当前位置:文档之家› 智能灌溉农田灌溉控制系统

智能灌溉农田灌溉控制系统

智能灌溉农田灌溉控制系统
智能灌溉农田灌溉控制系统

智能灌溉农田灌溉控制系统

系统简介

智能灌溉一种现代高效节水的灌溉方式,智能灌溉自动化控制系统是集自动控制技术和专家系统技术,传感器技术、通讯技术、计算机技术等于一体的灌溉管理系统。随着农业及园林业的发展,水资源的不断升值,传统灌溉方式正在被现代智能型微机控制灌溉系统所取代并得以推广,是有效解决灌溉节水问题的必要措施之一。

金斗云自主研发的智能灌溉系统是集传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术于一体的智能灌溉控制系统,该系统的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。系统既可以根据植物和土壤种类,光照数量来优化用水量,也可以在雨後监控土壤的湿度。据研究统计显示,金斗云智能灌溉系统和传统灌溉系统的成本差不多,却可实现节水16%到30%。

智能灌溉系统-软件设计

软件是控制系统的灵魂,需要与硬件配合,将实时数据与专家系统的设定值进行比较判断,来控制电磁阀的开启和延续时间的长短,实现智能控制。中央控制室的计算机系统使用了大型关系数据库,能对各种数据进行分类存储和自动备份,并能根据定制条件进行查询。本系统能够实现全自动、无人值守的数据处理,并预留WEB接口,远程用户可以通过浏览器查询有关的灌溉信息。

本系统采用了图形用户界面,用户操作简单方便。实时或定时采集的田间土壤水分、土壤温度、空气温湿度等数据,均可以实时地以图形或者表格方式在中央控制计算机上显示。用户可以通过图形界面设定每个地块的灌溉策略,实现定时、定量的无人值守的自动灌溉。智能灌溉系统-系统组成

智能灌溉系统-优点

与传统灌溉方式相比,金斗云智能灌溉控制系统有如下优点:

1.微机控制喷灌和滴灌,大大节省日趋宝贵的水资源,具有巨大的社会效益和经济效益。

2.根据植物对土壤水份的需求特点设定不同的灌溉方式,使植物按最佳生长周期生长,达到增产增收的目的。

3.自动灌溉,大大节省人力资源,提高劳动生产率。

智能灌溉系统-功能

为了最大限度地节约喷灌用水和实现智能控制,灌溉系统具备以下功能:

1.数据采集功能:可接收土壤湿度传感器采集的模拟量。模拟量信号的处理是将模拟信号转变成数字信号(A/D转换)。

2.控制功能:具有定时控制、循环控制的功能,用户可根据需要灵活选用控制方式。

①自动控制功能:可编程控制器通过程序将传感器检测的湿度信号与预先设定的标准湿度范围值相比较,如果检测的湿度值超出了设定湿度值,(低于设定值则调大电动机转速,高于设定值则调小电动机转速)则自动调节电动机转速,进行灌溉操作。

②定时控制功能:系统可对电磁阀设定开、关时间,当灌溉的湿度值达到设定的湿度值时,电动机自动停止灌溉。

③循环控制功能:用户在可编程控制器内预先编好控制程序,分别设定起始时间、结束时间、灌溉时间、停止时间,系统按设定好的时间自动循环灌溉。

3.变速功能:当前所测的土壤湿度值与预先设定的最适宜草坪生长的湿度值50%—60%RH比较,分为大于、等于、小于三种结果,即可将湿度分为高湿度、中湿度、低湿度三种状态。在控制面板上表现为高湿度、中湿度、低湿度三个指示灯。变频器根据土壤湿度

的三个状态自动调节电动机的转速,电动机设有高速,中速,低速3种旋转速度,分别对应高速,中速,低速三个指示灯。

4.自动转停功能:控制系统根据土壤的干湿度情况自动启动喷灌,控制电动机以所需的转速转动,喷头喷灌5分钟,停2分钟,再喷5分钟后自动停转。

5.电动机过载保护功能:当电动机过载时,电动机立即停止转动,灌溉过程中止,并且故障指示灯闪烁报警,过载消除后自动恢复运转。

6.阴雨天自动停止:利用湿度传感器的开关量作为一个可编程控制器的输入信号,实现控制相关程序的功能。

7.省电功能:定时控制器在断电时正常计时,故采用其作为可编程控制器的电源控制。在定时灌溉控制时间之内,由定时器接通可编程控制器的电源,可编程控制器按预先编制的程序依次打开各控制设备电源,并根据输入信号的变化随时调整程序的执行。在非系统工作时间里,定时器自动断开可编程控制器的电源,这样既减少了系统耗费的电能又延长了设备的使用寿命。

8.急停功能:当出现紧急意外事故时,按下急停按钮,电动机立即停止运转,阀门关闭,喷头停止灌溉。

9.故障自动检测功能:当灌溉系统出现故障,如水管破裂(水压为零),传感器故障,电动机故障,变频器故障,电磁阀故障等,水泵立即停止运行,电磁阀关闭,故障报警灯闪烁并伴有警笛声响起。操作人员可以按下“消音”按钮以解除铃响,但故障指示灯仍在闪烁,直到故障消除,故障指示灯才自动停止闪烁。

智能灌溉系统-方案与设计

每种植物都有适合其生长的湿度,湿度过大,植物的根系就会在土壤中腐烂,湿度过小,就不足以满足植物生长所需要的水分。灌溉就是最大限度地满足土壤的湿度在适宜植物

生长的湿度范围之内。经资料查证最适宜草坪生长的湿度是50%—60%RH。此信号与50%—60%RH比较,可以分为:大于,等于,小于三种情况。系统按可编程控制器内预先编好的程序自动按一定的灌水量进行灌溉。最终实现不需要人的直接参与,由系统自动实现灌溉,人的作用只是调整控制程序和检修控制设备。

可编程控制器、传感器、变频器是实现智能灌溉不可缺少的设备。但要想使整个草坪都得到相同的水量,对草坪实现均匀而智能的灌溉,必须要设计一套完整的系统。一套完整的金斗云智能灌溉系统由水源、电源、可编程控制器、开关量、模拟量输入、现场仪表,显示面板等组成。

1.水源:包括各种可能使用的水源的类型,如自来水、河流、井水、池塘等。视距离灌溉区的远近而定,重要的是所选水源必须要有足够的供水量。

2.电源模块:稳定可靠的电源供应是整个系统安全、可靠运行的重要前提,要求电源模块稳定、可靠,留有一定的功率余量。

3.可编程控制器主控模块:负责发出和接收各种运行程序指令,是整个控制系统的中枢部分,要求具有高可靠性和稳定性,通信方式灵活,具有可扩展的功能。

4.开关量、模拟量输入、输出模块:该部分是可编程控制器装置正确接收信息和发出指令的关键设备,要求有高可靠性、稳定性,能实现某些电、磁的隔离功能。

5.现场仪表:可编程控制器系统通过接收现场仪表设备发出的信号判断被控设备的运行状况,以及是否符合设备运行的环境条件,因此要求现场仪表设备具有高可靠性、稳定性和精确性。

6.显示面板:通过显示面板上的指示灯,使操作人员能清晰的看到系统的运行状态,便于控制和维修。

7.其他辅助设备:辅助设备如冷却风扇、UPS不间断电源等是完善整个系统所必须的,对提高系统的可靠性和使用寿命有很大的帮助。

前景展望

金斗云智能灌溉系统的研发与应用,在实现节约灌溉、智能灌溉、高效灌溉的同时,不仅可以提高水资源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的金斗云智能灌溉系统将是中国未来发展高效农业和精细农业的必由之路。

基于PLC控制技术的农业自动灌溉系统设计

基于PLC控制技术的农业自动灌溉系统设计摘要: 水是一切生命过程中不可替代的基本要素,水资源是国民经济和社会发展的重要基础资源。我国是世界上13个贫水国之一,人均水资源占有量2300立方米,只有世界人均水平的1/4,居世界第109位。而且时空分布很不均匀,南多北少,东多西少;夏秋多,冬春少;占国土面积50%以上的华北、西北、东北地区的水资源量仅占全国总量的20%左右。近年来,随着人口增加、经济发展和城市化水平的提高,水资源供需矛盾日益尖锐,农业干旱缺水和水资源短缺已成为我国经济和社会发展的重要制约因素,而且加剧了生态环境的恶化。按现状用水量统计,全国中等干旱年缺水358亿立方米,其中农业灌溉缺水300亿立方米。20世纪90年代以来,我国农业年均受旱面积达2000万公顷以上,全国660多个城市中有一半以上发生水危机,北方河流断流的问题日益突出,缺水已从北方蔓延到南方的许多地区。由于地表水资源不足导致地下水超采,全国区域性地下水降落漏斗面积已达8.2万平方公里。 发达国家的农业用水比重一般为总用水量的50%左右。目前,我国农业用水比重已从1980年的88%下降到目前的70%左右,今后还会继续下降,农业干旱缺水的局面不可逆转。北方地区水资源开发利用程度已经很高,开源的潜力不大。南方还有一些开发潜力,但主要集中在西南地区。 我国农业灌溉用水量大,灌溉效率低下和用水浪费的问题普遍存在。目前全国灌溉水利用率约为43%,单方水粮食生产率只有10公斤左右,大大低于发达国家灌溉水利用率70-80%、单方水粮食生产率2.0公斤以上的水平。通过采用现代节水灌溉技术改造传统灌溉农业,实现适时适量的“精细灌溉”,具有重要的现实意义和深远的历史意义。在灌溉系统合理地推广自动化控制,不仅可以提高资源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。 本次设计是采用PLC控制多路不同的土壤湿度,浇灌的开启和停止完全由土壤的湿度信号控制,能使土壤的湿度值保持在作物生长所需要的最佳范围之内。这样既有利于作物的生长,又能节约宝贵的水资源。 关键词:自动浇灌; PLC; 湿度传感器;农业自动灌溉系统

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现 O 引言 我国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能灌溉系统在这种背景下应运而生了。智能灌溉系统不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的智能灌溉系统是我国发展高效农业和精细农业的必由之路。智能灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 我国北方各省水资源缺乏,然而多年来使用传统方式为植株浇水不仅效率低、成本高而且浪费十分来重。对于大面积种植的棉田实现精准灌溉,不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低生产的成本。 由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。采用传感器来监测土壤的墒情,实现灌溉管理的自动化。高效农业和精细农业要求我们必须提高水资源的利用率。要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情以及农作物需水规律等方面做统一考虑。做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。如何利用有限的水资源,走“节水农业”已经成为农业生产获得最佳的效益和持续稳定发展的增长点。因此使用自来水发电的智能灌溉系统,控制喷灌和微灌系统,能有效地减少田间灌水过程中的渗漏和蒸发损失。现有的灌溉系统都要外接电源,存在一定的安全隐患且较麻烦。本系统可在无供电条件的地区使用,其最大优点为节水、节能、节约劳动力。 1 设计目标与实现方案描述 针对现有的智能化灌溉系统都需要外加电源供电,存在一定安全隐患,而且现有的自动灌溉装置的程序一般固化在系统的程序存储器内,只能简单地设置灌溉时间及循环时间,不能灵活根据季节不同自动调节等缺点,该系统将小型直流发电机接上风叶至于密封特制的盒子中,用水流带动风叶旋转来发电,再将电能储存到蓄电池中以给监控电路和电磁阀供电。该装置是以湿敏电阻和光敏电阻检测信号,自来水发电用作供电的一种无需外接电源的自动灌溉装置。该装置监控电路由信号采集部分,灌溉控制部分,电源部分,执行部分4部分组成。如图1所示。 1.1 信号采集部分 1.1.1 土壤湿度检测 采用硅湿敏电阻作为检测土壤湿度的传感器,它在25℃时响应时间小于5 s,检测土壤含水量范围为O~100%。 当湿敏传感器插入土壤时,由于土壤含水量不同,使得湿敏传感器的阻值也不同。通过湿敏电阻和IC1NE555判断湿度强弱,如果是土壤较干燥,湿敏电阻阻值较大,NE555翻转,输出高电平(约为电源电压)。 调整时,将湿敏电阻插入水内,调Rp1使NE555的3脚输出为12 V,然后将湿敏电阻从水中取出并擦干,调Rp1使输出0 V,这样反复调节多次即可达到要求。 1.1.2 日光强弱检测 通过光敏电阻和NE555判断光线是否强烈,如果是中午光线较强烈,IC2 NE555的3脚输

基于PLC的全自动灌溉控制系统的设计

基于PLC的全自动灌溉控制系统的设计[摘要]介绍了可编程序控制器(PLC)在节水灌溉控制系统中的应用,系统具有手动灌溉模式,能根据用户要求设定各灌区的灌溉顺序和灌溉时间;同时系统具有自动灌溉模式,通过内置程序把湿度传感器测定的土壤湿度信号输入到PLC,与土壤最佳含水量对比,进一步控制电机和电磁阀的启闭;为了减小水泵电机的启动电流,减轻对电网形成的冲击,减小能耗,系统启动采用Y/启动。 [关键词]PLC;节水灌溉;土壤湿度;Y/启动;自动灌溉控制系统 当前,随着电气信息技术在节水灌溉工程中的应用,发达国家如美国、以色列、荷兰、加拿大、澳大利亚等成功开发了一系列用途广泛、功能极强的灌溉控制器。而我国在开发自动灌溉控制系统方面与发达国家差距较大,还处于研制、试用阶段,随着水资源的日趋紧张及信息技术的发展,开发具有自主知识产权的节水灌溉控制系统不仅具有广阔的市场前景,而且具有巨大的社会效益[1,2]。 本文以PLC为核心,选用C40C型可编程控制器来开发了一套灌溉控制系统,所开发的控制系统能手动设置对各轮灌区定时灌溉,也可以通过土壤湿度传感器与控制器形成全自动闭环控制系统。同时为了减少水泵电机启动电流,减轻对电网形成的冲击,减小能耗,水泵电机采用Y/启动。 1PLC输入/输出点分配及系统结构框图 本文所选用的C40C可编程序控制器输入24点(X0~X23),输出16点(Y0~Y15),带有RS232口及日历/时钟功能,供电电源为24V直流或100~240V交流,同时可以控制4路A/D、4路D/A。系统可以方便地扩展输入/输出口,系统中除湿度传感器为模拟信号外,其它输入/输出信号均为开关量,PLC各个输入/输出点分配情况见表1。

智能节水灌溉系统的设计原理及使用方法

智能节水灌溉系统的设计原理及使用方法 智能节水灌溉系统也叫智能农业物联网精细农业自控系统,是托普云农物联网为保证农业作物需水量的前提下,实现节约用水而提出的一整套解决方案。智能节水灌溉系统简单的说就是农业灌溉不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;智能节水灌溉系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。 一、智能节水灌溉系统的功能设计 智能节水灌溉系统要实现上述功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能节水灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向

技术密集型转变奠定了重要的基础。 智能节水灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能节水灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能节水灌溉系统。 二、智能节水灌溉系统的设计背景 灌溉造成水资源大量浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能节水灌溉系统则可有效地控制水流量,达到节水目的。HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能节水灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 三、智能节水灌溉系统工作原理 灌溉系统工作时,湿度传感器采集土壤里的干湿度信号,检测到的湿度信号

基于单片机的节水灌溉自动控制系统设计

本科生毕业设计 摘要 自动控制节水灌溉技术代表了农业现代化的发展状况,灌溉系统自动化水平比较低下是制约我国高效农业发展的主要原因。本文就此问题研究了基于单片机的节水灌溉自动控制系统,系统对土壤湿度进行监控,并按照农作物的要求进行适时适量的灌水,其核心部分是单片机控制部分,主要对灌溉控制技术以及系统的硬件设计,软件编程各个部分进行深入的研究。 控制部分以单片机为核心,研制了一种基于单片机的节水灌溉自动控制系统。介绍了系统总体结构、单片机系统主机电路、数据采集处理电路、I/O口的扩展电路。为了进行大规模灌溉工程的监控,采用分布式控制模式,以提高控制系统的可靠性、降低系统的成本。 该套基于单片机控制的节水灌溉自动控制系统造成本低,体积小、安装方便、抗干扰性强、运行可靠,相比其他控制方式来说,性价比高,更易形成产品,便于推广应用。这是我国灌溉自动控制技术的一种新尝试,为目前农业在较低生产力水平的状况下,向智能化、市场化方向发展开辟了一条新途径。 关键词: AT89C51单片机;湿度传感器;A/D转换;采样;芯片 1

本科生毕业设计 ABSTRACT The level of auto-control water-saving irrigation technology reflects the development condition of agriculture modernization.The low automatic level of irrigation system is the main reason that prevented our agriculture’s development.As to this condition,this paper mainly studies the water-saving irrigation system that controlled by MCU.This system can supervise humidity.it can irrigate to the demand of the farm crops with right amunt of water at well time.The control part that consists of MCU is its core.Research work had been carried on irrigation control technology,hardware and software program and so . The control that consists of MCU is its core.A set of automatic water-saving system which is controlled by sing-chip controller have been developed in this paper.The overall structure of system、the main circuit of the MCU system、data-collecting circuit、I/O expanding circuit are all the designed.For monitoring large-scale irrigation system,we use distributional control model to enhance stability of the system de reduce the cost. It is small,easy to fit,a strong capability to resist interfere and low-cost.So the control system is more economic compared to other control system such as thuter system and all these demonstrate this production is adept to be popularized.This work is a fresh attempt to bring our agriculture into an advanced stage,which now is relative to be backward greenhouse control technique,especially on the aspect of nutrient liquid supplying when crops cultivated on tissue. Key words: AT89C51 MCU; Humidity Sensor; A/D transform; Sampling; Chip 2

智能交通信号灯控制系统设计

智能交通信号灯控制系 统设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智能交通信号灯控制系统设计 摘要:本文对交通灯控制系统进行了研究,通过分析交通规则和交通灯的工作原理,给出了交通灯控制系统的设计方案。本系统是以89C51单片机为核心器件,采用双机容错技术,硬件实现了红绿灯显示功能、时间倒计时显示功能、左、右转提示和紧急情况发生时手动控制等功能。 关键词:交通灯;单片机;双机容错 0 引言 近年来随着机动车辆发展迅速,给城市交通带来巨大压力,城镇道路建设由于历史等各种原因相对滞后,特别是街道各十字路口,更是成为交通网中通行能力的“隘口”和交通事故的“多发源”。为保证交通安全,防止交通阻塞,使城市交通井然有序,交通信号灯在大多数城市得到了广泛应用。而且随着计算机技术、自动控制技术和人工智能技术的不断发展,城市交通的智能控制也有了良好的技术基础,使各种交通方案实现的可能性大大提高。城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,是现代城市交通监控指挥系统中最重要的组成部分。本文设计的交通灯管理系统在实现了现代交通灯系统的基本功能的基础上,增加了容错处理技术(双机容错)、左右转提示和紧急情况(重要车队通过、急救车通过等)发生时手动控制等功能,增强了系统的安全性和可控性。 1 系统硬件电路的设计 该智能交通灯控制系统采用模块化设计兼用双机容错技术,以单片机89C51为控制核心,采用双机容错机制,结合通行灯输出控制显示模块、时间显示模块、手动模块以及电源、复位等功能模块。现就主要的硬件模块电路进行说明。 主控制系统 在介绍主控制系统之前,先对交通规则进行分析。设计中暂不考虑人行道和主干道差别,对一个双向六车道的十字路口进行分析,共确定了9种交通灯状态,其中状态0为系统上电初始化后的所有交通灯初试状态,为全部亮红灯,进入正常工作阶段后有8个状态,大致分为南北直行,南北左右转,东西直行,与东西左右转四个主要状态,及黄灯过渡的辅助状态。主控制器采用89C51单片机。单片机的P0口和P2口分别用于控制南北和东西的通行灯。 本文的创新之处在于采用了双机容错技术,很大程度上增强了系统的可靠性。容错技术以冗余为实质,针对错误频次较高的功能模块进行备份或者决策机制处理。但当无法查知运行系统最易出错的功能,或者系统对整体运行的可靠性要求很高时,双机容错技术则是不二选择。 双机容错从本质上讲,可以认为备置了两台结构与功能相同的控制机,一台正常工作,一台备用待命。传统的双机容错的示意图如图1所示,中U1和U2单元的软硬件结构完全相同。如有必要,在设计各单元时,通过采用自诊断技术、软件陷阱或Watch dog等系统自行恢复措施可使单元可靠性达到最大限度的提高。其关键部位为检测转换(切换)电路。 图 1 传统双机容硬件错示意图

灌溉系统自动化控制设计(一)

灌溉系统自动化控制设计(一) 李鸣 喷微灌系统的自动化,必须要有自动灌溉的控制器,甚至更多的装置,它们由土壤湿度传感器、控制器和电磁阀组成一个控制系统。灌溉系统应当能够按照土壤墒情和作物需水特性实施自动灌溉(包括沟灌、喷灌、滴灌、渗灌),达到高产、高效和节水的目的。灌溉控制系统也应当适用于园林灌溉、庭院花圃、苗圃、果园、菜地的灌溉需要。自动灌溉控制系统可以实现科学灌溉,节能、省水,使菜地和农地产量和产品的质量明显提高。 智能化,精准化的自动灌溉控制技术是伴随着信息产业和计算机应用技术、传感器制造技术、塑料工业技术的提高而逐步提高,并实现更加现代化和智能化的。 第一节. 概述 灌溉自动控制系统正在以前所未有的速度快速发展,快速的发展与目前信息产业发展的结合越来越紧密。总的来说,高速发展的控制技术与技术水平的提高不是人们能够想象得到的。目前,灌溉控制系统的在结构设计,通讯方式和传感器使用上已经出现了以下几种常见的控制系统。 基于物联网的灌溉控制系统。 物联网是基于传感器技术的新型网络技术,在现代农业中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集与作物生产有关的各种生产信息和环境参数,可以帮助农户及时发现问题,准确地捕捉发生问题的地点,对耕作、播种、施肥、灌溉等田间作业进行数字化控制,使农业灌溉的各种资源,包括水资源的利用更加精准化和效率最大化。 基于物联网的无线传感器由部署在监测区域内大量的微型传感器节点通过无线通信形成的一个多跳自组织的网络。就是说传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。其主要目的是采集与处理该网络覆盖范围内监测参数的信息。无线传感网络在农业中的一个重要应用是在温室等农业设施中,采用不同的传感器和执行机构对土壤水分,空气温湿度和光照强度,二氧化碳浓度等影响作物生长的环境信息进行实时监测,系统根据监测到的数据将室内水、肥、气、光、热等植物生长所必需的条件控制到最佳状态,保证作物的增产增收。 基于单板机PLC的灌溉控制系统。 另一种是使用单板机PLC 开发的自动控制灌溉系统。它的设计工作原理是通过可编 程的PLC 控制灌溉电磁阀, 并采用管道输水,通过喷微灌系统来灌溉农田。PLC灌溉控制系统是一种可用于高可靠性环境的实时监测网络系统, 适用于各种需要对温度和湿度等环 境参数有监测要求的场合, 尤其是不方便布线的应用场合, 能对大范围内多点的温度和湿度等信息进行联网监测并记录。通过温度、湿度、液位、流量等传感器采集相应的数据信息, 经

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

基于无线传感器网络的精细农业智能节水灌溉系统_中文

基于无线传感网络的精细农业智能节水灌溉系统 肖克辉2,1 ,肖德琴 2,1 ,罗锡文 1 (1.华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州510642; 2.华南农业大学大学信息学院,广州510624) 摘要:在精细农业相关应用和理论研究基础上,自行设计用于检测农业水分含量和水层高度的无线传感器,构建农田水分无线传感器网络体系结构,设计基于水分无线传感网络的智能节水灌溉控制系统,通过实时农田水分数据和农作物水分需求专家数据形成灌溉决策,由灌溉控制系统实施定量灌溉,在水稻生长过程中的实际应用表明,该系统体现出可行性和高效性,有利于精细农业的发展和水资源的可持续利用。 关键词:无线传感网络;智能灌溉控制系统;精细农业;构架 0 前言 通过不同集成微型传感器的相互合作,无线传感网络常用于检测并获取监测对象中的各种信息。利用嵌入式信息处理和随机自组织无线网络,将信息发送到用户终端来实现“无处不在的计算”理念。基于无线传感网络的自动化、自组织和以数据为中心等特点,它能够应用于获取土壤水分数据,然后自动地将这些数据融合传输形成一个高效的田间水分数据采集平台,从而实现智能节水灌溉。 传统的田间灌溉通常由人亲自控制,而且需要大量的人力和物力,这将导致缺乏实时性和精确性,这也有悖于长期农业生产的发展趋势和水资源的可持续利用。无线传感网络被广泛地应用于精细农业和智能灌溉来克服上述存在的问题。 G Vellidis 和他的同事开发了一个典型的实时智能检测的传感器阵列来检测土壤水分,测试土壤水分使用现成的组件。这个阵列由一个位于中间位置的接收机组成,这台接收机连接在一台笔记本电脑和田间的多个传感器节点上。具有精密灌溉技术的集成传感器提供了一个闭环的灌溉系统,能够确定从智能传感器阵列的哪一位置将时间和数量输入到实时定位灌溉应用程序中。

自动化智能滴灌系统设计方案

自动化智能滴灌控制系统设计方案 陕西颐信网络科技有限责任公司 西安天汇远通水利信息技术有限责任公司

目录 一. 系统概述............................................................................................................ - 3 - 二. 系统组成............................................................................................................ - 4 - 三. 通信网络............................................................................................................ - 5 - 四. 功能设计............................................................................................................ - 6 - 4.1. 监测中心级设计 ...................................................................................... - 6 - 4.2. 首部控制级设计 ...................................................................................... - 6 - 4.3.1. 设计原则 ....................................................................................... - 7 - 4.3.2. 主要功能 ....................................................................................... - 7 - 4.3.3. 硬件设计 ....................................................................................... - 8 - 4.3.4. 软件设计 ..................................................................................... - 10 - 4.3. 田间控制级设计 .................................................................................... - 13 - 4.3.1. 田间控制器主要功能 ................................................................. - 13 - 4.3.2. 田间控制器性能指标 ................................................................. - 14 - 4.3.3. 田间路由器节点主要功能 ......................................................... - 14 - 4.3.4. 田间路由器节点性能参数 ......................................................... - 14 - 4.3. 5. 供电方式 ..................................................................................... - 14 - 五. 系统特性.......................................................................................................... - 15 - 六. 设计研究意义.................................................................................................. - 16 -

基于单片机节水灌溉系统的设计( 文献综述)

文献综述 前言 本人毕业设计的论题为《基于单片机节水灌溉系统的设计》,随着我国农业技术的高速发展,在进行农业生产的过程中需要大量的水资源,而我国却是一个水资源严重缺乏的国家,水资源的整体利用水平仍还很低,灌溉水的利用率只有30%~40%,水分生产效率不足1 ㎏∕m3,仅为发达国家的一半。灌溉管理自动化是发展高效农业的重要手段,我国目前主要局限于节水灌溉工程措施的推广和应用,而高效农业和精细农业要求必须实现水资源的高效利用,将输配水、灌水技术和降雨、蒸发、土壤墒情、作物需水规律等方面统一考虑,做到降水、灌溉水、土壤水和地下水联合调用,实现按需、按时、按量自动供水。因此,必须采用遥感、遥测等新技术监测土壤墒情和作物生长情况,对灌溉用水进行动态监测预报,实现灌溉用水管理的自动化、节约化、动态管理。而本文就是对不同土壤的湿度进行监控,并按照作物对土壤湿度的要求进行适时、适量灌水,所设计系统的核心是单片机和PC机构成的控制部分,主要对土壤湿度与灌水量之间的关系、灌溉控制技术及设备系统的硬件、软件编程各个部分进行实现。 本文根据目前国内外学者对的基于单片机节水灌溉系统的设计的研究成果,借鉴他们的成功经验,大胆的将单片机和PC机整合在系统中。这些文献给与本文很大的参考价值。本文主要查阅进几年有关基于单片机节水灌溉系统的设计的文献期刊。

张金波、胡钢、张学武、李致金、柯小干(2003)在《自动化控制系统在节水灌溉中的应用》介绍了以组态软件为开发平台,利用继电器输出模块,数字量输入模块等设备开发了农田节水灌溉自动化控制系统,该系统已在农田节水灌溉实际中得到了成功应用. 孙威、毛罕平、左志宇、伍德林(2007)在《基于单片机的节水灌溉自动控制器的设计》中以单片机为核心,研制了一种节水灌溉自动控制器;介绍了系统总体结构、单片机系统主机电路、数据采集处理电路、I/O口的扩展电路、通信接口等以及软件的设计. 王晓健(2010)在《单片机模糊控制节水灌溉系统设计》中介绍了灌溉控制系统的组成及工作原理,以单片机为核心控制芯片,设计了一套节水灌溉控制系统,并对其决策过程进行了具体分析. 张兵、袁寿其、成立、杨春明(2004)在《节水灌溉自动控制器的设计与研究》中论述了一种自动化节水灌溉控制系统的硬件设计、外部连线及其使用功能.系统控制器以与8051完全兼容的GMS90L51单片机为核心,采用计算机分布式管理;系统有传感器自动闭环控制、手动/半手动控制、微机超控等多种工作方式;系统能够实现自动化灌溉,具有排水警示、实时时钟、历史数据查询、数据上传及双向通信等功能. 张兵、袁寿其、成立(2003)在《节水灌溉自动化技术的发展及趋势》中论述了自动化技术在灌溉管理中的重要性,详细介绍了以色列、美国、澳大利亚及我国自动化技术在灌溉中的应用现状及存在的问题,讨论了一些新技术,如模糊控制、神经网络、专家系统等在节水灌溉控制中的应用,并对节水灌溉控制技术的发展趋势进行了探讨. 朱张青、曹成茂(2001)在《多用途节水灌溉控制系统研制》中介绍了一种以单片机控制为核心,能适用于多种农作物的节水灌溉控制系统. 苏崇峰、陈进昌、刘祥金、王永兰(2002)在《节水灌溉自动控制及管理系统研究》从节水灌溉控制与水费管理两个方面介绍了本系统在节水灌溉中的应用,着重介绍了控制过程;对节水灌溉的控制以及计算机、PLC、数字水表、数据采集都进行了详细地介绍;通过本系统的实施,可以从根本上解决节水灌溉重建轻管的弊端. 吴维雄(2004)在《试论计算机在节水灌溉中的应用》中介绍了随着精确农业技术革命的发展,节水灌溉中增加了精确灌溉的内容.通过计算机控制实施相

基于单片机的智能交通灯控制系统设计与实现

基于单片机的智能交通灯控制系统设计 与实现

诚信承诺书 本人郑重承诺:本人承诺呈交的毕业设计《基于单片机的智能交通灯控制系统设计与实现》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。 本人签名: 日期:年月日

基于单片机的智能交通灯控制系统设计与实现 摘要 近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。 十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。交通信号灯控制方式很多。本系统采用STC89C52RC单片机以及单片机最小系统和74HC245电路以及外围的按键和数码管显示等部件,设计一个基于单片机的交通灯设计。设计通过两位一体共阴极数码管显示,并能通过按键对定时进行设置。本系统实用性强、操作简单、扩展功能强。 关键词:交通灯;单片机;显示;计时;车流量

Design and implementation of intelligent traffic lights control based on MCU Abstract In recent years along with the rapid development of science and technology, SCM applications are continually deepening, and promote the traditional control detection technology is updated. In real-time detection and automatic control of the microcomputer application system, the microcontroller is often used as a core component, only SCM knowledge is not enough, should be based on specific hardware structure of hardware and software combination, to be perfect. Crossroads shuttle vehicles, pedestrians bustling, car dealership traffic lane, people walkways, everything in good order and well arranged. So what to rely on to realize it in order? Is the traffic lights on the automatic command system. A lot of traffic signal control. This system uses STC89C52RC and 74HC245 system and the smallest transistor driving circuit and a periphery of the keys and digital tube display and other parts, a design based on the single chip design of traffic lights. Design through one of two common cathode nixie tube display, and can be key to regular set. This system is practical, simple operation, strong expanding function. Keywords: Traffic light,SCM,Display,Timing,Traffic flow

农业智能灌溉系统解决方案

农业智能灌溉系统解决方案 农业智能灌溉系统又叫物联网智能滴灌控制系统,是托普云农为实现现代农业所提倡的节水、节肥、省力、高效而研发出的一种自动化控制灌溉浇水系统。 农业智能灌溉系统是将灌溉节水技术、农作物栽培技术及节水灌溉工程的运行管理技术有机结合,同时集电子信息技术、远程测控网络技术、计算机控制技术及信息采集处理技术于一体,通过计算机通用化和模块化的设计程序,构筑供水流量、压力、土壤水分、作物生长信息、气象资料的自动监测控制系统,进行水、土环境因子的模拟优化,实现灌溉节水、作物生理、土壤湿度等技术控制指标的逼近控制,从而将农业高效节水的理论研究提高到现实的应用技术水平。农业智能灌溉系统实用性强,灌溉定时定量,适用范围广,功能强大,操作简单,可广泛应用于粮食、蔬菜、花卉、果树、大棚等灌溉管理。 一、农业智能灌溉系统组成: 浙江托普物联网研制的农业智能灌溉系统由首部枢纽、管路和滴头组成。 1.首部枢纽:包括水泵(及动力机)、施肥罐、过滤器、控制与测量仪表等。其作用是抽水、施肥、过滤,以一定的压力将一定数量的水送入干管。 2.管路:包括干管、支管、毛管以及必要的调节设备(如压力表、闸阀、流量调节器等)。其作用是将加压水均匀地输送到滴头。 3.滴头:其作用是使水流经过微小的孔道,形成能量损失,减小其压力,使它以点滴的方式滴入土壤中。滴头通常放在土壤表面,亦可以浅埋保护。

二、农业智能灌溉系统系统工作原理: 1.灌溉控制 灌溉分为人工干预、定时定量、条件控制3种灌溉控制方式,不论哪一种控制方式,当达到灌溉开始条件时,先打开田间阀和主控阀,然后启动水泵,开始进行灌溉。当一组阀门灌溉结束时,先打开下一组阀门,再关闭正在灌溉的阀门(水泵一直处于运行状态)。当所有需要灌溉的田间阀灌溉完毕,先关闭水泵,再关闭主控阀和田间阀,这样,一个灌溉过程结束。 2.营养控制 营养液控制方式也分为人工干预、定时定量、条件控制三种。当进行营养液时,计算机系统根据选定的配方和已设定好的营养液PH、EC值,利用文丘里注肥器进行水肥混合,同时在线实时监测混合营养液的PH、EC值,根据PH、EC设定值与检测值之间的偏差来调整混肥阀的注肥频率,在短时间内使营养液的检测值和设定值之差达到允许的范围内。当一组田间阀门结束时,先打开下一组阀门,再关闭正在运行的阀门。当所有需要的田间阀完毕,先关闭泵和水泵,再关闭正在运行的所有阀门,结束控制。 3.过滤器自动反冲洗控制 过滤器反冲洗有2种控制方式,一种为自动控制,一种为计算机手动控制。自动控制是利用差压开关监测过滤器进、出口两端差压,当过滤器由于堵塞,两端差压达到设定值时,立即中断当前的工作,对过滤器组依次进行反冲洗,冲洗时长可任意设定,冲洗完毕,恢复系统原来的运行状态。过滤器反冲洗手动控制是当认为过滤器需要反冲洗时,通过启动反冲洗程序界面上的启动键,随时可进行过滤器的反冲洗,冲洗方式与自动控制相同。 4.优先权控制

基于单片机的大棚智能节水灌溉系统设计

基于单片机的大棚智能节水灌溉系统设计 大棚智能节水灌溉系统设计采用AT89C51单片机为信息处理核心,系统主要由土壤湿度传感器、空气温度传感器、空气湿度传感器、液晶显示电路和故障报警电路等组成。系统在进行智能灌溉的同时,还能调节大棚内空气的湿度和温度。经过测试,该系统可以在无人的情况下实现智能节能,并根据作物的需要进行适时、有效的灌溉,并有效的调节大棚内的湿度和温度,做到定时喷洒农药。 标签:AT89C51单片机;节水灌溉;控制系统 随着农业现代化的发展,智能节水灌溉的需求越来越大[1],然而,智能灌溉由于成本等因素发展缓慢[2]。本设计通过对大棚内土壤湿度的控制和大棚内空气温度和湿度分析,设计了一个简单经济实用的智能灌溉系统。 1 系统总体设计 系统总原理方框图如图1所示。硬件电路包括了传感器电路、单片机数据处理电路、液晶显示电路,继电器电磁阀电路,农药喷洒电路。首先,数据采样电路将土壤湿度传感器采集到的数据通过A/D转换后,将信息传递给单片机,然后单片机将测量的数据通过处理后在液晶显示屏上反应出来,同时控制电路将根据指令完成操作。 2 硬件部分设计 (1)系统主电路布局。该设计包括DH11温湿度电路,LED显示电路,晶振电路,继电器电池阀驱动电路,继电器风扇驱动电路,DH11温度湿度电路将土壤湿度通过A/D转换将数据传输给单片机主芯片,然后,单片机主芯片首先对数据做出判断,然后会分别对各个下属电路做出指示,LED电路的作用是显示工作的状态,农药喷洒系统的作用是定时定量喷洒农药。(2)DH11温度传感器电路设计。温度传感器采用DH11温湿度传感器,由于传感器的电阻较小,通电作用下,很容易被烧坏[3],故此电路会选择串联一个电阻值较大的电阻,该电路中串联的电阻选择的是R3=43K的电阻来保护传感器。(3)DH11湿度传感器电路设计。土壤湿度传感器采用DH11,和温度传感器一样,R2的作用是保护传感器不被烧坏,这里R2取47K,3端口用不到,故此悬空。(4)继电器风扇驱动电路。当大棚中的空气湿度比设定好的温度高时,温度传感器将接受到的信号经过A/D转化后传输给单片机,单片机会调用散热子程序,完成三极管导通,使的继电器闭合,开启散热功能,当温度降到设定温度时,风扇就会停止转动,散热就会结束[4]。同样的,当空气湿度高于设定湿度时,电风扇会转动降低湿度,当湿度低于设定湿度时,电扇就会停止转动,散湿结束。 3 系统软件设计 3.1 系统主程序流程图

相关主题
文本预览
相关文档 最新文档