当前位置:文档之家› 苏教版 高二 导数及其应用 单元复习

苏教版 高二 导数及其应用 单元复习

苏教版  高二 导数及其应用 单元复习
苏教版  高二 导数及其应用 单元复习

苏教版高二 导数及其应用单元复习

班级:_____ 姓名:____________

一、理解导数的概念——了解实际意义,知道代数意义,理解几何意义。

1.如果说某物体作直线运动的时间与距离满足()2

()21s t t =-,则其在 1.2t =时的瞬时速度为 ______ 2、曲线221y x =+在()1,3P -处的切线方程是

3、函数1

y x =-在1,22??

- ???处的切线方程是

4、(10全国2文数)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,

则a = , b=

5.抛物线y =4x =的点处的切线方程为_________________

6、函数()ln (0)f x x x x =>在))1(,1(f 的切线方程是_______

7.曲线sin y x =在点1,62π??

???处的切线方程是__________________________ 8、x x

x f cos )(=在))(,(ππf 处的切线方程是 ____________________________

二、会进行导数的运算——会根据定义、公式、法则求简单函数的导数(与其他综合,一般不单独命题)

1.下列求导运算正确的是

( ) A .(x +21

1)1

x x +='

B .(log 2x )′=2ln 1

x C .(3x )′=3x log 3e D .(x 2cos x )′=-2x sin x

2、函数1y x x =+

在1x =处的导数是________. 3.若x x

y cos sin =,则/y =___________________

三、掌握导数的理论的简单应用——求不超过3次的多项式函数的单调区间;极大值、极小值;给定区间的最大值、最小值。(10~15分)

(一)单调性(5分)

1、3

()1f x x =-在区间_____________________是增函数。

2、 函数1x 3x )x (f 23+-=是减函数的区间为______________

3、函数x y x e =-的增区间为_________________________

4、(07广东文12)函数()ln (0)f x x x x =>的单调递增区间是_______________________.

(二)极值

1、“导数为0”是“有极值”的 ______________ 条件

2、函数3()13f x x x =+-极小值为______极大值为________

3、 函数9x 3ax

x )x (f 23-++=, 已知)x (f 在3x -=时取得极值, 则=a ______

(三)最值(5分)

1、已知函数2()f x x x =-,则()f x 在区间[]0,1上的最大值为______

2、(07湖南理13)函数3()12f x x x =-在区间[33]-,上的最小值是__________.

3、函数ln x

y x =的最大值是________________

4、(07江苏13)已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别,M m ,

则M m -=____________

5、 已知函数y =-x 2-2x +3在区间] ,[2a 上的最大值为433

, 则a 等于________ 四、掌握导数的理论的综合应用

1.函数32()32f x x ax bx =-+在点1x =处有极小值1-,确定,a b 的值,求出()f x 的单调区间。

2. 已知函数d ax bx x )x (f 23+++=的图象过点P )2,0(, 且在点M ))1(f ,1(--处的切线方程为07y x 6=+-. (1) 求函数)x (f y =的解析式; (2) 求函数)x (f y =的单调区间.

北师版数学高二-3.4素材 导数的运算中的几种常见题型分析

导数的运算中的几种常见题型分析 一、根据斜率求对应曲线的切线方程 例1.求曲线122 -=x y 的斜率等于4的切线方程. 分析:导数反映了函数在某点处的变化率,它的几何意义就是相应曲线在该点处切线的斜率,由于切线的斜率已知,只要确定切点的坐标,先利用导数求出切点的横坐标,再根据切点在曲线上确定切点的纵坐标,从而可求出切线方程. 解:设切点为),(00y x P ,则 x x y 4)12(2='-=',∴40='=x x y ,即440=x ,∴10=x 当10=x 时,10=y ,故切点P 的坐标为(1,1). ∴所求切线方程为)1(41-=-x y 即.034=--y x 说明:数学问题的解决,要充分考虑题设条件,捕捉隐含的各种因素,确定条件与结论的相应关系,解答这类问题常见的错误是忽略切点既在曲线上也在切线上这一关键条件,或受思维定势的消极影响,先设出切线方程,再利用直线和抛物线相切的条件,使得解题的运算量变大. 二、化为幂函数的结构特征利用公式求函数的导数 例2.求下列函数的导数: 1.12x y =;2.41x y =;3.53x y =. 分析:根据所给问题的特征,恰当地选择求导公式,将题中函数的结构施行调整.函数41x y =和53x y =的形式,这样在形式上它们都满足幂函数的结构特征,可直接应用幂函数的导数公式求导. 解:1..1212)(1111212x x x y =='='- 2..44)4()(55144x x x x y -=-=-='='---- 3..535353)()(52521535353x x x x x y ==='='='-- 说明:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的模式,以免求导过程中出现指数或系数的运算失误.运算的准确是数学能力高低的重要标志,要从思想上提高认识,养成思维严谨,步骤完整的解题习惯,要形成不仅会求,而且求对、求好的解题标准. 三、求常函数的导数 例3.设2 π=y ,则y '等于( )

2020版高中数学高二选修1-1教案及练习归纳整理70知识讲解导数的综合应用题基础

《导数及其应用》全章复习与巩固 编稿:李 霞 审稿: 张林娟 【学习目标】 1. 会利用导数解决曲线的切线的问题. 2. 会利用导数解决函数的单调性等有关问题. 3. 会利用导数解决函数的极值、最值等有关问题. 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上; ③切线斜率等于曲线在切点处的导数值. 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组. 要点二:有关函数单调性的问题 设函数()y f x =在区间(a,b)内可导, (1)如果恒有'()0f x >,则函数()f x 在(a,b)内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a,b)内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a,b)内为常数函数. 要点诠释: (1)若函数()f x 在区间(a,b)内单调递增,则'()0f x ≥,若函数()f x 在(a,b)内单调递减,则 '()0f x ≤. (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤. ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥.

(或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题 (1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根; (4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域 ②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点. 注意:无定义的点不用在表中列出 ③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值. 要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可. ②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.

高二数学导数大题练习(详细答案)

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I)求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III)在(I I)的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II)函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I)求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I)当a =18时,求函数)(x f 的单调区间; (II)求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相等正 数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高二数学导数知识要点总结

高二数学《导数》知识要点总结 导数:导数的意义-导数公式-导数应用 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/表示过曲线y=f上P)切线斜率。V=s/表示即时速度。a=v/表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: 利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 求极值的步骤: ①求导数;

②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; 求可导函数最大值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f 的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'或df/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线

斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f,x↦f'也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,也在该邻域内时,相应地函数取得增量Δy=f-f;如果Δy与Δx之比当Δx →0时极限存在,则称函数y=f在点x0处可导,并称这个极限为函数y=f在点x0处的导数记为f',也记作y'│x=x0或dy/dx│x=x0

高二数学导数知识点归纳

高二数学导数知识点归纳 导数基础 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a 即为在x0处的导数,记作f'(x0)或df/dx(x0)。 1.y=c(c为常数)y'=0 2.y=x^ny'=nx^(n-1) 3.y=a^xy'=a^xlna y=e^xy'=e^x 4.y=logaxy'=logae/x y=lnxy'=1/x 5.y=sinxy'=cosx 6.y=cosxy'=-sinx 7.y=tanxy'=1/cos^2x 8.y=cotxy'=-1/sin^2x 9.y=arcsinxy'=1/√1-x^2 10.y=arccosxy'=-1/√1-x^2 11.y=arctanxy'=1/1+x^2 12.y=arccotxy'=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=u'v-uv'/v^2 3.y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy'=e^x和 y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道: ⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而 limβ→0(1+β)^1/β=e,所以 limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x- 1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^xy'=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高中数学导数典型例题精讲

高中数学导数典型例题 精讲 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)0 0lim x x x x →=,00 11lim x x x x →=. 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞ ?=?(3)()lim 0n n n a a b b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1)(ln =';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高三数学重点 导数应用题型与分析

导数应用 一.复习目标: 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log x的导数)。 a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 二.考试要求: ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和 充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三.教学过程: (Ⅰ)基础知识详析 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4.曲线的切线 在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推 l与曲线C有惟广是不妥当的.如图3—1中的曲线C是我们熟知的正弦曲线y=sinx.直线 1 本卷第1页(共22页)

高二数学导数测试题(经典版)

1 / 4 一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23 或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223 πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( 3 x ). C .(3,)-+∞ D .(,3)-∞- 7.已知函数32 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小 值分别为( ). A .427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B.417 C.2ln 21 D.2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ).

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为) ,(00y x A ,则 2 00x y =①又函数的导数为x y 2/ =, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;

苏教版数学高二-北京四中数学选修【知识讲解】导数的综合应用题(基础)

导数的综合应用题 编稿:赵 雷 审稿:李 霞 【学习目标】 1. 会利用导数解决曲线的切线的问题。 2. 会利用导数解决函数的单调性等有关问题。 3. 会利用导数解决函数的极值、最值等有关问题。 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一、有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上 ②切点在曲线上 ③切线斜率等于曲线在切点处的导数值。 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组。 要点二、有关函数单调性的问题 设函数()y f x =在区间(a ,b )内可导, (1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数。 要点诠释: (1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b ) 内单调递减,则'()0f x ≤。

(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤。 ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使 min (,)0f x m ≥。 (或是求含参函数(,)f x m 的最大值max (,)f x m ,使)max (,)0f x m ≤) 要点三、函数极值、最值的问题 1.函数极值的问题 ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: (1)先求出定义域 (2)一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点。 注意:无定义的点不用在表中列出 (3)依表给结论:注意一定指出在哪取得极值。 2.函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

高二数学导数知识点总结

高二数学《导数》知识点总结 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。 二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。1823年

柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现

高中数学导数典型例题精讲(详细版)

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →= . 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=2.718281845…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞?=?(3)()lim 0n n n a a b b b →∞ =≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1 )(ln = ';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U处有导数 ''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且''' x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.

相关主题
文本预览
相关文档 最新文档