当前位置:文档之家› 换热器出口温度比值控制系统设计论文课程设计论文说明书-毕设论文

换热器出口温度比值控制系统设计论文课程设计论文说明书-毕设论文

换热器出口温度比值控制系统设计论文课程设计论文说明书-毕设论文
换热器出口温度比值控制系统设计论文课程设计论文说明书-毕设论文

中北大学

课程设计说明书

学生姓名:马冲学号:1002034306

学院:机械与动力工程学院

专业:过程装备与控制工程

题目:换热器出口温度比值控制系统设计指导教师:高强职称: 副教授

陆辉山职称: 副教授

2013年12月30日

中北大学

课程设计任务书

2013/2014 学年第 1 学期

学院:机械与动力工程学院

专业:过程装备与控制工程

学生姓名:马冲学号:1002034306 课程设计题目:换热器出口温度比值控制系统设计

起迄日期:2013年12月30日~2014年1月10日课程设计地点:中北大学

指导教师:高强陆辉山

系主任:黄晋英

下达任务书日期: 2013年12月30日

课程设计任务书

1.设计目的:

(1)培养学生运用过程检测仪表与控制技术及其他相关课程的知识,结合毕业实习中学到的实践知识,独立地分析和解决实际过程控制的问题,初步具备设计一个过程控制系统的能力。

(2)运用工程的方法,通过一个简单课题的设计练习,可使学生初步体验过程控制系统的设计过程、设计要求、完成的工作内容和具体的设计方法。

(3)培养学生独立工作能力和创造力;综合运用专业及基础知识,解决实际工程技术问题的能力;

(4)培养查阅图书资料、产品手册和各种工具书的能力;

(5)培养编写技术报告和编制技术资料的能力。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):经过《过程检测仪表与控制》课程的学习和生产实习后,对现场的实际过程控制策略、实际环节的控制系统有了一定的认识和了解。在此基础上,针对实践环节中的被控对象(控制装置),独立完成控制系统的设计,并通过调节系统控制参数,达到较好的控制效果。

1.确定系统整体控制方案以及系统的构成方式,给出控制流程图;

2.现场仪表选型,编制有关仪表信息的设计文件;

3.给出控制系统方框图;

4.分析被控对象特性,选择控制算法;

5.进行系统仿真,调节控制参数,分析系统性能;

6.写出设计工作小结。对在完成以上设计过程所进行的有关步骤:如设计

思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出说明,并对所完成的设计作出评价,对自己整个设计工作中经验教训,总结收获。

3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:

1.确定系统整体控制方案、仪表选型、系统控制流程图、选择控制算法。

2.撰写课程设计说明书一份(A4纸)。

4.主要参考文献:

[1]《过程装备控制技术及其应用》王毅主编化学工业出版社

[2]《过程自动化及仪表》俞金寿主编化学工业出版社

[3]《工业过程控制工程》王树青主编化学工业出版社

[4]《控制仪表及装置》吴勤勤主编化学工业出版社

[5]《过程控制仪表》徐春山主编冶金工业出版社

[6]《过程装备成套技术设计指南工程》黄振仁主编化学工业出版社

[7]《过程控制装置》张永德主编化学工业出版社

[8]《化工单元过程及设备课程设计》匡国柱主编化学工业出版社

[9]《化工设备设计设计手册》(上、下)朱有庭主编化学工业出版社

[10]《工业过程检测与控制》孟华主编化学工业出版社

5.设计成果形式及要求:

提供课程设计说明书一份,要求内容与设计过程相符,且格式要符合规定要求;

系统控制流程图一份;

6.工作计划及进度:

2013年12月30日 -2014年1月2日确定系统整体控制方案以及系统的构成方式,画出控制流程图,完成仪表选型,接线图;

2014年 1月3日 - 1月6日控制系统方框图,分析被控对象特性,选择控制算法;

1月7日- 1月8日进行系统仿真,调节控制参数,分析系统性能;

1月8日 - 1月9日编写课程设计说明书

1月10日答辩

学科管理部审查意见:

签字:

年月日

目录

一.换热器工作原理及结构特点 (1)

1.1换热器的简介及分类 (1)

1.2换热器的控制方法 (1)

二.控制方案的选择 (3)

2.1传递函数的确定及被控对象的特性分析 (3)

2.1.1 被控对象静态特性分析 (4)

2.1.2 被控对象动态特性分析 (6)

三.仪表的选型及参数的确定 (11)

3.1 流量测量仪 (11)

3.2 调节器 (12)

3.3 调节阀 (13)

四.控制系统的仿真 (14)

4.1各个环节传递函数及各个参数的确定 (14)

五.课程设计总结 (18)

六.主要参考文献 ........................................... 错误!未定义书签。

一.换热器工作原理及结构特点

1.1换热器的简介及分类

换热器是一种用来进行热量交换的工艺设备,在工业生产中应用极为广泛。它的作用是通过热流体加热冷流体,使工作介质达到生产工艺所规定的温度要求,以利于生产过程的顺利进行,同时避免生产过程中的浪费,以节约能源。换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。换热器的分类比较广泛:反应釜压力容器冷凝器反应锅螺旋板式换热器波纹管换热器列管换热器板式换热器螺旋板换热器管壳式换热器容积式换热器浮头式换热器管式换热器热管换热器汽水换热器换热机组石墨换热器空气换热器钛换热器换热设备,要求制造换热器的材料具有抗强腐蚀性能。它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热器价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。如图1【1】

1.2 换热器的控制方法

换热器是传热设备中较为简单的一种,也是最常见的一种。通常它两侧的介质(工艺介质

度。为保证出口温度平稳,满足工艺要求,必须对传递的热量进行调节。调节热量有以下几种方式。

1) 控制载热体流量

这个方案的控制流程如图2。其控制原理可通过热量平衡方程和传热速率方程来分析。

图2 换热器控制流程图

由于冷流体的传热符合热量平衡方程式【2】工程热力学,热力平衡部分,又符合传热速率方程式,通过对换热器静态特性分析部分的内容,因此有下列关系

()2222o i G c T T KF T -=? (1-19) 整理后得

2222

o i KF T T T G c ?=+ (1-20) 当从上式可看出,在传热面积F 、冷流体进口流量 2G 、温度 2i T 和比热容 2c 一定的情

况下,影响冷流体出口温度 2o T 的因素主要为传热系数K 及平均温差T ?。控制载流体流量实质上是改变T ?。若由于某种原因使2o T 降低,控制器 TC 将使控制阀门增大,载热体流 量

1G 增加,传递的热量增加,这就必然导致冷热流体平均温差T ?升高,从而使工艺介质 的出口温度2o T 增加。载热体流量1G 增加,一方面使温差T ?增加,另一方面传热系统数K 也会增加,但在通常情况下传热系统数K 变化不大,所以经常忽略。因此这种方案实质上是通过改变T ?来控制工艺介质的出口温度的。

改变载热体流量是应用最为普遍的控制方案,多适用于载热体流量1G 的变化对温度影响

较灵敏的场合。当载热体流量已经变得很大,11i o T T - 较小时,进入饱和区控制就很迟迍,此

时不宜采用此方案。

2) 控制载热体旁路流量 【4】流量控制

当载热体本身也是一种工艺物料,其流量不允许变化时,可采用此控制方11i o T T -案。它

的控制原理也是利用改变温差T ?的手段来达到温度控制的目的。这里采用三通控制阀来改变进入换热器的载热体流量与旁路流量的比例,这样既可以改变进入换热器的载热体流量,又能保证载热体总流量不受影响。

3) 工艺介质的旁路控制

当工艺介质的流量允许变化,而且换热器的传热面有富余时,可将工艺介质的一部分经换热器,其余部分由旁路直接流到出口处,然后将两者混合起来控制温度。该控制方案中被控变量是冷流体和热流体混合后的温度,热流体温度大于设定温度,冷流体温度小于设定温度,通过控制冷热流体流量的配比,使混合 后的温度等于设定温度。从控制原理上来看,这种方案实际上是一个混合过程。所以反应及时,过程的滞后并不直接显示出来,适用于停留时间较长的换热器。但需注意的是换热器必须有较大余量的传热面积,且载热体一直处于最大流量,因此在通过换热器的被加热 介质流量较小时就不太经济。考虑经济性,旁路的流量通常占总流量的 10%~30%。

4) 控制传热面积

从传热速率方程q KF T =? 来看,使传热系数 K 和传热平均温差 T ?基本保持不变,调节传热面积F 可能改变传热量,从而达到控制出口温度的目的。此时调节阀装在冷凝液的排出管线上。如果被加热物料出口温度高于给定值,说明传热量过大,可将 冷凝液控制阀关小,冷凝液就会积累起来,减少了有效的蒸汽冷凝面积,从而使传热量减 少,工艺介质出口温度就会降低。反之,如果被加热物料出口温度低于给定值,可将冷凝 液控制阀开大,增大传热面积,使传热量相应增加。

二.控制方案的选择

2.1 传递函数的确定及被控对象特性分析

在本文中,以列管式逆流单程换热器进行分析,令1G 为热流体的流量,2G 为冷流体流量。

1i T 分别为热流体和冷流体的入口温度,

分别为热流体和冷流体的出口温度,而12c c 、分别为热

流体和冷流体的比热容。【3】自动控制原理传递函数部分

2.1.1被控对象静态特性分析

对象的静态特性就是要确定11212o i i T T T G 与、、、G 之间的函数关系。静态特性的求得,可以

作为控制方案设计时系统的扰动分析。静态放大系数也能作为系统整定分析,以及控制阀流量特性选择的依据。静态特性推导的两个基本方程式一热量平衡关系式及传热速率方程式为了处理方便,不考虑传热过程中的热损失,则热流体失去的热量应该等于冷流体吸收的热量,

[]7热量平衡方程为

()()111i 2o 2222i o q G c T T G c T T =-=- (1-1)

式中,q 为传热速率(单位时间内传递的热量);

G 为质量流量;c 为比热容;T 为温度。

式中的下标处 1 为载热体;2 为冷流体;i 为入口;o 为出口。

另外,传热过程中的[]7

传热速率为 q KF T =? (1-2)

式中,K 为传热系数;F 为传热面积;T ?为两流体间的平均温差。

其中平均温差T ?对于逆流、单程的情况为对数平均值

1i 1o 202i 121i 1o 122o 2i

()()ln ln T T T T T T T T T T T T T ---?-??==?-????-? (1-3) 在1i 122133o o i

T T T T -≤≤-,其误差在5%以内,可采用算数平均值来代替。算术平均值为: ()()2121+= 2

i o o i T T T T T --? (1-4) 对上述公式进行整理后得到:

11211111221112o i i i T T T T G c G c KF G c -=-??++ ???

(1-5) 上式为逆流、单程列管式换热器静态特性的基本表达式。其中各通道的静态放大倍数均可由此式推出:

(l)热流体入口温度1i T 对出口温度1o T 的影响,即11i o T T ?→?通道的静态放大倍数。对上式⑤进

行增量化,令20i T ?=,则可得:

10111111221112i i T T T G c G c KF G c ?-?=-??++ ???

(1-6) 由⑥式可求得11i o T T ?→?通道的静态放大倍数为:

10111112211112i T T G c G c KF G c ?=-???++ ???

(1-7) 该式表明,1i T ?与1o T ?之间为线性关系,其静态放大倍数为小于1的常数。

(2)冷流体入口温度2i T 对热流体出口温度1o T 的影响,即21i o T T ?→?通道的静态放大倍数。同样对式(1-5)进行增量化,令10i T ?=,可得:

1011111221112i T T G c G c KF G c ?=???++ ???

(1-8) (1-8)式表明,11i o T T ??与之间也为线性关系。

(3)热流体流量1G 对其出口温度1o T 的影响,即11o G T ?→?通道的静态放大倍数,

通过对式(1-5)进行求导11

o dT dG ,求取静态放大倍数为: ()22211212222211111212i i o G c T T dT dG G c G c G c KF G c -=????++?? ????? (1-9)

由上式(1-9)可见,11o G T ?→?通道的静态特性是一个非线性关系。从上式很难分清两者之间的关系,因此,常用下图来表示这个通道的静态关系。可以看出,当11G c 较大时,曲线呈饱和状,此时1G 的变化,从静态来看,对1o T 的影响微弱了。

图3 T 10与G 1的静态关系

(4)冷流体流量2G 对热流体出口温度1o T 的影响,即21o G T ?→?通道的静态放大倍数。同样可通过对式(1-5)求导11

o dT dG ,其结果与式(1-9)相似,两者为一复杂的非线性关系。为此,也用图来表示这个通道的静态关系。图2表示了这个关系,可以看出,当22G c 较大时,曲线呈饱和状,

此时2G 的变化,从静态来看,对1o T 的影响已经很小了。

图4 T 10与G 2的静态关系

2.1.2被控对象动态特性分析【3】

换热器由于两侧都不发生相变化,一般均为分布参数对象。分布参数对象中输出(即被控变量)既是时间的函数,又是空间的函数,其变化规律需用偏微分方程来描述。现说明列管式换热器动态特性的建立方法。

为便于分析,对该管式换热器作如下假设:

1、间壁的热容可以忽略;

2、流体1和流体2均为液相,而且是层层流动;

3、传热系数K 和比热容c 为常数;

4、同一截面上的各点温度相同。

建立分布参数对象的数学模型,同样是从热量动态平衡方程入手,但这时必须取微元来分析问题,并假设这一微元中各点温度相同。先分析流体1的热量动态平衡问题。取长度为dz 的圆柱体为微元,这一微元的热量动态平衡方程可叙述为:(单位时间内流体1带入微元的热量)一(单位时间内流体1离开微元所带走的热量)+(单位时间内流体2传给流体1微元的热量)=流体1微元内蓄热量的变化率,即

()()()()()()111111112111,,,,,,T l t T l t G c T l t G c T l t dl KAdl T l t T l t M c dl l l ????-++-=??????????

【7】 (1-10) 式中1M dl ,L 为换热器的总长度;

A —内管的圆周长;

Adl —微元的表面积;

1M —流体1单位长度的流体质量;

1M dl —微元体的质量

消去方程式中的dl ,并适当的整理,得: ()()()()11121111,,,,T l t T l t M KA T l t T l t G t l G c ??????=-+-??? ? ?????????

(1-11) 同理,可得流体的热量动态平衡方程式 ()()()()22212222,,,,T l t T l t M KA T l t T l t G t l G c ??????=-+-??? ? ?????????

(1-12) 时间和空间的边界表达式为:

()()()()()()()()()()()()

112211112222,0,,00,,1,0,,1,i o o i T l T l T l T l T t T t T t T t T t T t T t T t ==??==??==? (1-13)

上述两个方程式(1-11)和(1-12)及其边界条件(1-13)就是描述列管式换热器行为的动态方程。要对这样的动态方程进行精确的解析求解是很困难的。通常为了便于计算机实时控制和现代控制理论的应用,可以采用时间、空间离散化的方法,将上述连续偏微分方程转换成相

应的离散状态空间模型。

为了能说明传热对象的动态特性的基本规律,也可近似应用一些经验公式来描述。对于换热器的动态特性,可以用下面的近似关系式来表示。

(l)热流体入口温度1i T ,冷流体入口温度2i T 对热流体出口温度1o T 的影响,即11i o T T →?,21i o T T →?的通道特性。如用传递函数来描述,可为:

()1

K G s Ts =

+ (1-14) 式中:

K —各通道的静态放大倍数;

/T W G = W G 、—分别为换热器的容量和冷流体的流量;

s —拉普拉斯运算子符号。

(2)热流体流量1G 、冷流体流量2G 对热流体出口温度1o T 的影响,即

1121o o G T G T →→、通道特性。如用传递函数来描述,可为:

()()()21211s K

G s e T s T s τ-=++ (1-15)

式中:K —各通道的静态放大倍数; 11221//2

W G W G T +=

(1-16) 11222//8W G W G T += (1-17) 1212W W G G 、、、—分别为热流体和冷流体的储存量和流量。

由式(1-15)看出,过程通道的动态特性均可近似为带有纯滞后的二阶惯性环种近似关系可以这样理解,要从热流体把热量传递到冷流体,必须先由热流体传给间壁,然后再由间壁传给冷流体,这样就成为二阶惯性环节。此外,还考虑了由于停留时间所引起的纯滞后。式(1-15)为一个近似的经验表达式,因为二阶环节的两个时间常数不不仅取决于两侧流留时间,而且与列管的厚度、材质、结垢等情况有关,但是,这个式子一定程度上描述了换热器动态特性的内在性质。在热器出口温度控制系统中,热流体流量2G 不发生变化,冷流体和热流体表示冷水和热水。换热器热流体进出口温度差在40C 附近,冷流体进出口温差在30℃左右。假设热流体温

度由80℃降低到40℃,则根据以下数据:

水的比热()121/.c c kcal kg C ==

水的密度取971.93/kg m ,40℃时水的密度为992.23/kg m ;

换热器冷却面积23F m =

壳体长度=1500L mm ;

热流体流量31/G m h =2;

冷流体流量32/G m h =7;

根据式经验公式(1-15)可求得换热器动态特性的基本规律,由式(1-9)求出增益K 为:

122;45.32;11.85;K T s T s ===

故换热器温度控制的数学模型为:

()11.852253757.171

s G s e s s -=++ (1-18) 由上式可以看出系统的滞后时间常数为11.85s ,换热器出口温度控制系统是惯性和时间滞后均较大的系统。

通过对被控对象特性的研究以及对现有的常用的控制方法的分析【5】,现拟采用比值控制对换热器的出口温度进行控制。由热平衡公式(1-1)可知,当冷热流体的流量成一定的比值关系时便可以保证按照两流体出口温度的变化量成一定比值关系,同时假定冷热流体入口处温度1i T 、 2i T 都保持恒定,则此时,冷热流体的温度1o T 、2o T 便同时可以保持恒定。即有 ()()

222i 1211i 1o o c T T G G c T T -=- (2-1) 从而达到换热器冷热流体的温度同时得到控制的目的。

比值控制系统的属于复杂控制系统,在比值控制系统中,具体又分为定比值控制系统与变比值控制系统。其中,定比值控制系统又可分为开环比值控制系统、单闭环控制系统与双闭环控制系统

开环比值控制系统中从动量无抗扰动能力【3】,只能适用于比较平稳且系统对比值关系要求不高的场合。实际生产过程中的从动量变化是不可避免的,因此在实际系统中很少采用开环比值控制系统。

单闭环控制系统控制方案的优点是能确保流量比值比较精确。其特点是:从动量是一个

化工原理设计:列管式换热器设计

化工原理课程设计 设计题目:列管式换热器的设计班级:09化工 设计者:陈跃 学号:20907051006 设计时间:2012年5月20 指导老师:崔秀云

目录 概述 1.1.换热器设计任务书 .................................................................... - 7 - 1.2换热器的结构形式 .................................................................. - 10 - 2.蛇管式换热器 ........................................................................... - 11 - 3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 - 1.7确定设计方案.......................................................................... - 17 - 2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

换热器课程设计

课程实训任务书 课程石油装备设计综合实训 题目炼油厂柴油换热器的选用和设计 主要内容: 1.液化气工艺概述; 2.换热器的工艺计算; 3.换热器的结构设计; 4.换热器的强度校核; 5.换热器的结果汇总。 设计条件: 炼油厂用原油将柴油从1750C冷却至1300C,柴油流量为12500kg/h;原油初温为700C,经换热后升温到1100C。换热器的热损失可忽略。操作压力为60KPa 管、壳程阻力压降均不大于30KPa。污垢热阻均取0.0003Pa s。 主要参考资料: [1] GB150-2011,压力容器[S] . [2]郑津洋,董其伍,桑芝富.过程设备设计[M] .北京:化学工业出版社,2010. [3]JB 4731-2005,钢制卧式容器[S] . [4]JB4712-2007,容器支座[S]. [5] JB 4715-1992,固定管板式换热器型式与基本参数[S]. 完成期限2013年3月24日 指导教师 专业负责人 2013年2月25日

目录 第1章液化气工艺及流程图概述 (1) 1.1液化石油气工艺概述 (1) 1.1.1液化石油气的特点 (1) 1.1.2液化石油气的来源 (1) 1.1.3液化石油气的提取 (2) 第2章列管式换热器的选用与工艺设计 (4) 2.1列管式换热器的概述 (4) 2.2 初算换热器的传热面积 (4) 2.3主要工艺及结构基本参数的计算 (6) 2.4管、壳程压强降的校验 (9) 2.5总传热系数的校验 (12) 2.6列出所涉及换热器的结构基本参数 (14) 第3章换热器的结构设计 (15) 3.1 筒体部分计算 (15) 3.2 椭圆封头厚度 (16) 3.3 管板选取 (17) 3.4 法兰选取 (17) 3.5 鞍式支座 (19) 3.6 接管 (19) 第4章换热器的强度校核 (21) 4.1 计算容器重量载荷的支座反力 (21) 4.2 筒体轴向应力验算 (21) 4.3 鞍座处的切向剪应力校核 (23) 4.4 鞍座处筒体周向应力验算 (24) 第5章设计结果汇总 (26) 参考文献 (27)

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

管壳式换热器设计课程设计

河南理工大学课程设计 管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。

设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃ 第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学 《材料工程原理B》课程设计 设计题目: 5.5×104t/y热水冷却换热器设计 专业: ----------------------------- 班级: ------------- 学号: ----------- 姓名: ---- 日期: --------------- 指导教师: ---------- 设计成绩:日期:

换热器设计任务书

目录 1.设计方案简介 2.工艺流程简介 3.工艺计算和主体设备设计 4.设计结果概要 5.附图 6.参考文献

1.设计方案简介 1.1列管式换热器的类型 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 (1)固定管板式换热器 这类换热器如图1-1所示。固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。 (2)U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 (3)浮头式换热器 浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

换热器计算步骤..

第2章工艺计算 2.1设计原始数据 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

管壳式换热器设计-课程设计

一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表 接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 气体工作压力 管程:半水煤气0.75MPa 壳程:变换气 0.68 MPa 壳、管壁温差55℃,t t >t s 壳程介质温度为220-400℃,管程介质温度为180-370℃。 由工艺计算求得换热面积为140m2,每组增加10 m2。 四、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。 五、设计安排

内容化工设备设 计的基本知 识管壳式换热 器的设计计 算 管壳式换热 器结构设计 管壳式换热器 设计制图 设计说明书的 撰写 设计人李海鹏 吴彦晨 王宜高 六、说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。 4.绘制结构草图 (1)换热器装配图 (2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示; (3)标注形位尺寸。 (4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等 5.壳体、封头壁厚设计 (1)筒体、封头及支座壁厚设计; (2)焊接接头设计; (3)压力试验验算; 6.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 8.主要参考资料。 【格式要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计说明书目录要有序号、内容、页码;

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

换热器课程设计

东南大学成贤学院 课程设计报告 题目冷却异丙苯换热器的设计 课程名称化工原理课程设计 专业制药工程 班级 xx制药xx班 学生姓名 xxx 学号 xxxx 设计地点 xxx

指导教师 xxx 设计起止时间:2018 年8月27日至2018 年9 月14日 目录 课程设计任务书 (1) 一、设计条件 (1) 二、设计说明书的内容 (2) 1.前言 (3) 2.设计方案简介 (5) 2.1换热器的选择 (5) 2.2流程的选择 (5) 2.3物性数据 (5) 3.工艺计算 (6) 3.1试算及换热器选型 (6) 3.1.1计算传热量 (6) 3.1.3计算两流体的平均传热温度 (7) 3.1.4计算P、R值 (7) 3.1.5假设K值 (7) 3.1.6估算面积 (9) 3.1.7管径、管内流速 (9) 3.1.8单程管数 (9) 3.1.9总管数 (9) 3.1.10管子的排列 (10) 3.1.11折流板 (10) 3.2核算传热系数 (10) 3.2.1管程传热系数 (10) 3.2.2壳程传热系数 (11) 3.2.3污垢热阻 (11) 3.2.4总传热系数 (12) 3.2.5计算传热面积 (12) 3 .2.6实际传热面积 (12) 3.3压降计算 (12) 1.管程压降 (12) 2.壳程压降 (13) 3.4核算壁温 (13)

3.5附件 (14) 3.5.1接管 (14) 3.5.2拉杆 (14) 4.换热器结果一览总表 (15) 5.附图 (17) 5.1符号表含义及单位 (17) 5.2管子排列方式 (19) 5.3换热器装置图 (20) 6.参考文献: (20) 7.设计结果概要及致谢 (21) 7.1结果 (21) 7.2致谢 (22)

板式换热器课程设计

船舶柴油机高温淡水冷却器设计 摘要:本文简要介绍了板式换热器的结构、优缺点、设计原理与设计依据,运用对数平均温差法(LMTD)设计了一款船舶柴油机高温淡水板式换热器,并对其进行热力和阻力校核。 关键词:板式换热器对数平均温差板片流程污垢系数 目录 第1章板式换热器基本构造 (3) 1.1 整体结构 (3) 1.2 流程组合方式 (4) 1.3 半片形式及其性能 (5) 1.3.1 常用形式 (5) 1.3.2 特种形式 (5) 1.4 密封垫片 (5) 第2章板式换热器的优缺点及应用 (6) 2.1 优点 (6)

2.2 缺点 (7) 2.3 应用 (7) 第3章板式换热器热力及相关计算 (8) 3.1 确定总传热系数的途径 (8) 3.2 总传热系数的计算 (8) 3.3 传热系数的计算 (11) 3.4垢阻的确定. (11) 第4章计算类型及工程设计一般原则 (12) 4.1 计算的类型 (12) 4.2工程设计、计算的一般原则 (13) 第5章板式换热器热力计算实际应用 (15)

第1章板式换热器基本构造 1.1整体结构 板式换热器的结构相对于板翅式换热器、壳管式换热器和列管式换热器比较简单,它是由板片、密封垫片、固定压紧板、活动压紧板、压紧螺柱和螺母、上下导杆、前支柱等零部件所组成,如图1-1所示: 板片为传热元件,垫片为密封元件,垫片粘贴在板片的垫片槽内。粘贴好垫片的板片,按一定的顺序(如图1-1所示,冷暖板片交叉放置)置于固定压紧板和活动压紧板之间,用压紧螺柱将固定压紧板、板片、活动压紧板夹紧。压紧板、导杆、压紧装置、前支柱统称为板式换热器的框架。按一定规律排列的所有板片,称为板束。在压紧后,相邻板片的触点互相接触,使板片间保持一定的间隙,形成流体的通道。换热介质从固定压紧板、活动压紧板上的接管中出入,并相间地进入板片之间的流体通道,进行热交换。 图1-1所示板式换热器为可拆式板式换热器,其原理就是在上导杆处安装了活动滑轮、顶压装置,在增减板片的时候,可以通过该滑轮调节换热器内可安装板片数量,顶压装置加固整体结构牢固性;而对于一些小型的板式换热器,则没有该装置,而是直接地将固定压紧板和活动压紧板通过导杆固定连接起来,这种结构没有清洗空间,清洗、检查时,板

相关主题
文本预览
相关文档 最新文档