当前位置:文档之家› 多角度激光光散射与GPC联接与应用技术

多角度激光光散射与GPC联接与应用技术

多角度激光光散射与GPC联接与应用技术
多角度激光光散射与GPC联接与应用技术

多角度激光光散射与凝胶渗透色谱仪

联接与应用技术

MALLS/GPC(SEC)

WYATT TECHNOLOGY CORPORTION

(BEIJING OFFICE)

地址:北京西直门北大街58号金晖嘉园7-2302

美国怀雅特技术公司北京代表处

邮编:100082

电话:8610-82292806

传真:8610-82290337

多角度激光光散射与凝胶渗透色谱仪的联接与应用

WYATT TECHNOLOGY CORPORATION.

一前言

近十几年来,光散射技术(Light scattering)在高分子特征分析领域的应用得到了迅速的发展。将光散射技术和凝胶渗透色谱(Gel Permeation Chromatography, GPC)或尺寸排阻色谱(Size Exclusion Chromatography)分离技术相结合,不但可以测得大分子的绝对分子量,分子旋转半径与第二维里系数,还可测得分子量分布,分辨分子量大小不同的族群以及分子的形状,分枝率及聚集态等。目前,该技术已成为一种非常有效的工具,在美国,日本及欧洲已广为使用,国内近年来亦引进了此项技术。

二光散射简介

早在十九世纪初,人们就开始对光散射原理进行研究。自六十年代激光被发明以来,光散射的原理与技术便得以迅速发展,至今已成为检测微小粒子形状,粒径大小,分子量,界面电位及粒子间效应的重要工具。随着电脑技术的日新月异,许多过去需花费数小时甚至数日才能完成的实验,如今只需数分钟即可完成,而其准确性及重现性也大幅度提高了。

光散射现象,如图1 所示,当一束光通过一间充满烟雾的房间就会产生散射。利用在不同角度,不同时间所测得的光散射强度,再借助各种光学理论及软件,硬件设备,就可以测得微粒的许多特性。

入射光

散射光

图1光散射现象

在光散射发展的历程中,以下是一些具有代表性的人物:

▲James Clerk Maxwell (1833-1879)

解释了光是一种电磁波,并正确地计算出光的速度。

▲Lord Rayleigh(1842-1919)

研究了远小于波长的微粒散射现象,发现了散射强度与波长的四次方成反比,并解释了蓝天被太阳光穿透大气层所产生的散射现象。 ▲ Abert Einstein(1879-1955) 研究了液体的光散射现象。

▲Chandrasekhara V .Raman (1888-1970)

印度籍物理大师,提出了Raman 效应,其著作多次发表于印度文期刊,直至第二次世界大战结束后才逐渐被人所知。 ▲ Peter Debye (1884-1966) 延续了Einstein 的理论,描述了分子溶解于溶剂中所产生的光散射现象,提出用Debye plot, 求得重量平均分子量Mw 。

三 光散射理论

激光照射到样品时,会在各个方向产生散射光,于是我们可以在一个角度或多个角

度收集散射光的强度。

1. 光散射所透露的信息

在任何方向的光散射强度与分子量和溶液的浓度成正比;散射光角度的变化与分子的尺寸大小有关。当分子小于10nm 时,各个角度的散射强度都相同;当分子介于10至30nm 时,散射强度则由低角度向高角度呈直线下降的趋势;而当分子大于30nm 时,散射强度则随角度增大呈曲线下降的趋势。

2. 基本理论

由Maxwell ,Einstein ,Debye 及 Zimm 等人陆续发展起来,有关溶剂中分子量的光散射现象可由下列公式表达:

(1)

式中:

常数K *=4π2(d n /d c )2n 02(N A λ04)

n 0是溶剂的折光指数。

C 是溶质分子的浓度(g/mol )。

N A 是阿佛加德罗常数。

λ0是入射光的波长。

DN/DC 是溶液折射率与浓度变化的比值,它说明了随溶质浓度变化的溶液折光指数变化。

R (θ)是单个角度的散射光(大于溶剂的散射光数量)除以入射光强度所得的分数即不同角度光散射强度。

Mw 是重均分子量。

1

K *c R (θ) M w P (θ)

+ 2A 2c

=

A 2 是第二维里系数

P (θ) 是光散射强度的函数 将P (θ)代入式(1)展开得:

在上式中,R (θ)是测得值,K *c 、λ0、θ为输入值,均为已知值;而Mw 、A 2、r g 为未知值。

3. Zimm Plot

将K* C/ R θ对sin2(q/2)+kc 作图,可得到著名的Zimm 曲线,如图2所示,其中K 为调整横坐标的设定值。

图2 Zimm Plo 当θ→ O 时,(2)式简化为 斜率即是A 2

当C → 0时,(2)式简化为 斜率是r g 2

当θ→ O , C → 0,(2)式简化为

在纵座标上交点的倒数即为Mw 。实验的方法为配制一组不同浓度的溶液,依次在不同的角度测量其散射光强度,由计算机程序按照上列的公式绘出Zimm Plot ,并求得Mw ,及A 2值,这是极少数能直接测得绝对分子量的方法之一。但由于结果仅为单一平均值,因此较适用于成分单一,分布较窄的分子,对于分布较宽或有不同族群分布的样品,则较难看出全貌。

K *R (0) 1 M

= + 2A 2c

K *R (0)

1 M

=

四 光散射与GPC/SEC

GPC/SEC 可以将溶剂中的分子按重量或尺寸大小依次洗脱出来。利用此项技术将光散射仪器与GPC/SEC 联用,除了可以分出不同的族裙,还可测得不同族群的分布,并且不需要另外标准样品做标准曲线。由于光散射信号直接与分子量大小有关,因此可以直接测出重均绝对分子量,并获得其它许多有关的信息。

图4 光散射强度与GPC 层析图

Chromatography with LS Set-up

图5 光散射强度与GPC/SEC 联用

1 Debye plot

通常GPC/SEC 的样品注射浓度就很低,再经过色谱柱得到进一步的稀释,图4中光散射信号上的任何一点,其浓度都极低(趋近于零)。根据公式,当2 A2C → 0,

将K* C/ Rθ对sin2(q/2)+kc作图6,其纵坐标交点即为1/Mw,由直线的斜率可得到,图4光散射信号的每点都可以得到上述结果,由此可以求得分子量及旋转半径的分布,如图7所示:

图6 Debye plot

图7 分子量对洗脱体积作图

图8 积分分子量

2 分子形状

不论是分布较宽或是多峰分布的样品,皆可通过测量分子量及分子旋转半径得到分子形状的数据。

球形分子

r i3 ∞M i→log r i = k + 1/3 log M i

无规则线团状分子

r i2 ∞M i→log r i = k + 1/2 log M i

棒状分子

r i1 ∞M i→log r i = k + 1/1 log M i

将log r i,log M i作图,有直线的斜率可以获知分子的形状,如图9所示:

logr g

logM

图9-1 M、r g与分子形状的关系

图9-2 构型判断, r g对M w作图。斜率为0.54 0.01。表明分子是具有无规则线团构象的线性聚合物

图9-3 构型判断,r g对M w作图。斜率大于0.6,表明分子具有伸展结构。斜率为1.0,表明是棒状结构。

图9-4 构型判断,r g对M w作图。其U型曲线表明为典型的高支化度结构。

3 需要量多少个角度

在低角度的时候,有杂质所产生的噪音信号干扰会很大,如图10所示,所以只取低角度,加上九十度两个角度,其误差就会相对很大;若只取九十度则只能求得分子量,无法测得旋转半径,所以最起码要加上一组高角度来修正,则误差会较少很多。

图10 杂质较多的GPC层析图

4 光散射仪器

最基本的仪器mini DAWN TREOS如图11所示,在与入射光成45度、90度、135度角配置三组光电二极管检测器,同时检测不同角度的光散射强度,而激光经由样品槽的毛细管通道,样品槽为石英材质。

如果要增加测量角度,可以如DAWN HELEOS

在样品槽的两侧以不对称得方式增加检测器的数目,

如图12所示可高达18个角度之多。

图11 三个检测角度

五应用

光散射强度与分子的大小及分子量有直接的关系,而SEC/GPC能分离不同尺寸及分子量的分子,结合此两种特性,可以得到许多有用的信息,并广泛地应用于高分子,生化及动力学等研究领域。

图12 十八角度检测器

1 高分子聚合物特性

利用多角度激光光散射系统(Multi-Angle Laser Light Scattering_ MALLS ) 结合SEC/GPC ,不必依赖泵的流速,校正曲线及其它任何的假设,即可直接求得重均绝对

图13 光散射强度,洗脱体积与角度作图

MALLS 利用色谱柱分离出的样品在各个角度的光散射量(如图13),由RI 检测器得到的洗脱液浓度及dn/dc 值,即可计算出各个切片的分子量。MALLS 测得绝对分子量所需的各种物性均可由实验直接求得,无需作任何假设。而GPC 的色谱柱又有分离杂质的功能,可以避免传统的光散射需极小心准备样品的麻烦。图14显示高分子混合物经SEC 分离后MALLS 及RI 的洗脱体积对照图。由此图看出RI 对大分子量浓度低的物质较不敏感,而对低分子量高浓度者较敏感。

图14 这是由ASTRA 软件得到的miniDAWN (上)和Optilab 示差检测器(下)信号。

Int en sit

1 BSA 67,000 64,300±700 1%

2 溶解酵素 14,300 14,600±300 1%

3 缓激肽 1,060 1,090±10 2%

4 亮氨酸脑啡肽 556 592±6 3%

图15分子量对洗脱体积图,有四个明显的峰

2. 蛋白质及其聚合体

在各种工业应用中,决定蛋白质的绝对特性不仅严格而且必要,例如在生化工程应用上,以蛋白质为基质的产品必须很纯而且无任何聚集存在。而测定蛋白质的分子量和是否有聚集态存在,光散射法是最理想的工具之一。

以往,在水相中用低角度光散射测量法(LALLS )受到溶剂中不纯的物质干扰相当大。而MALLS 的多角度测量大大降低了背景噪音的干扰,并能提供完整的信息和良好的重现性结果。图16显示蛋白质混合物的MALLS 和RI 的信号。样品在0.1M NaCl 中含0.05M 的磷酸盐缓冲液中进行RI 为Wyatt Optilab 903,流速为0.1mL/min ,色谱柱为Shodex KW-803 和KW-804。虽然此样品为标准样品,但MALLS 仍很清楚地检测

到聚集现象,此现象在RI 几乎无法辨认。

图16蛋白质洗脱体积及聚集体信号图

3.分枝

高分子聚合物的分枝程度和分布是影响其物理和化学性质的一个重要因素。采用多角度激光光散射系统(MALLS )与GPC/SEC 系统联用是唯一决定分枝系数g M 的方法。虽然也有其他确定分枝的方法,但都不能直接且需要众多假设及“虚拟因子”。

由传统的RI 或Viscometer (粘度检测器) 测定的高枝化分子的分子量与绝对值有

很大的差别,若欲做有效的色谱柱校正,则需以一系列与待测物成分相同的标准品作校正。若标准样品与待测物的成分或组分不同,则会产生很大的误差。例如分子量相同的球形高分子的洗脱时间比无规则线团状分子要长。

因为MALLS所求得分子量和大小为绝对值,因此计算分枝系数g M不需要任何假设。由MALLS直接所求得的分子大小会直接影响分枝率。对分子量相同的长链状分子而言,其值越小,则分枝程度越大。分枝比的定义为分枝分子的旋转半径与长链分子的旋转半径之比,即g M=b/l由MALLS测得。

图17为由MALLS测得的分枝状和长链形的高分子(PS)的旋转半径和分子量对照图。由图中可看出,虽然其分子量相同,但分布明显不同。图18 为r g对Mw做图。

图17 PS线形与枝化分子的对照图

图18旋转半径对分子量图(分子构型图),可以看出样品(藻酸钠)在辐射后分子构型的变化。

6. 动力学/反应速率

MALLS还可以用于如抗原,抗体等反应迅速的溶液系统,粒子和蛋白质聚集现象的检测。因为MALLS 内部同时装有数个固定的检测器,所以不需移动任何仪器硬件来扫描样品,即可及时多方位同时捕捉反应速率的现象。使用MALLS,可研究抗原-抗体反应,反应发生时就可决定聚集粒子的大小。当改变温度,浓度或催化剂时,MALLS可记录下反应发生时,分子的特殊变化。

图19 浓度变化对蛋白聚集的影响

使用DAWN 检测器研究了浓度对分子量为75KD单分子蛋白质聚集作用的影响。图19描述了这种特殊蛋白质从30ug/ml到1mg/ml范围内得到的浓度相关性。如图所示,该蛋白质在低浓度作为单一分子而在浓度大于700ug/ml时聚集为六聚体。该结果与由gluteraldehyde高度交联技术所得结合完全相符。

图20 温度变化对PMMA分子量和大小的影响

7. 低分子量的测定

DAWN HELEOS或mini DAWN TREOS的固定光电二极管检测器可以捕捉到很微弱的光散射信号,使得分子量的测定成为可能。使用DAWN 系列标准配制的任何一款激光器,都可以轻易地测量分子量低于2000D的聚合物,并具有相当的准确性。

由于DAWN HELEOS 或mini DAWN TREOS具有三个以上的多角度同时捕捉散射信号的能力,即使极微弱的信号,如只比背景值略高的低分子量样品所散射出的信号也可以从不同的角度去捕捉,累计在一起就可以计算出相当准确的结果。这是单角度或者两角度检测器所无法做到的。

图21为分子量分别为580、1400及2000D 的聚苯乙烯样品分子量对洗脱体积的对应图。样品量浓度分别为7.1mg/ml,2.9mg/ml及2.2mg/ml。经ASTRA GPC 软件分析得出如表2的平均分子量。

图22为分子量分布图。

图21 低分子量样品与洗脱体积图

图22低分子量样品分子量图

表2

一般传统光散射仪给人们的印象是不易测得分子量较低的样品,甚至低于10000D 就比较困难了。但是采用最新的多角度激光光散射仪就可以轻易且相当准确的测量分子量低到几百D的样品。

六结论

传统的光散射法只能确定平均分子量,旋转半径及第二维里系数,而GPC/SEC又受泵流速的限制,再加上寻找与待测物结构相似的标准品不易,对低浓度高分子量的部分,如microgel, trimer, dimer等信号不敏感,导致误差增大,色谱柱容易老化。而多角度激光光散射仪(MALLS)与GPC/SEC结合,正可以互相补充,不但可以直接测得绝对分子量,还可以对样品的组成,从低浓度高分子量到高浓度低分子量,都能解析的很清楚,更可以得到许多有用的信息,如分子的形状,分枝状况,聚集态及动力学参数,反应速率等,其功能与应用普及性正与日俱增。

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

激光光散射技术及其应用.

激光光散射技术及其应用 Laser Light Scattering System Technology and Application BROOKHA VEN INSTRUMENTS CORPORATION (BEIJING OFFICE) 地址:北京市海淀区牡丹园北里甲1号中鑫嘉园东座A105室美国布鲁克海文公司公司北京技术服务中心 邮编:100083 电话:8610-62081909 传真:8610-6208189

激光光散射技术和应用 近年来,光电子和计算机技术的飞速发展使得激光光散射已经成为高分子体系和胶体科学研究中的一种常规的测试手段。现代的激光光散射包括静态和动态两个部分。在静态光散射中,通过测定平均散射光强的角度和浓度的依赖性,可以得到高聚物的重均分子量M w,均方根回旋半径R g和第二维利系数A2;在动态光散射中,利用快速数字相关器记录散射光强随时间的涨落,即时间相关函数,可得到散射光的特性弛豫时间τ,进而求得平动扩散系数D和与之对应的流体力学半径R h。在使用过程中,静态和动态光散射有机地结合可被用来研究高分子以及胶体粒子在溶液中的许多涉及到质量和流体力学体积变化的 过程,如聚集和分散、结晶和溶解、吸附和解吸、高分子链的伸展和卷缩以及蛋白质长链的折叠,并可得到许多独特的分子量参数。 一、光散射发展简史: Tynadall effect(1820-1893) 1869年,Tyndall研究了自然光通过溶胶颗粒时的散射,注意到散射光呈淡淡的蓝 色,并且发现如果入射光是偏振的,这散射光也是偏振的。Tyndall由此提出了19 世纪气象学的两大谜题:为什么天空是蓝色的?为什么来自天空的散射光是相当偏 振的? James Clerk Maxwell (1833-1879) 解释了光是一种电磁波,并正确地计算出光的速度。 Lord Rayleigh(1842-1919) 1881年,Rayleigh应用Maxwell的电磁场理论推导出,在无吸收、无相互作用条件下,光学各向同性的小粒子的散射光强与波长的四次方成反比。并解释了蓝天是太阳光穿透大气层所产生的散射现象。 Abert Einstein(1879-1955) 研究了液体的光散射现象。 Chandrasekhara V.Raman (1888-1970) 1928年,印度籍科学家Raman提出了Raman 效应(也称拉曼散射),即光波在被散射后频率发生变化的现象。 Peter Debye(1884-1966) 延续了 Einstein的理论,描述了分子溶解于溶剂中所产生的光散射现象,提出用Debye plot 。1944 年,Debye利用散射光强测得稀溶液中高分子的重均分子量。 Peter Debye Lord Rayleigh Tyndall effect

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

激光光散射粉尘仪的工作原理

激光光散射粉尘仪的工作原理 我们首先介绍一个名词——气溶胶。气溶胶就是液态或固态微粒在空气中的悬浮体系。雾、烟、霾、轻雾(霭)、微尘和烟雾等,都是天然的或人为的原因造成的大气气溶胶。它们能作为水滴和冰晶的凝结核(见大气凝结核、大气冰核)、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。 激光光散射粉尘仪通过采气泵将待测气溶胶吸入检测舱,待测气溶胶在分支处分流成为两部分,一部分经过一个高效过滤器后被过滤为干净的空气,作为保护鞘气来保护传感器室的元器件不受待测气体污染。另一部分气溶胶,作为待测样品直接进入传感器室。 传感器室中,主要元器件为激光二极管、透镜组和光电检测器。检测时,首先由激光二极管发出的激光,通过透镜组形成一个薄层面光源。薄层光照射在流经传感器室的待测气溶胶时,会产生散射,通过光电探测器来检测光的散射光强。光电探测器受光照之后产生电信号,正比于气溶胶的质量浓度。然后乘以电压校准系数,这个系数通过测定特定浓度的气溶胶来得到。 激光粉尘仪分类 我公司生产的激光粉尘检测设备根据其用途不同,可分为便携式、在线式、防爆型、烟尘管道型以及空气质量监测系统五类。 便携型因其体型小巧便于携带,非常适用于公共场所可吸入颗粒物浓度的快速测定、工矿企业生产现场等劳动卫生方面粉尘浓度的检测,以及环境保护领域可吸入尘浓度的监测,还可用于空气净化器净化效率的评价。例如广东省某市的城管局使用我公司生产的LD-3H 型便携式粉尘仪进行扬尘污染监督执法,通过配备的微型打印机,实现了现场测量现场打印测量数据,为治理污染提供了直接的执法依据。 在线型激光粉尘仪是我公司最具竞争力的明星产品。适用于在线定点定时监测,分自动应答和自动发射两种模式,可依据设定的参数进行自动定时测量,也可通过控制中心向粉尘仪发送测量指令进行测量操作。粉尘监测终端所测数值通过数据传输设备以无线(电台、GPRS 、WiFi )或有线(光纤、网线)的方式传输到控制中心。 该仪器还可连接超标报警设备、

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/exp(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ???<<=其它,00),2exp()(00c t t t v i E t E π

激光技术的发展历史

73 2006 NO.9&10 记录媒体技术激 光的发明是20世纪中期一项划时代的成就,对人类社会文明产生了极其深远的影响。人们把 激光和原子能、半导体、计算机列在一起,称为20世纪的“新四大发明”。激光的出现不但引起了光学革命性的发展,冲击了整个物理学,并且对其它学科如化学、生物学和技术及应用学科如电机工程学、材料科学、医学等都产生了巨大的影响。像蒸汽机、发电机和电动机、晶体管、计算机这些创新一样,激光是一项通用技术,它提供了可以在大量实际领域应用的技术能力。对光盘存储而言,激光的发明是光盘存储技术必不可少的基础,它为光盘存储提供了一个有足够功率并且能够汇聚成很小光斑(微米级或亚微米级)的光源。可以说,没有激光的发明,就没有后来的光盘的发明。本文主要为光盘技术人员介绍激光技术的发展历史和趋势。 一、激光的发明和发展 所谓激光就是受激发射的光,是被其它辐射感应而激发的辐射。激光的英文名词为Laser ,是Light Amplification by Stimulated Emission of Radiation 的词首字母构成的新词,其原意是受激辐射光放大器。早期在我国曾被翻译成“莱塞”、“雷射”、“光激射器”、“光受激辐射放大器”等。直到1964年,由钱学森院士提议取名为“激光”,它既反映了“受激辐射”的科学内涵,又表明了它是一种很强烈的新光源。钱学森院士的提议得到国内学术界的一致认同,在中国大陆激光这个新名词就一直沿用至今。 现在我们知道,物质的发光过程有两种:一种称为自发辐射,另一种称为受激辐射。自发辐射是在没有外来光子情况下,原子自发地、独立地从高能级E 2向低能级E 1的跃迁。自发辐射是随机过程,跃迁时发出的光在相位、偏振态和传播方向上都彼此无关。受激辐射是处于高能级E 2的原子,在受到能量为hv = E 2-E 1的外来光子的激励时,跃迁到低能级E 1,并辐射一个与外来光子的频率、相位、振动方向和传播方向都相同的光子。 1916年,爱因斯坦根据物质发光和吸收必须符合能量守恒的基本原则,预言除了大量的自发辐射以外还必然存在着少量的受激辐射,并且这种受激辐射还 激光技术的发展历史 ◇顾 颖 会进一步引发同类的受激辐射,因此可以获得受激辐射被增强的效应。爱因斯坦的论断为激光的发明提供了理论基础。 图1 自发辐射和受激辐射 图2 爱因斯坦 此后,科学家们多次企图在原子发光实验中验证受激辐射的存在,但是要从大量的自发辐射中区分出只含万分之几的受激辐射确实是十分困难的,所以始终未能获得成功。 第二次世界大战时期,由于军事上雷达技术的需要,微波辐射和分子光谱学得到迅速发展,研究前沿向更短的波长领域推进,以达到更高分辨率的目标。战争结束后,美国军方对毫米级波谱学的研究工作保持着强烈的兴趣,因为其方便的部件可以用于减少导弹的重量、设计安装在坦克和潜水艇上的轻量级短波雷达、以及用于提高短波通讯的安全性。科学家们在军方的资助下能够利用战后剩余的微波设备继续微波辐射研究。1951年,美国哥伦比亚大学教授汤斯(Charles Townes)开始了“受激辐射微波放大器”(Microwave Amplification by Stimulated Emission of Radiation-MASER ,译作脉塞)的研究。1954年,汤斯和他的学生古尔德(Gordon Gou)合作制成了第一台脉塞,他成功地隔离了激发态氨(Ammonia)分子并实现了粒子数反转(上能级分子数分布大于下能级分子),把一束受激的氨分子束瞄准进入谐振腔,使腔内激发态氨分子受激跃迁产生24千兆赫频率的辐射信号。第一个脉塞辐射的波长略大于1厘米,功率只有几十毫微 瓦,但是能量集中在很窄的谱线内。同年,苏联科学

光散射法粉尘仪在环境PM2.5监测中的应用

光散射法粉尘仪在环境PM2.5监测中的应用 目前中国严峻的颗粒物污染形势对颗粒物连续监测仪器提出了极大需求,如环保部组建国家和城市PM2.5监测网,城市区县政府组建街乡镇PM2.5监测网,城市组建施工扬尘在线监测网。激光光散射颗粒物监测仪相比其他方法仪器具有体积小、价格低、便于推广等优点。 参照HJ 653-2013《环境空气颗粒物(PM10和PM2.5)连续自动检测技术要求及检测方法》,在北京使用颗粒物采样器对聚道合盛品牌LD-5H光散射颗粒物监测仪进行连续比对测试,研究激光光散射仪器在环境空气监测中的适应性。 测试结果表明:(1)激光光散射仪器的平行性都达标;(2)在监测PM2.5时,线性相关系数都达标且优于PM10;(3)经校正因子修正后,线性回归斜率达标、相关系数不变、监测PM2.5的截距相比PM10更加接近标准值,激光光散射仪器更加适用于环境空气PM2.5监测。 北京聚道合盛科技有限公司为国内LD系列激光粉尘仪专业制造商,旗下拥有LD-5激光粉尘仪,LD-3激光粉尘仪,LD-5S激光粉尘仪,

LD-5K在线式粉尘检测仪等,购买粉尘仪请认准聚道合盛品牌。 聚道合盛品牌LD-5激光粉尘仪仪器采用了强力抽气泵,使其更适合需配备较长采样管的中央空调排气口PM10可吸入颗粒物浓度的检测,和对可吸入尘PM2.5进行监测。具有新世纪国际先进水平的新型内置滤膜在线采样器的微电脑激光粉尘仪, 在连续监测粉尘浓度的同时, 可收集到颗粒物,以便对其成份进行分析,并求出质量浓度转换系数K值。可直读粉尘质量浓度(mg/m3), 具有PM10、PM5、PM2.5、PM1.0及TSP切割器供选择. 聚道合盛品牌主要技术指标 直读粉尘质量浓度(mg/m3),1分钟出结果 具有可更换粒子切割器PM10、PM5、PM2.5、PM1.0及TSP供选择; 配置40mm滤膜在线采样器; 测定时间:标准时间为1分钟,设有0.1分及手动档(可任意设定采样时间)。 大屏幕液晶显示器,汉字菜单提示; 测量范围:LD—5(L)0.01~100 mg/m3;LD—5(H)0.001~10 mg/m3。 检测灵敏度:LD—5(L)0.01mg/m3;LD—5(H)0.001mg/m3。重复性误差:±2% 测量精度:±10%

激光技术在日常生活中的应用

激光技术在日常生活中的应用 ?世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 一、激光技术应用简介 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2.激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加 工工艺。 激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。 激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG 激光器、CO2激光器和半导体泵浦激光器。 激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w 提高到了800w至1000w。国内目前比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。目前使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器。 ?激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。目前使用的激光器多以YAG激光器,CO2激光器为主。

激光加工的应用和发展趋势

课程:特种加工基础实训教程 题目:激光加工技术应用和发展趋势院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 时间:

目录 摘要 (2) 1引言 (2) 2激光的特点 (2) 定向发光 (2) 亮度极高 (2) 颜色极纯 (3) 3 激光加工技术的主要应用 (3) 激光打孔 (4) 激光快速成型 (4) 激光打标 (4) 激光切割 (5) 激光焊接 (5) 激光热处理 (6) 4 激光加工的发展趋势 (6) 数控化和多功能化 (6) 高频度和高可靠性 (7) 小型化和集成化 (7) 5 结语 (7) 参考文献 (7)

激光加工的应用和发展趋势 摘要:激光加工在现代产业中展示了强大的优势和发展潜力,成为21世纪的主导技术。本文主要介绍激光加工技术的应用现状和未来的发展趋势。 关键词:激光激光技术激光加工应用与发展趋势 1. 引言 激光是20世纪人类最伟大的发明之一,现在已广泛应用于工业、军事、科学研究与日常生活中。激光具有四大特性:高的单色性、方向性、相干性和亮度性。应用激光固有的四大特性,将具有高能量密度的,能被聚焦到微小空间的激光用于加工的方法叫激光加工。激光加工技术是一项集光、机电、材料及检测于一体的先进技术。激光加工主要涉及:激光焊接、激光切割、激光打标、激光雕刻等.现在一般的激光加工都采用了多项先进技术,多功能集成度高、实用性强、自动化程度高、操作简单、结果直观,而且加工过程中可实现动态同步跟踪显示,具有程序错误自动诊断、限位保护等功能。 2. 激光的特点 定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。 亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度

激光原理与技术09级A卷含答案

题号一二三四总分阅卷人 得分 得分 2011 ─2012学年 第 2 学期 长江大学试卷 院(系、部) 专业 班级 姓名 学号 …………….……………………………. 密………………………………………封………………..…………………..线…………………………………….. 《 激光原理与技术 》课程考试试卷( A卷)专业:应物 年级2009级 考试方式:闭卷 学分4.5 考试时间:110 分钟相关常数:光速:c=3×108m/s, 普朗克常数h =6.63×10-34Js, 101/5=1.585 一、选择题 (每小题 3 分,共 30 分) 1. 掺铒光纤激光器中的发光粒子的激光上能级寿命为10ms ,则其自 发辐射几率为 。 (A )100s -1 (B) 10s -1 (C) 0.1s -1 (D) 10ms 2. 现有一平凹腔R 1→∞,R 2=5m ,L =1m 。它在稳区图中的位置是 。(A) (0, 0.8) (B) (1, 0.8) (C) (0.8, 0) (D) (0.8, 1) 3. 图1为某一激光器的输入/输出特性曲线,从图上可以看出,该激光器的斜效率约为 。

(A) 10% (B) 20% (C) 30% (D) 40% 图1 图2 4.图2为某一激光介质的吸收与辐射截面特征曲线,从图上可以看出,该激光介质可用来产生 的激光。

得 分 (A) 只有1532 nm (B)只能在1532 nm 附近 (C) 只能在1530 nm-1560nm 之间 (D) 1470 nm-1570nm 之间均可 A 卷第 1 页共 6 页 5. 电光晶体具有“波片”的功能,可作为光波偏振态的变换器,当晶体加上V λ/2电场时,晶体相当于 。 (A )全波片 (B) 1/4波片 (C) 3/4波片 (D) 1/2波片 6. 腔长3m 的调Q 激光器所能获得的最小脉宽为 。(设腔内介质折射率为1) (A )6.67ns (B) 10ns (C) 20ns (D) 30ns 7. 掺钕钇铝石榴石(Y 3Al 5O 12)激光器又称掺Nd 3+:YAG 激光器,属四能级系统。其发光波长为 。 (A ) 1.064μm (B )1.30μm (C ) 1.55μm (D )1.65μm 8. 在采用双包层泵浦方式的高功率光纤放大器中,信号光在 中传输。 (A ) 纤芯 (B )包层 (C )纤芯与包层 (D )包层中(以多模) 9. 脉冲透射式调Q 开关器件的特点是谐振腔储能调Q ,该方法俗称 。 (A )漂白 (B )腔倒空 (C )锁模 (D )锁相 10. 惰性气体原子激光器,也就是工作物质为惰性气体如氩、氪、氙、氖等。这些气体除氙以外增益都较低,通常都使用氦气作为辅助气体,借以 。 (A )降低输出功率 (B )提高输出功率 C )增加谱线宽度 (D )减小谱线宽度 二、填空题 (每小题 3 分,共 30 分) 1. 在2cm 3空腔内有一带宽为1×10-4μm ,波长为0.5μm 的跃迁,此跃迁的频率范围是 120 GHz 。 2. 稳定球面腔与共焦腔具有等价性,即任何一个共焦腔与无穷多个稳定

相关主题
文本预览
相关文档 最新文档