当前位置:文档之家› 2014届高考数学一轮复习教学案导数的应用(二)含解析

2014届高考数学一轮复习教学案导数的应用(二)含解析

2014届高考数学一轮复习教学案导数的应用(二)含解析
2014届高考数学一轮复习教学案导数的应用(二)含解析

第十三节

导数的应用(二)

典题导入

[例1] 已知函数f (x )=x 2ln x -a (x 2-1),a ∈R.

(1)当a =-1时,求曲线f (x )在点(1,f (1))处的切线方程; (2)若当x ≥1时,f (x )≥0成立,求a 的取值范围. [自主解答] (1)当a =-1时,f (x )=x 2ln x +x 2-1, f ′(x )=2x ln x +3x .

则曲线f (x )在点(1,f (1))处的切线的斜率为f ′(1)=3,又f (1)=0,所以切线方程为3x -y -3=0.

(2)f ′(x )=2x ln x +(1-2a )x =x (2ln x +1-2a ),其中x ≥1.

当a ≤1

2时,因为x ≥1,所以f ′(x )≥0,所以函数f (x )在[1,+∞)上单调递增,故f (x )≥f (1)

=0.

当a >12时,令f ′(x )=0,得x =e a -12

.

若x ∈[1,e a -12),则f ′(x )<0,所以函数f (x )在[1,e a -1

2)上单调递减.所以当x ∈[1,

e a -1

2

)时,f (x )≤f (1)=0,不符合题意.

综上a 的取值范围是?

???-∞,12.

由题悟法

利用导数解决参数问题主要涉及以下方面:

(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解.

(2)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. (3)已知函数的零点个数求参数的取值范围:利用函数的单调性、极值画出函数的大致

图象,数形结合求解.

以题试法

1.设函数f (x )=1

2x 2+e x -x e x .

(1)求f (x )的单调区间;

(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(-∞,+∞), ∵f ′(x )=x +e x -(e x +x e x )=x (1-e x ), 若x =0,则f ′(x )=0;

若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0. ∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知,f (x )在[-2,2]上单调递减. 故[f (x )]min =f (2)=2-e 2,

∴m <2-e 2时,不等式f (x )>m 恒成立. 故m 的取值范围为(-∞,2-e 2).

典题导入

[例2] 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x

x ,其中e 是自然常数,a ∈R.

(1)讨论a =1时,函数f (x )的单调性和极值; (2)求证:在(1)的条件下,f (x )>g (x )+1

2.

[自主解答] (1)∵f (x )=x -ln x , f ′(x )=1-1x =x -1

x

∴当00,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1.

(2)证明:由(1)知[f (x )]min =1.又g ′(x )=1-ln x

x 2,

∴当00,g (x )在(0,e]上单调递增.

∴[g (x )]max =g (e)=1e <1

2.

∴[f (x )]min -[g (x )]max >1

2.

∴在(1)的条件下,f (x )>g (x )+1

2

.

在本例条件下,是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,说明理由.

解:假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3.因为f ′(x )=a -1x =ax -1

x ,

当0<1

a

,满足条件; 当1

a ≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,

a =4

e

(舍去),所以,此时a 不存在.

综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.

由题悟法

利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,确定函数的最值证明h (x )>0.

以题试法

2.已知f (x )=x ln x .

(1)求g (x )=f (x )+k

x (k ∈R)的单调区间;

(2)证明:当x ≥1时,2x -e ≤f (x )恒成立. 解:(1)g (x )=ln x +k

x ,

∴令g ′(x )=x -k

x 2=0得x =k .

∵x >0,∴当k ≤0时,g ′(x )>0.

∴函数g (x )的增区间为(0,+∞),无减区间; 当k >0时g ′(x )>0得x >k ;g ′(x )<0得0

(2)证明:设h (x )=x ln x -2x +e(x ≥1), 令h ′(x )=ln x -1=0得x =e , h (x ),h ′(x )的变化情况如下:

故h (x )≥0.即f (x )≥2x -e.

典题导入

[例3] 某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,顶点B 、D 分别在边AM 、AN 上,假设AB 的长度为x 米.

(1)要使仓库的占地面积不少于144平方米,求x 的取值范围;

(2)要规划建设的仓库是高度与AB 的长度相同的长方体建筑,问AB 的长度为多少时仓库的库容量最大.(墙地及楼板所占空间忽略不计)

[自主解答] (1)依题意得△NDC 与△NAM 相似,所以DC AM =ND NA ,即x 30=20-AD

20,故AD

=20-23x ,矩形ABCD 的面积为20x -2

3

x 2(0

要使仓库的占地面积不少于144平方米,则20x -2

3x 2≥144,

化简得x 2-30x +216≤0, 解得12≤x ≤18.

(2)由(1)知仓库的体积V =20x 2-2

3x 3(0

当00,当20

所以当x =20时V 取最大值,且最大值为8 000

3,即AB 的长度为20米时仓库的库存容

量最大.

由题悟法

利用导数解决生活中的优化问题的一般步骤

(1)分析实际问题中各个量之间的关系,建立数学模型,写出函数关系式y =f (x ); (2)求出函数的导函数f ′(x ),解方程f ′(x )=0;

(3)比较函数在区间端点和使f ′(x )=0的点处的函数值的大小,最大(小)者为最大(小)值.

以题试法

3.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间关系可近似地用如下函数给出:

y =?????

-18t 3-34t 2

+36t -629

4,6≤t <9,18t +59

4,9≤t ≤10,-3t 2

+66t -345,10

求从上午6点到中午12点,通过该路段用时最多的时刻. 解:①当6≤t <9时, y ′=-38t 2-3

2t +36

=-3

8

(t +12)(t -8).

令y ′=0,得t =-12(舍去)或t =8. 当6≤t <8时,y ′>0, 当8

故t =8时,y 有最大值,y max =18.75. ②当9≤t ≤10时,y =18t +59

4是增函数,

故t =10时,y max =16.

③当10

综上可知,通过该路段用时最多的时刻为上午8点.

1.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a

A .af (b )≤bf (a )

B .bf (a )≤af (b )

C .af (a )≤f (b )

D .bf (b )≤f (a )

解析:选A ∵xf ′(x )≤-f (x ),f (x )≥0, ∴??

?

?f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0.

则函数f (x )x 在(0,+∞)上是单调递减的,由于0

b .即af (b )≤bf (a ).

2.(2012·山西适应性训练)若商品的年利润y (万元)与年产量x (百万件)的函数关系式y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( )

A .1百万件

B .2百万件

C .3百万件

D .4百万件

解析:选C 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当00;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.

3.已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.

解析:在(0,+∞)上有f ′(x )>0,所以f (x )在(0,+∞)单调递增.又函数f (x )是R 上的偶函数,所以f (1)=f (-1)=0.当x >0时,f (x )<0,∴00,∴x <-1.

答案:(-∞,-1)∪(0,1)

4.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.

解析:令f ′(x )=3x 2-3=0,得x =±1,可得极大值为f (-1)=2,

极小值为f (1)=-2,如图,观察得-2

答案:(-2,2)

5.已知函数f (x )=x 2+ln x .

(1)求函数f (x )在[1,e]上的最大值和最小值;

(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+1

2x 2的下方.

解:(1)∵f (x )=x 2+ln x ,∴f ′(x )=2x +1

x

.

∵x >1时,f ′(x )>0,故f (x )在[1,e]上是增函数, ∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明:令F (x )=f (x )-g (x )=12x 2-2

3

x 3+ln x ,

∴F ′(x )=x -2x 2

+1x =x 2-2x 3

+1

x

=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)

x

.

∵x >1,∴F ′(x )<0.

∴F (x )在(1,+∞)上是减函数.

∴F (x )<F (1)=12-23=-1

6

<0,即f (x )<g (x ).

∴当x ∈(1,+∞)时,函数f (x )的图象总在g (x )的图象的下方. 6.(2012·乌鲁木齐诊断性测验)已知函数(理)f (x )=e x

-m

-x ,(文)f (x )=1

e

m e x -x ,其中m

为常数.

(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解:(1)依题意,可知f (x )在R 上连续,且f ′(x )=e x -m -1,

令f ′(x )=0,得x =m .

故当x ∈(-∞,m )时,e x -

m <1,f ′(x )<0,f (x )单调递减;

当x ∈(m ,+∞)时,e x

-m

>1,f ′(x )>0,f (x )单调递增;

故当x =m 时,f (m )为极小值,也是最小值. 令f (m )=1-m ≥0,得m ≤1,

即对任意x ∈R ,f (x )≥0恒成立时,m 的取值范围是(-∞,1]. (2)由(1)知f (x )在[0,2m ]上至多有两个零点,当m >1时,f (m )=1-m <0. ∵f (0)=e

-m

>0,f (0)·f (m )<0,

∴f (x )在(0,m )上有一个零点. 又f (2m )=e m -2m ,令g (m )=e m -2m , ∵当m >1时,g ′(m )=e m -2>0, ∴g (m )在(1,+∞)上单调递增. ∴g (m )>g (1)=e -2>0,即f (2m )>0.

∴f (m )·f (2m )<0,∴f (x )在(m,2m )上有一个零点. 故f (x )在[0,2m ]上有两个零点.

7.(2013·泰安模拟)某种产品每件成本为6元,每件售价为x 元(6

8

-u 与????x -2142成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y 关于售价x 的函数关系式;

(2)求售价为多少时,年利润最大,并求出最大年利润. 解:(1)设585

8-u =k ????x -2142, ∵售价为10元时,年销量为28万件, ∴

585

8

-28=k ????10-2142,解得k =2.

∴u =-2????x -2142+5858 =-2x 2+21x +18.

∴y =(-2x 2+21x +18)(x -6) =-2x 3+33x 2-108x -108(6

令y ′=0,得x =2(舍去)或x =9, 显然,当x ∈(6,9)时,y ′>0; 当x ∈(9,11)时,y ′<0.

∴函数y =-2x 3+33x 2-108x -108在(6,9)上是递增的,在(9,11)上是递减的. ∴当x =9时,y 取最大值,且y max =135,

∴售价为9元时,年利润最大,最大年利润为135万元.

1.(2012·潍坊模拟)已知函数f (x )=(x 2-3x +3)e x ,x ∈[-2,t ](t >-2). (1)当t <1时,求函数y =f (x )的单调区间; (2)设f (-2)=m ,f (t )=n ,求证:m

解:(1)f ′(x )=(2x -3)e x +e x (x 2-3x +3)=e x x (x -1), ①当-20,f (x )单调递增, 当x ∈(0,t ]时,f ′(x )<0,f (x )单调递减.

综上,当-2

当0

2,

n =f (t )=(t 2-3t +3)e t ,

设h (t )=n -m =(t 2-3t +3)e t -13e -

2,t >-2,

h ′(t )=(2t -3)e t +e t (t 2-3t +3)=e t t (t -1)(t >-2). 故h (t ),h ′(t )随t 的变化情况如下表:

由上表可知h (t )的极小值为h (1)=e -13e 2=e e

2>0,又h (-2)=0,故当-2

h (t )>h (-2)=0,即h (t )>0,

因此,n -m >0,即m

2. (2012·资阳模拟)已知函数f (x )=x 3-3ax +b (a ,b ∈R)在x =2处的切线方程为y =9x -14.

(1)求f (x )的单调区间;

(2)令g (x )=-x 2+2x +k ,若对任意x 1∈[0,2],均存在x 2∈[0,2],使得f (x 1)

解:(1)f ′(x )=3x 2-3a ,∵f (x )在x =2处的切线方程为y =9x -14,

∴????? f (2)=4,f ′(2)=9,则????? 8-6a +b =4,12-3a =9,解得?

????

a =1,

b =2. ∴f (x )=x 3-3x +2,则f ′(x )=3x 2-3=3(x +1)(x -1). 由f ′(x )>0,得x <-1或x >1; 由f ′(x )<0,得-1

故函数f (x )的单调递减区间是(-1,1);单调递增区间是(-∞,-1),(1,+∞). (2)由(1)知,函数f (x )在(0,1)上单调递减,在(1,2)上单调递增. 又f (0)=2,f (2)=4,有f (0)

∴函数f (x )在区间[0,2]上的最大值f (x )max =f (2)=4. 又g (x )=-x 2+2x +k =-(x -1)2+k +1,

∴函数g (x )在[0,2]上的最大值为g (x )max =g (1)=k +1. ∵对任意x 1∈[0,2],均存在x 2∈[0,2],使f (x 1)3. 故实数k 的取值范围是(3,+∞).

1.已知向量m =(x 0,-1),n =????12,y 0,x 0,33

4,y 0成等差数列,2,x 0,y 0成等比数列.

(1)求证:m ⊥n ;

(2)若存在不为零的实数k 与t ,使得a =(t 2-3)m +n ,b =tm -kn ,且a ⊥b ,|a |≤37,试讨论函数k =f (t )的单调性,并求出函数的极值.

解:(1)证明:由x 0,334,y 0成等差数列得x 0+y 0=33

2,①

由2,x 0,y 0成等比数列得x 0=2y 0,② 由①与②可得x 0=3,y 0=

3

2

所以m =(3,-1),n =???

?12,3

2,

因为m ·n =(3,-1)·

????12,32=32-32

=0, 所以m ⊥n .

(2)由(1)得|m |=2,|n |=1,

因为|a |≤37,m ⊥n ,所以|a |2=(t 2-3)2|m |2+2(t 2-3)m ·n +|n |2=4(t 2-3)2+1≤37, 所以0≤t 2≤6,所以-6≤t ≤ 6.

又a ·b =t (t 2-3)|m |2-k (t 2-3)m ·n +tm ·n -k |n |2=4t (t 2-3)-k =0,

所以k =f (t )=4t (t 2-3)(-6≤t ≤6),k ′=f ′(t )=[4t (t 2-3)]′=12t 2-12,令12t 2-12=0,得t =±1.

当t 变化时,f ′(t ),f (t )的变化情况如下表:

的极大值为8,极小值为-8.

2.设函数f (x )=ln x -p (x -1),p ∈R. (1)当p =1时,求函数f (x )的单调区间;

(2)设函数g (x )=xf (x )+p (2x 2-x -1),对任意x ≥1都有g (x )≤0成立,求p 的取值范围. 解:(1)当p =1时,f (x )=ln x -x +1,其定义域为(0,+∞). 所以f ′(x )=1x

-1.

由f ′(x )=1

x

-1>0得01.

所以函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).

(2)由函数g (x )=xf (x )+p (2x 2-x -1)=x ln x +p (x 2-1)(x >0),得g ′(x )=ln x +1+2px . 由(1)知,当p =1时,f (x )≤f (1)=0, 即不等式ln x ≤x -1成立.

①当p ≤-1

2时,g ′(x )=ln x +1+2px ≤(x -1)+1+2px =(1+2p )x ≤0,

即函数g (x )在[1,+∞)上单调递减,从而g (x )≤g (1)=0,满足题意; ②当-1

2

0,1+2px >0, 从而g ′(x )=ln x +1+2px >0,即函数g (x )在?

???1,-1

2p 上单调递增,从而存在x 0∈

?

???1,-12p 使得g (x 0)>g (1)=0,不满足题意;

③当p ≥0时,由x ≥1知g (x )=x ln x +p (x 2-1)≥0恒成立,此时不满足题意. 综上所述,实数p 的取值范围为????-∞,-1

2.

集合与常用逻辑用语 函数、导数及其应用

(时间120分钟,满分150分)

一、选择题(本题共12小题,每小题5分,共60分)

1.(2012·广州调研)已知函数f (x )=?

????

1-x ,x ≤0,

a x ,x >0,若f (1)=f (-1),则实数a 的值等于

( )

A .1

B .2

C .3

D .4

解析:选B 根据题意,由f (1)=f (-1)可得a =1-(-1)=2.

2.(2012·江西高考)若全集U ={}x ∈R|x 2

≤4,则集合A ={}x ∈R||x +1|≤1的补集?U A

为( )

A.{}x ∈R|0

B.{}x ∈R|0≤x <2

C.{}x ∈R|0

D.{}x ∈R|0≤x ≤2

解析:选C 因为U ={x ∈R|x 2≤4}={x ∈R|-2≤x ≤2},A ={x ∈R||x +1|≤1}={x ∈R|-2≤x ≤0}.借助数轴易得?U A ={x ∈R|0

3.下列函数中,恒满足f (2x )=[f (x )]2的是( ) A .f (x )=|x | B .f (x )=1

x (x ≠0)

C .f (x )=e x

D .f (x )=sin x

解析:选C 若f (x )=e x ,则f (2x )=e 2x =(e x )2=[f (x )]2.

4.(2012·大同调研)已知函数f (x )=x 2+bx (b ∈R),则下列结论正确的是( ) A .?b ∈R ,f (x )在(0,+∞)上是增函数 B .?b ∈R ,f (x )在(0,+∞)上是减函数 C .?b ∈R ,f (x )为奇函数

D .?b ∈R ,f (x )为偶函数

解析:选D 注意到当b =0时,f (x )=x 2是偶函数.

5.(2013·龙岩四校联考)已知函数y =f (x )的图象在点M (3,f (3))处的切线方程是y =1

3x

+2

3

,则f (3)+f ′(3)的值为( ) A .1 B .2 C .3

D .5

解析:选B 因为切点(3,f (3))在切线上,所以f (3)=1+23=5

3,切点处的导数为切线的

斜率,所以f ′(3)=1

3

,所以f (3)+f ′(3)=2.

6.(2012·汕头一测)已知集合A 是函数f (x )=1-x 2

|x +1|-1的定义域,集合B 是整数集,则A ∩B

的子集的个数为( )

A .4

B .6

C .8

D .16

解析:选A 要使函数f (x )有意义,则需?

????

1-x 2

≥0,

|x +1|-1≠0,解得-1≤x <0或0

以函数的定义域A ={x |-1≤x <0,或0

7.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b c C .a

D .a >b >c

解析:选B ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233, ∴a =b .

又∵函数y =log a x (a >1)为增函数,

∴a =log 233>log 22=1,c =log 32c .

8.(2012·南昌一模)函数y =x 1

2

-1的图象关于x 轴对称的图象大致是( )

解析:选B 函数y =x 1

2=x ,该函数的图象就是抛物线y 2=x 在x 轴及其以上的部分,

故函数y =x 1

2-1=x -1是将上述图象向下平移一个单位得到的,再作其关于x 轴对称的图

象,即选项B 中的图象.

9.(2012·长春第二次调研)若a >2,则函数f (x )=1

3x 3-ax 2+1在(0,2)内零点的个数为( )

A .3

B .2

C .1

D .0

解析:选C 依题意得f ′(x )=x 2-2ax ,由a >2可知,f ′(x )在x ∈(0,2)时恒为负,即f (x )在(0,2)内单调递减,又f (0)=1>0,f (2)=8

3

-4a +1<0,因此f (x )在(0,2)内只有一个零点.

10.(2012·河南三市第二次调研)设U 为全集,对集合X ,Y ,定义运算“*”,X *Y =?

U (X ∩Y ).对于任意集合

X ,Y ,Z ,则(X *Y )*Z =( ) A .(X ∪Y )∩?U Z

B .(X ∩Y )∪?U Z

C .(?U X ∪?U Y )∩Z

D .(?U X ∩?U Y )∪Z

解析:选B 依题意得(X *Y )=?U (X ∩Y )=(?U X )∪(?U Y ),(X *Y )*Z =?U [(X *Y )∩Z ]=?U [?

U (X ∩Y )∩Z ]={?U [?U (X ∩Y )]}∪(?U Z )=(X ∩Y )∪(?U Z ).

11.(2012·重庆高考)已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )

A .既不充分也不必要的条件

B .充分而不必要的条件

C .必要而不充分的条件

D .充要条件

解析:选D 由题意可知函数在[0,1]上是增函数,在[-1,0]上是减函数,在[3,4]上也是减函数;反之也成立.

12.下列命题:

①?x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;

③“若a >b >0且c <0,则c a >c

b

”的逆否命题是真命题;

④若命题p :?x ∈R ,x 2+1≥1,命题q :?x ∈R ,x 2-x -1≤0,则命题p ∧(綈q )是真命题.其中真命题为( )

A .①②③

B .①②④

C .①③④

D .②③④

解析:选A 由x 2+2x >4x -3推得x 2-2x +3=(x -1)2+2>0恒成立,故①正确;根据基本不等式可知要使不等式log 2x +log x 2≥2成立需要x >1,故②正确;由a >b >0得0<1a <1

b ,

又c <0,可得c a >c

b ,则可知其逆否命题为真命题,故③正确;命题p 是真命题,命题q 是真

命题,所以p ∧(綈q )为假命题,故④不正确.

二、填空题(本题共4小题,每小题5分,共20分)

13.(2013·河北质检)函数y =log 12

(3x -a )的定义域是????23,+∞,则a =________.

解析:由3x -a >0得x >a 3.因此,函数y =log 12(3x -a )的定义域是????a 3,+∞,所以a 3=23,即a =2.

答案:2

14. (2012·南通一调)设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________.

解析:依题意得,y =x 32+x 12,y ′=32x 12+12x -12(x >0),当x >0时,y ′=32x 12+12x -1

2≥2

32x 12×12x -1

2

=3,即该图象在点P 处的切线的斜率不小于3,即tan θ≥ 3.又θ∈[0,π),因此π3≤θ<π

2

,即θ的取值范围是????π3,π2. 答案:????

π3,π2

15.(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.

解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <1

4.若a >1,则函数f (x )在[-

1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <1

4矛盾;当0

数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -

1=4,解得a =14,m =116<14.所以a =14

.

答案:1

4

16.(2012·福州质检)已知集合M 是满足下列条件的函数f (x )的全体:

(1)f (x )既不是奇函数也不是偶函数;(2)函数f (x )有零点.那么在函数①f (x )=|x |-1,②f (x )=2x -1,③f (x )=????

?

x -2,x >0,0,x =0,

x +2,x <0,④f (x )=x 2-x -1+ln x 中,属于M 的有________.(写出

所有符合的函数序号)

解析:对于①,∵f (-x )=|-x |-1=|x |-1=f (x ),

∴f (x )=|x |-1是偶函数,∴①不符合条件;易知f (x )=2x -1既不是奇函数也不是偶函数,且有一个零点x =0,

∴②符合条件;对于③,令x >0,则-x <0,∴f (x )=x -2,f (-x )=-x +2=-(x -2),即f (x )=-f (-x ),

又f (0)=0,∴f (x )=????

?

x -2,x >0,0,x =0,

x +2,x <0.

是奇函数,∴③不符合条件;对于④,函数f (x )=

x 2-x -1+ln x 的定义域为(0,+∞),故它既不是奇函数也不是偶函数,∵f ′(x )=2x -1+

1

x =2x 2

-x +1x =2????x -142+78

x

>0,∴函数f (x )在(0,+∞)上单调递增,又f (1)=1-1-1+0=-

1<0,f (e)=e 2-e -1+1=e(e -1)>0,∴函数f (x )在(1,e)上存在零点,∴④符合条件.

答案:②④

三、解答题(本题共6小题,共70分)

17.(本小题满分10分)已知函数y =f (x )的图象关于原点对称,且x >0时,f (x )=x 2-2x +3,试求f (x )在R 上的表达式,并画出它的图象,根据图象写出它的单调区间.

解:∵f (x )的图象关于原点对称,

∴f (-x )=-f (x ),又当x >0时,f (x )=x 2-2x +3, ∴当x <0时,f (x )=-x 2-2x -3. 当x =0时,f (x )=0.

∴函数解析式为f (x )=????

?

x 2

-2x +3,x >0.0,x =0,

-x 2-2x -3,x <0.

作出函数的图象如图.

根据图象可以得函数的增区间为(-∞,-1),(1,+∞); 函数的减区间为(-1,0),(0,1). 18.(本小题满分12分)

已知函数f (x )=log 3(ax +b )的部分图象如右图所示. (1)求f (x )的解析式与定义域;

(2)函数f (x )的图象能否由y =log 3x 的图象平移变换得到.

解:(1)由图可知(2,1)(5,2)是f (x )=log 3(ax +b )上的两点,将其代入函数表达式可得

????? 2a +b =3,5a +b =9??????

a =2,

b =-1.

∴f (x )的解析式为f (x )=log 3(2x -1). ∵f (x )有意义需满足2x -1>0,∴x >1

2

.

∴f (x )的定义域为???

?1

2,+∞. (2)∵f (x )=log 3(2x -1)=log 3???

?2????x -12 =log 3???

?x -1

2+log 32, ∴f (x )的图象是由y =log 3x 的图象向右平移1

2个单位,再向上平移log 32个单位得到的.

故可以由y =log 3x 的图象平移得到.

19.(本小题满分12分)已知函数f (x )=x (x 2-ax -3). (1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =-1

3是f (x )的极值点,求f (x )在区间[1,4]上的最大值.

解:(1)∵f (x )=x (x 2-ax -3),∴f ′(x )=3x 2-2ax -3. ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0,

即3x 2-2ax -3≥0在[1,+∞)上恒成立. 得a ≤3

2????x -1x 在[1,+∞)上恒成立. ∵当x ≥1时,3

2????x -1x ≥32(1-1)=0, ∴a ≤0.

(2)依题意得f ′????-1

3=0, 即13+2

3a -3=0,得a =4, 故f (x )=x 3-4x 2-3x .

令f ′(x )=3x 2-8x -3=0,得x 1=-1

3,x 2=3.

当x 在[1,4]上变化时,f ′(x )与f (x )的变化情况如下表:

所以f (20.(本小题满分12分)经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N).前30天价格为g (t )=1

2

t +30(1≤t ≤30,t ∈N),后20天价格为g (t )=45(31≤t ≤50,t ∈N).

(1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解:(1)根据题意,得

S =?????

(-2t +200)????12t +30,1≤t ≤30,t ∈N ,45(-2t +200),31≤t ≤50,t ∈N

=?

????

-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N. (2)①∵当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400, ∴当t =20时,S 的最大值为6 400.

②当31≤t ≤50,t ∈N 时,S =-90t +9 000为减函数, ∴当t =31时,S 的最大值为6 210. ∵6 210<6 400,

∴当t =20时,日销售额S 有最大值6 400.

21.已知函数f (x )=13x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0.

(1)求函数f (x )的单调区间;

(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围; 解:(1)f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ). 由f ′(x )=0,得x 1=-1,x 2=a >0.

当x 变化时,f ′(x ),f (x )的变化情况如下表:

(2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点即????

?

f (-2)<0,f (-1)>0,

f (0)<0,

解得0

3

.

所以a 的取值范围是????0,13.

22. (2012·安徽名校模拟)已知函数f (x )=a (x 2-x -1)

e x (x ∈R),a 为正数.

(1)求函数f (x )的单调区间;

(2)若对任意x 1,x 2∈[0,4]均有|f (x 1)-f (x 2)|<1成立,求实数a 的取值范围.

解:(1)∵f (x )=a (x 2-x -1)

e x

∴f ′(x )=a (2x -1)e x -a (x 2-x -1)e x e 2x =-ax (x -3)

e x .

令f ′(x )=0,解得x 1=0,x 2=3. ∵a >0,

∴由f ′(x )>0,得03.故函数f (x )的单调递增区间为(0,3),单调递减区间为(-∞,0),(3,+∞).

(2)由(1)易知函数f (x )在[0,3]上为增函数,在[3,4] 上为减函数. ∴函数f (x )在[0,4]上的最大值f (3)=5a

e 3,

又∵f (0)=-a <0,f (4)=11a e -

4>0,

∴f (0)

∴f (x )在[0,4]上的最小值为f (0)=-a . ∴要使函数f (x )对任意x 1,x 2∈[0,4]均有 |f (x 1)-f (x 2)|<1成立,只需|f (3)-f (0)|<1即可, 即????5a e 3+a <1. ∵a >0,∴0

.

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

北大附中高考数学专题复习导数与微分经点答疑(四)

学科:数学 教学内容:导数与微分经点答疑(四) 11.什么是高阶导数? 我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有: 函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称 ()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx y d y '' ().dx dy dx d dx y d y y 22??? ??=' '=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数. 同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作 ()即或,dx y d x y 33''' ()()()()().dx y d dx d dx y d y y ,x f x f ,y y 22333???? ??=''''''=''''''='''或又记作 …… 一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶 导数.记作()()即或n n n n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ??? ? ??==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数. 若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导. 由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

相关主题
文本预览
相关文档 最新文档