距的最小二乘估计公式分别为: 9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 10.为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10名学生,根据 测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为???y bx a =+.已知10 1 225i i x ==∑,10 1 1600i i y ==∑,?4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:

1独立性检验(应用检测题)

本套试题考查的内容比较全面,独立性检验的概念与方法、2×2列联表、随机变量2 K 的值、三维柱形图、二维条形图、等高条形图等知识点在试题中都得到了充分体现,很多试题与现实生活相联系,新颖别致,有大量的原创与改编试题。 独立性检验的基本思想及其初步应用同步测试题 A 组 一、选择题 1.独立性检验中的统计假设就是假设两个事件A 、B ( ) A 互斥 B 不互斥 C 相互独立 D 不独立 2.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就 ( ) A. 越大 B. 越小 C.无法判断 D. 以上都不对 3.2010年3月26日,韩国军舰“天安”号发生不明原因爆炸事故离奇沉没,5月20日韩国军民联合调查团公布的调查结果说天安舰是遭受朝鲜小型潜水艇发射的鱼雷攻击而沉没的。对此,许多网民表达了自己的意见,有的网友进行了调查,在参加调查的4258名男性公民中有2360名认为是朝鲜所为,3890名女性公民中有2386人认为朝鲜是遭陷害,在运用这些数据说明天安舰事件中朝鲜是否冤枉时用什么方法最有说服力?( ) A 平均数 B 回归分析 C 独立性检验 D 方差 4.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。如果k>5.024,那么就有把握认为“X 和Y 有关系”的百分比为 A.25% B.75% C.2.5% D.97.5% 5.假设有两个分类变量X 和Y ,它们的值域分别为},{21x x 和},{21y y ,其2×2列联表为: 对以下数据,对同一样本能说明X与Y有关的可能性最大的一组为( ) A .5=a ,4=b ,3=c ,2=d B .5=a ,3=b ,4=c ,2=d C .2=a ,3=b ,4=c ,5=d D .2=a ,3=b ,5=c ,4=d 6.考察玉米种子经过药物处理跟生病之间的关系得到如下表数据:

学年高中数学人教B版选修独立性检验

第三章统计案例 §3.1独立性检验 一、基础过关 1.下面是一个2×2 则表中a、b处的值分别为() A.94、96 B.52、50 C.52、60 D.54、52 2.在2×2列联表中,四个变量的取值n11,n12,n21,n22应是() A.任意实数B.正整数 C.不小于5的整数D.非负整数 3.如果有99%的把握认为“x与y有关系”,那么χ2满足() A.χ2>6.635 B.χ2≥5.024 C.χ2≥7.879 D.χ2>3.841 4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是() A.若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病 B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病 C.若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误 D.以上三种说法都不正确 5.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,为了判断 选修统计专业是否与性别有关系,根据表中数据,得到χ2=50×(13×20-10×7)2 23×27×20×30 ≈4.844,因为4.844>3.841.所以选修统计专业与性别有关系,那么这种判断出错的可能性为________. 二、能力提升 6.在2×2列联表中,两个分类变量有关系的可能性越大,相差越大的两个比值为() A.n11 n11+n12与 n21 n21+n22 B. n11 n21+n22 与 n21 n11+n12 C.n11 n11+n22与 n21 n12+n21 D. n11 n12+n22 与 n21 n11+n21

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

卡方独立性检验

第八章记数数据统计法—卡方检验法 知识引入 在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。 卡方检验是专用于解决计数数据统计分析的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。 在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。 第一节卡方拟合性检验 一、卡方检验的一般问题 卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为: 这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。它主要应用于两种情况: 卡方检验能检验单个多项分类名义型变量各分类间的实际观测次数与理论次数之间是否一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。这一类检验称为拟合性检验。

高中数学选修2-3《独立性检验的基本思想及其初步应用》教案资料

) ◆教案 独立性检验的基本思想及其初步应用(第1课时)教材:人教A版·普通高中课程标准实验教科书·数学·选修2-3 【教学目标】 知识与技能目标: (1)通过学生课前分组进行“事件与事件之间是否有关系”的调查研究,理解统计方法的基本思想和应用,通过学生根据已有知识的基础上进行的数据分析,得到的直观结论,了解独立性检验的必要性,为知识的形成起到较好的推动作用. . (2)通过一起对典型案例“吸烟是否与患肺癌有关系”的合作探究、自主学习,并通过和反证法原理的对比,进一步让学生去理解独立性检验的基本思想、方法及初步应用. (3)经历由实际问题建立数学模型的过程,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用. 过程与方法目标: (1) 学生通过自主调查、设计抽样方案、分析数据、动手探究,培养学生的数学应用意识,掌握统计学的基本思想和方法,培养学生的动手能力、数理统计能力和合作精神. (2) 学生通过对调查数据的分析,作出的直观结论的可靠性程度的探究及其过程,理解独立性检验的基本思想,进一步掌握统计的方法,完善思维品质,并过特殊问题到一般性方法的探究,寻求知识之间的联系,通过新的知识与旧知识之间的对比,使学生掌握学习数学的基本方法,进一步完善认知结构. (3) 在探究过程中,在老师的引导下学生自主学习,学生主要通过合作交流,独立思考探究新知,获取新的知识;通过不同层次学生反映的问题进行适当的分析和指导,让不同层次的学生在学习过程中都有不同程度的提高,在练习中设置B组题,让思维和掌握程度较好同学能够“吃饱”.

情感、态度、价值观: " (1) 通过学生自主研究,进一步体会统计思想在实践中的应用,体会数形结合的思想;在探究过程中通过对具体情景中的问题到寻求一般解决方案,培养由特殊到一般思想,通过知识间的联系和对比,体验数学中转化思想的意义和价值. (2) 在教学中为学生提供充分的从事数学活动的机会,如:课前的调查研究,分析数据,通过课堂的探究活动,让学生自主探究新知,经历知识形成过程. (3)通过小组的协作,培养学生的团队精神,在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法及数学的应用意识,学会用计算器或计算机软件进行数理统计能力,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展. 【教学重点与难点】 重点:理解独立性检验的基本思想及实施步骤. 难点:(1)了解独立性检验的基本思想;(2)了解随机变量2K的含义. ? 【教学方法】 《新课程标准》的理念是“向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法”. 考虑授课对象是高二年级理科生,学生层次差异比较明显,动手能力不足,因此通过课前的分组进行课题的调查研究,分析数据,获取结论的过程让学生在活动中提升数学思考能力,锻炼动手能力,学会处理数据的基本方法,课中通过合作探究,自主学习等方式体验知识的形成,根据不同层次学生在探究、解决问题和练习中反映的问题进行适当的引导,让学生在已有的基础上获得最大的发展. 本节课主要是探究性学习,学生通过课前的调查研究和直观发现的结论和样本的随机性,理解独立性检验的必要性,根据所探究问题进行类比联想,寻求突破点,并在过程中分析所得数据与问题之间的联系,提升数学思维能力,通过与反证法思想的类比,进一步加深对独立性检验思想的理解. 课堂中的例题和练习,主要是学生知识的应用为主,体会统计方法在实际问题中的应用,

独立性检验

一、新知: 1.分类变量: 2.列联表(22 列联表) 二、探究任务:吸烟与患肺癌的关系 为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果: 那么,吸烟是否对患肺癌有影响? 1.由列联表可粗略的看出: (1)不吸烟者有患肺癌; (2)不吸烟者有患肺癌. 因此,直观上的结论:. 2、通过数据和图形,得到的直观印象是患肺癌有关.那是否有一定的把握认为“吸烟与患肺癌有关”呢?我们可以通过统计分析来回答这个问题。 (独立性检验的必要性) 3、统计量2K 为了使不同样本容量的数据有统一的评判标准,使用2K 2 K= 吸烟与患肺癌列联表

判断方法: 1、先假设两变量没有关系 2、计算2K 注意: ①2K一般要大于6.635 ②2K越大,证明假设不成立(即两变量有关系),说明两变量之间关系越强;2K越小,证明假设成立(即两变量没有关系),说明两变量之间关系越弱。 三、独立性检验: 利用随机变量2K来判断“两个分类变量有关系”的方法称为独立性检验。 (独立性检验是检验两个分类变量是都有关系的一种常用统计方法) 四、※典型例题 例1 吸烟与患肺癌列联表 求2K. ※动手试试 练1. 性别与喜欢数学课程列联表:

求2K. 课后作业 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表: 求2K.

第二节 一、复习 1. 分类变量:. 2. 22 列联表:. 3. 统计量2K:. 二、新课 例 1 为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果: 那么,吸烟是否对患肺癌有影响? 第一步:提出假设检验问题 : H 第二步:根据公式求2K观测值 k= 2、思考:究竟吸烟与患肺癌有关系的概率是多少呢?(有百分 之多少把握认为两者有关系呢?)

苏教版高中数学选修独立性检验教案

3.1 独立性检验(1) 教学目标 (1)通过对典型案例的探究,了解独立性检验(只要求22?列联表)的基本思想、方 法及初步应用; (2)经历由实际问题建立数学模型的过程,体会其基本方法. 教学重点、难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点. 教学过程 一.问题情境 5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题: 1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515 个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病. 问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 二.学生活动 为了研究这个问题,(1)引导学生将上述数据用下表来表示: (2)估计吸烟者与不吸烟者患病的可能性差异: 在吸烟的人中,有 37 16.82%220≈的人患病,在不吸烟的人中,有217.12%295 ≈的人患病. 问题:由上述结论能否得出患病与吸烟有关?把握有多大? 三.建构数学 1.独立性检验: (1)假设0H :患病与吸烟没有关系. (近似的判断方法:设n a b c d =+++,如果0H 成立,则在吸烟的人中患病的比例与 不吸烟的人中患病的比例应差不多,由此可得 a c a b c d ≈ ++,即()()0a c d c a b ad bc +≈+?-≈,因此,||ad bc -越小,患病与吸烟之间的关系越 弱,否则,关系越强.)

独立性检验练习含答案

§ 独立性检验 一、基础过关 1.当χ2>时,就有________的把握认为“x 与y 有关系”. 2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则χ2≈__________.(结果保留3位小数) 3.分类变量X 和Y 的列表如下,则下列说法判断正确的是________.(填序号) y 1 y 2 总计 x 1 ( a b a +b x 2 c d c +d 总计 a +c b +d & a + b + c +d ①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强. 4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 】 爱好 40 20 60 不爱好 20 30 50 总计 60 % 50 110 由 χ2=n ad -bc 2 a + b c + d a +c b +d 算得, χ2=110×40×30-20×20260×50×60×50≈. 附表: P (χ2≥k ) k ) 参照附表,得到的正确结论是________. ①在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别无关”;

③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”. 5.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸 . 年龄 合计 不超过40岁 超过40岁 吸烟量不多于20支/天 50 15 65 ) 吸烟量多于20支/天 10 25 35 合计 60 40 100 则有________的把握确定吸烟量与年龄有关. 二、能力提升 — 6.某高校“ 专业 性别 非统计专业 统计专业 合计 男 13 10 23 | 女 7 20 27 合计 20 30 50 为了判断主修统计专业是否与性别有关,根据表中的数据,得χ2=50×13×20-10×7 2 23×27×20×30 ≈. 因为χ2≈>,所以判断主修统计专业与性别有关系,那么这种判断出错的可能性为________. 7.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. ~ 8.下列说法正确的是________.(填序号) ①对事件A 与B 的检验无关,即两个事件互不影响; ②事件A 与B 关系越密切,χ2就越大; ③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生. 9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据: 无效 有效 总计 ( 男性患者 15 35 50 女性患者 6 44 50

独立性检验(十三)讲解

沂水四中期末复习十二 独立性检验 一、选择题(本题共9道小题 1.以下四个命题: ①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样; ②对于两个相关随机变量x ,y 而言,点P (,)在其回归直线上; ③在回归直线方程=0.2x+12中,当解释变量x 每增加一个单位时,预报变量 平均增加 0.2个单位; ④两个随机变量相关性越弱,则相关系数的绝对值越接近于1; 其中真命题为( ) A .①④ B .②④ C .①③ D .②③ 2.给出下列四个结论: ①已知X 服从正态分布2 (0,)N σ,且P(-2≤X ≤2)=0.6,则P(X>2)=0.2; ②若命题2 000:[1,),10p x x x ?∈+∞--<,则2:(,1),10p x x x ??∈-∞--≥; ③已知直线1:310l ax y +-=,2:10l x by ++=,则12l l ⊥的充要条件是/3a b =-; ④设回归直线方程?2 2.5y x =-,当变量x 增加一个单位时,y 平均增加两个单位. 其中正确的结论的个数为() A.1 B.2 C. 3 D. 4 3.如表是一位母亲给儿子作的成长记录: x (周岁)的线性回归方程为 =7.19x+73.93,给出下列结论: ①y 与x 具有正的线性相关关系; ②回归直线过样本的中心点(6,117.1); ③儿子10岁时的身高是145.83cm ; ④儿子年龄增加1周岁,身高约增加7.19cm . 其中,正确结论的个数是( ) A .1 B .2 C .3 D .4

4.表中提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方 程为=0.7x+0.35,那么表中t 的值为( ) 5.某产品的广告费x (万元)与销售额y (万元)的统计数据如表: 由最小二乘法可得回归方程=7x+a ( )A .56万元 B .58万元 C .68万元 D .70万元 6.为了考察两个变量x 和y 之间的线性相关性,甲、乙两同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为1t 和2t ,已知两个人在试验中发现对变量x 的观测值的平均值都是s ,对变量y 的观测值的平均值都是t ,那么下列说法正确的是() A .1t 和2t 有交点(),s t B .1t 和2t 相交,但交点不是(),s t C .1t 和2t 必定重合 D .1t 和2t 必定不重合 7.如表是一位母亲给儿子作的成长记录: x (周岁)的线性回归方程为 =7.19x+73.93,给出下列结论: ①y 与x 具有正的线性相关关系; ②回归直线过样本的中心点(6,117.1); ③儿子10岁时的身高是145.83cm ; ④儿子年龄增加1周岁,身高约增加7.19cm . 其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 8.设有一个直线回归方程为=2﹣1.5,则变量x 增加一个单位时( )

相关主题
文本预览
相关文档 最新文档