当前位置:文档之家› 岩石本构模型-4.3

岩石本构模型-4.3

岩石本构模型-4.3
岩石本构模型-4.3

岩石材料本构模型建立方法

一、岩石本构模型的定义

岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。

岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。脆性材料不同于韧性材料,对缺陷十分敏感。

由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。研究岩石本构关系的方法,概括起来主要有以下两种:

(1)唯象学方法

①用实验或断裂理论研究岩石的破坏准则。其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;

②塑性力学,流变力学及损伤力学方法。塑性力学有经典和广义塑性力学两部分。经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。

(2)物理力学机理方面

岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。

建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观

察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。

二、岩石的本构关系分类

本构关系分类以下三类:

①弹性本构关系:线性弹性、非线性弹性本构关系。

②弹塑性本构关系:各向同性、各向异性本构关系。

③流变本构关系:岩石产生流变时的本构关系。流变性是指如果外界条件不变,应变或应力随时间而变化的性质。

2.1 岩石弹性本构关系

1. 平面弹性本构关系

2. 空间问题弹性本构关系

2.2 岩石塑性本构关系

塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。

①全量理论:描述塑性变形中全量关系的理论,称形变理论或小变形理论。汉基(Hencky)、依留申等依据类似弹性理论的关系胡克定律,提出:

式中:G′是一个与应力(或塑性变形)有关的参数,是一个变量,

G'=σi3ε

,εi为等效应变;σi为等效应力;εm为体积应变;σm为平均应力。

i

②增量理论

描述应力和应变增量间关系的理论。

本构方程:

应用增量理论求解塑性问题,能够反映应变历史对塑性变形的影响,因而比较准确地描述了材料的塑性变形规律。

2.3 岩石流变理论

在一系列的岩石流变试验基础上建立反映岩石流变性质的流变方程,通常有二种方法:

1.经验法

岩石蠕变经验方程:

式中:为时间的应变;瞬时应变;初始段应变;

等速段应变;加速段应变。典型岩石蠕变方程:幂函数方程、指数方程、幂指数对数混合方程

图1 岩石蠕变曲线

2. 理论模型模拟法

将介质理想化,归纳成各种模型,模型可用理想化的具有基本性能(包

括弹性、塑性和粘性)的元件组合而成。

三、几种典型的建模

3.1 岩石在单轴压缩状态下的力学特性

据https://www.doczj.com/doc/ae13826999.html,ler(米勒)1965年,对28类岩石进行岩石力学性质实验结果,将单轴压缩下应力-应变曲线(只考虑峰前曲线,破坏之前)概括地划分成如图2所示的六种类型。

图2 在单轴压缩下岩石的典型应力-应变曲线

(a)弹性;(b)弹-塑性;(c)塑-弹性;(d)塑-弹-塑性;(e)塑-弹-塑性;(f)弹-塑-蠕变;

3.2 岩石动态破坏的时效损伤本构模型

1. 过应力模型

岩石的冲击本构特性可以用宾厄(E.C.Bingham)来描述,该模型又称为过应力模型如图3所示。

图3 过应力模型

过应力模型本构方程:

特点:不能反映弹性模量随加载率而变化的特征。

2. 粘弹性连续损伤本构模型

建模方法:首先将岩石看成某种粘弹性体,再假设整个粘性体在变形过程中受到了连续损伤,如图4所示。本构方程如下

图4 Ⅱ型标准线性粘弹性模型

特点:可以在一个比较窄的应变范围内模拟本构曲线以及强度和弹性模型的应变率效应,但无法体现在应变率103/s时强度和弹性模量的突然增加。可以采用图5所示的广义流变模型。

图5 广义流变模型

特点:参数多,参数确定颇为费事,且需要大量不同应变率实验。物理模型还有一些模糊,粘弹性体是由弹性体和粘性原件组成,弹性固体元

件可以受到损伤,而粘性液体元件不会受到损伤。

3. 时效损伤模型

假设岩石单元同时具有统计损伤特性和粘性液体的特性,把岩石看成损伤体和粘缸的并连体,如图6所示。

图6 时效损伤模型

本构关系如下:

特点:此时效损伤模型的准确适用范围上不够清楚,在冲击速度为6.0~20.0m/s,应变率大约为0~600s-1的实验范围内,该模型是有效的,且应变率越低,模拟效果越好。

3.3 基于几何损伤理论的岩石损伤统计本构模型

仅简述弹性损伤统计本构模型:

建模过程:首先研究利用三轴全应力应变曲线数据建立弹性损伤统计本构关系,选用适用于岩土介质的德鲁克-普拉格破坏准则,得到三维弹性损伤统计本构方程:

假设岩石服从weibull分布,并通过实验测得名义应力和应变,求得三轴实验全应力应变曲线表达式:

经过一系列计算,最终求得三维弹性损伤统计本构方程

本构模型特点:

①充分反映岩石的软化特点和强度随围压变化特征;

②采用有效压力更符合岩石的破坏规律;

③采用系数C n从而更符合岩石破坏规律,能反映更多的岩石应力应变变化规律,且还能反映岩石剩余强度特征。

此弹性损伤模型能够模拟包括剩余强度和软化特征在内的弹性损伤全应力变化过程。

3.4 基于能量损伤理论的岩石损伤本构模型研究

3.3中,采用几何损伤理论建模中,对材料的微细结构力学效应不考虑,采用了无损岩石的应变等于岩石总应变的假设,目的是为了建模顺利进行,但不能很客观反映岩石材料的力学过程,无损岩石的破坏形式也是假设按其应力带入的破坏准则函数值成一定的概率分布,但用连续介质损伤力学建立岩石损伤模型已经成为岩石损伤建模的热点。

采用能量损伤理论建模以图找到更客观反映岩石材料力学行为的方法,能够考虑球形缺陷在岩石中发生的力学过程,减弱或者全部放弃了无损岩石的应变等于岩石总应变这一假设。

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究 流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。蠕变是影响岩体稳定性的一个重要因素。 软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。 本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。 (1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。结果三个试样的测试结果比较接近,此批试样的个体差异性较小。 此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。 当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。 相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。 以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

[博士]岩石力学参数的时效性及非定常流变本构模型研究_pdf

筑龙网 W W W .Z H U L O N G .C O M ^ ●中文摘要中文摘要摘要:本文在已有研究成果的基础上,研制开发了一套新型的流变仪器,以泥岩为研究对象,对该岩石的瞬时强度特性、单轴和三轴流变特性进行了系统、全面的研究,得到了泥岩的基本力学参数包括弹性模量E、内聚力C、内摩擦角妒随应力和时间的弱化规律,并将其引入Bingham一维流变模型和P.Pcrzyna三维流变模型中,建立了非定常的流变模型,最后成功的在ABAQUS软件中对其实现了二次开发,并通过试验数据验证了模型的正确性。本文完成的主要工作有:1.在分析现行流变仪器的优缺点的基础上,研制开发了一台新型的流变仪器一五联单轴流变仪,该仪器主要用于岩石的流变试验,能同时控制五个不同条件下的流变试验,实现了计算机自动控制、自动采集数据。2.进行了泥岩在0MPa、5MPa、10MPa和15MPa四个围压级别下的瞬时强度试验,得到了泥岩的变形和破坏规律,探讨了由瞬时强度试验确定岩石长期强度的方法。论述了单试件法测岩石力学参数的原理,并对其数据处理方法进行了修正。3.分析了岩石的蠕变损伤阀值,从细观力学和宏观力学两方面解释了岩石的蠕变过程曲线。进行了泥岩八个应力水平的单轴压缩蠕变试验,分析了其蠕变特性,采用单试件法对其蠕变过程中的三个时间点的力学参数进行了测定,得到了该泥岩力学参数随应力和时间的弱化规律。4.进行了5MPa、10MPa和15MPa三个不同围压下的蠕变试验,将单轴条件下泥岩力学的弱化规律扩展到了三轴状态,通过蠕变破坏时的强度进行了验证。5.将泥岩的力学参数弱化规律引入到了Bingham模型中,建立了泥岩的一维非定常流变模型,并通过试验数据验证了模型的合理性。采用Drucker-Prager准则将一维的Bingham模型扩展到T--维的P.Perzyna模型,通过引入非定常的力学参数建立了三维的非定常流变模型。6.在ABAQUS软件中对三维的P.Perzyna模型实现了二次开发,通过试验数据验证了模型的正确性。关键词:力学参数;时效性;非定常;流变模型;流变仪器;泥岩;单试件法;ABAQUS二次开发 分类号:

岩石力学损伤和流变本构模型研究

岩石力学损伤和流变本构模型研究 本文采用几何损伤理论和能量损伤理论对岩石的力学特性进行了研究和建模探索,并探讨了瞬时损伤对流变的影响。主要工作内容如下: (1) 在假设无损岩石的应变和岩石总应变相等的基础上完善了岩石的统计损伤本构模型推导,实现了损伤演化方程中全部采用有效应力假设和探讨了损伤和塑性变形耦合问题。 (2) 探讨了用损伤统计本构模型模拟应力应变曲线第一阶段稍向上弯曲特征建模问题,采用混合物理论探讨了非损伤岩石、损伤和液相的耦合问题和模拟应力应变曲线第一阶段稍向上弯曲特征建模问题。 (3) 探讨了采用各向同性介质中的Eshelby等效夹杂理论建立岩石的弹塑性损伤统计本构模型的建模问题。 (4) 探讨了采用各向同性介质中的Eshelby等效夹杂理论和连续介质损伤力学方法建立考虑损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题。考虑损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题还处于探索阶段,本文探讨了用细观力学理论实现了损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题。 (5) 在探导岩石颗粒间粘聚力和颗粒间摩擦力在岩石发生流变过程中的作用基础上假设粘性失效按流变应变统计概率分布,建立了岩石粘弹塑性本构关系,能够描述岩石蠕变加速阶段特征;讨论了瞬时损伤对岩石流变的影响和相应的损伤蠕变模型建模问题。 (6) 在采用各向同性介质中的Eshelby等效夹杂理论和连续介质损伤力学(CDM)方法建立的岩石损伤本构模型基础上利用对

应性原理建立了岩石材料的损伤粘弹性本构关系。 (7) 在用岩石中大小、方位和位置均为随机分布的裂纹定义损伤变量基础上,利用线粘弹性断裂力学原理对考虑裂纹内水压的岩石的损伤蠕变问题进行了建模和分析。

常用岩土本构模型及其研究现状

常用岩土本构模型及其研究现状 学生:彭敏 班级:水工一班 学号:2014141482159 授课教师: 肖明砾 成绩 摘要: 在土木及水利工程中岩体分析成功性很大程度取决于采用的本构模型的正确性,常用的岩土本构模型:传统的弹性模型和弹塑性模型,新型的广义塑性力学理论、微观结构性模型、分级模型等。 关键词:本构模型 弹性 弹塑性 损伤力学 微观 1.传统岩土本构模型 现代岩石力学研究岩石全程应力应变曲线(如图1)可分为压密阶段、弹性工作阶段、塑性变形阶段和破坏阶段,采用经典连续介质力学理论计算的岩石力学模型有: 1.1 弹性模型 对于弹性材料, 应力和应变存在一一对应的关系, 当施加的外力全部卸除时 ,材料将恢复原来的形状和体积。弹性模型分为线弹性模型和非线性弹性模型两类。这类模型用于荷载单调加载时可以得到较为精确的结果,但用于解决复杂加载问题时, 精确性往往不能满足工程需要。 1.2弹塑性模型 弹塑性模型的特点是在应力作用下, 除了弹性应变外,还存在不可恢复的塑性应变。 应变增量分为弹性和塑性两部分, 弹性应变增量用广义虎克定律计算, 塑性应变增量根据塑性增量理论计算。 图1:应力应变曲线 图2 弹塑性模型 2. 新型岩土本构模型 2.1 广义塑性力学理论 广义塑性力学认为, 传统塑性理论的 3 个假设都不符合岩土材料的变形机制,广义塑性力学从寻找和消除这些假设入手, 提出了一些新的观点。 2.2 微观结构性模型 将土体的变形过程看作由原状土经损伤向扰动土逐渐转化的过程, 可以采用损伤力学理论建立弹塑性损伤模型。通过微观结构的研究, 使得众多结构研究成果与其力学性状发生定量意义上的联系, 对解释宏观力学现象具有重要意义。 2.3 分级模型 该方法以服从关联流动法则的简单各向异性强化模型开始, 模型级数逐渐递增, 较高等级的模型则是通过引入非关联流动法则、各向异性强化法则和应变强化或软化法则得到的。 3.结论 (1)传统岩土本构模型虽然简单,但是存在一些

岩石的强度理论与本构关系

岩石的强度理论与本构关系 朱浮声 (东北大学土木系,沈阳110006) 朱浮声,1948年6月生于黑龙江齐齐哈尔11976年毕业于东北大学,1983年 获中国矿业大学工学硕士学位,1991年获东北大学博士学位11988年曾在 美国南伊利诺大学作访问学者,1993年在瑞典皇家工学院任客座教授1现 任东北大学土木工程系教授,辽宁省力学学会理事1主要研究方向为计算岩 土力学和岩土加固技术1在国内外学术刊物上发表论文50余篇,出版5锚 喷加固设计方法6等学术专著2部,译著1部1 摘要本文简要介绍了岩石强度理论和本构关系的发展和现状,讨论了它们不同的特点与适用条件1 关键词岩石,岩体,强度理论,本构关系 1前言 随着电子计算机的飞速发展和计算技术的逐步完善,对岩石强度理论和本构关系提出了更高要求,以便更真实描述岩石和岩体力学特征,求解复杂的工程岩石力学问题1 由于岩石材料力学性质的某些相似性和其它历史原因,岩石强度理论和本构关系的早期研究曾大量引用了土力学成果,并提出了一些适用于岩土介质的强度理论和本构关系1随着岩石力学的发展,人们认识到,岩石和岩体的物理力学性质不仅有别于其它非摩擦工程材料,而且,与土或混凝土等摩擦材料也存在较明显差异1例如,岩石破坏包括脆性、延性及由脆性向延性转化等复杂类型;岩体的力学特性受控于岩块和不连续面的力学特性;岩石工程的稳定性通常受主要不连续面控制等1因此,近年来又提出了适用于岩石、不连续面和岩体的强度理论或本构方程式1本文旨在介绍这些理论研究的最新进展,并对已有岩土强度理论和本构关系的适用条件和局限性加以简要评价1 限于篇幅,本文仅涉及与时间无关的各向同性和等向强化模型1 2岩土共用的强度理论和本构关系 211弹性 均质、各向同性或横观各向同性模型曾被广泛用于描述岩土力学特征,特别是峰值强度前的应力-应变关系,并得到了大量解析解和实用近似解1考虑到应力-应变曲线的明显非线性特性,曾将非线性弹性理论与计算机技术相结合,提出了一批数值算法,并在60~70年代的岩土力学分析中不断被引用1例如,以曲线各点的割线模量取代弹性常数,构成了各种超弹性模型[1],或以增量形式描述非线性弹性应力-应变关系,形成了亚弹性模型[2]等1但是,由于这些模型只考虑到岩土材料的弹性特征,并且,随着模型阶次增高,待定常数的数目往往过多,因而,限制了它们的广泛应用1

岩体的变形与破坏的本构关系

第三章岩体的变形与破坏 变形:不发生宏观连续性的变化,只发生形、体变化。 破坏:既发生形、体变化、也发生宏观连续性的变化。 1.岩体变形破坏的一般过程和特点 (1)岩体变形破坏的基本过程及发展阶段 ①压密阶段(OA段): 非线性压缩变形—变形对应力的变化反应明显; 裂隙闭合、充填物压密。 应力-应变曲线呈减速型(下凹型)。 ②弹性变形阶段(AB段): 经压缩变形后,岩体由不连续介质转变为连续介质; 应力-应变呈线性关系; 弹性极限B点。 ③稳定破裂发展阶段(BC段): 超过弹性极限(屈服点)后,进入塑性变形阶段。 a.出现微破裂,随应力增长而发展,应力保持不变、破裂则停止发展; b.应变:侧向应变加速发展,轴向应变有所增高,体积压缩速率减缓(由于微破裂的出现);

④不稳定破裂发展阶段(CD段): 微破裂发展出现质的变化: a.破裂过程中的应力集中效应显著,即使是荷载应力保持不变,破裂仍会不断地累进性发展; b. 最薄弱部位首先破坏,应力重分布导致次薄弱部位破坏,直至整体破坏。“累进性破坏”。 c. 应变:体积应变转为膨胀,轴向及侧向应变速率加速增大; ※结构不均匀;起始点为“长期强度”; ⑤强度丧失、完全破坏阶段(DE段): 破裂面发展为宏观贯通性破坏面,强度迅速降低, 岩体被分割成相互分离的块体—完全破坏。 (2)岩体破坏的基本形式 ①张性破坏(图示); ②剪切破坏(图示):剪断,剪切。 ③塑性破坏(图示)。 破坏形式取决于:荷载条件、岩体的岩性及结构特征; 二者的相互关系。 ①破坏形式与受力状态的关系: a.与围压σ3有关: 低围压或负围压—拉张破坏(图示); 中等围压—剪切破坏(图示); 高围压(150MN/m2=1500kg/cm2)—塑性破坏。 的关系: b.与σ 2 σ2/σ 3 <4(包括σ 2 =σ3),岩体剪断破坏,破坏角约θ=25°; σ2/σ 3 >8(包括σ 2 =σ1):拉断破坏,破坏面∥σ1,破坏角0°; 4≤σ2/σ3≤8:张、剪性破坏,破坏角θ=15°。 ②破坏形式与岩体结构的关系: 完整块体状—张性破坏; 碎裂结构、碎块结构—塑性破坏; 裂隙岩体—取决于结构面与各主应力之间的方位关系。

岩石本构模型.

岩石材料本构模型建立方法 一、岩石本构模型的定义 岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。 岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。脆性材料不同于韧性材料,对缺陷十分敏感。 由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。研究岩石本构关系的方法,概括起来主要有以下两种: (1)唯象学方法 ①用实验或断裂理论研究岩石的破坏准则。其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述; ②塑性力学,流变力学及损伤力学方法。塑性力学有经典和广义塑性力学两部分。经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。 (2)物理力学机理方面 岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。 建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观

察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。 二、岩石的本构关系分类 本构关系分类以下三类: ①弹性本构关系:线性弹性、非线性弹性本构关系。 ②弹塑性本构关系:各向同性、各向异性本构关系。 ③流变本构关系:岩石产生流变时的本构关系。流变性是指如果外界条件不变,应变或应力随时间而变化的性质。 2.1 岩石弹性本构关系 1. 平面弹性本构关系 2. 空间问题弹性本构关系

材料本构模型的唯一性

收稿日期:1999211219 基金项目:国家自然科学基金(59604001)和教育部博士点基金(96014513)资助项目 作者简介:杨成祥(1973-),男,安徽芜湖人,东北大学博士研究生;冯夏庭(1964-),男,安徽潜山人,东北大学教授,博士生导师; 王泳嘉(1933-),男,上海人,东北大学教授,博士生导师? 2000年10月第21卷第5期东北大学学报(自然科学版)Journal of Northeastern University (Natural Science )Oct.2000Vol 121,No.5 文章编号:100523026(2000)0520566203 材料本构模型的唯一性 杨成祥,冯夏庭,王泳嘉 (东北大学资源与土木工程学院,辽宁沈阳 110006) 摘 要:利用作者最新提出的材料本构模型智能识别的进化学习算法,结合实例分析,从一 个新的角度对该问题进行了阐述,证明了刻意追求学习效果的不合理性?指出根据实验数据建立材料本构模型的正确方法应该是使获得的本构模型不仅对学习样本而且对类似条件下的应力分析都能获得很好的效果?并说明了进化学习算法是解决问题的一个好方法,为材料本构模型的研究提供了一个新的有力工具?关 键 词:本构模型;唯一性;进化学习算法中图分类号:TB 124 文献标识码:A 采用有限单元法对岩土工程结构进行数值分 析时,关键问题就是选择恰当的地质材料本构模型[1]?因此,建立合理的岩土材料本构模型是岩石力学研究的一个重要方面?按传统数学建模方法,建立材料本构模型的基本途径是通过对实测数据的学习分析,在一定的条件下确定出一个数学表达式及一些必要的参数,从而获得材料的本构模型?然而对于复杂的工程材料,如地质材料、复合材料等,受客观上不可避免的数据有限问题的约束,通过不同的分析手段对同样一组数据的学习结果可以有许多个?这就提出了一个本构模型选择的唯一性问题?由于缺乏严整的理论判据,容易形成过于强调学习效果的选择方案,往往造成结果的不合理?本文利用作者最新提出的材料本构模型智能识别的进化学习算法,结合实例分析,从一个新的角度对该问题进行阐述,探索解决问题的新途径? 1 进化学习算法原理 进化学习算法是本文作者最新提出的一种全 新的建模方法,它吸收了多学科交叉,多种算法工具和处理技术相集合的先进思想,借鉴了遗传算法的快速全局寻优的特点[2],结合目前存在的一些先进的应力分析手段(如有限单元法),可以直接从实验室或现场较容易获得的少量宏观数据中 学到复杂的非线性应力应变关系?其基本原理是,对于复杂的非线性材料,在简单模型(如线弹性材料本构模型)的基础上根据材料在实验中反映出来的一些宏观特性及影响材料应力应变关系的一些重要因素添加一些任意结构的非线性项,可以充分考虑应力分量之间的非线性耦合对材料的非线性行为的影响,然后利用遗传算法的参数搜索和结构优化功能,与应力分析方法相协作,确定这些添加项的结构和所需的参数,从而最终确定材料的非线性本构模型?该方法克服了传统数学建模方法存在的局限性,在对复杂的非线性材料的建模中显现出较高的性能和较强的生命力? 2 实例分析 211 原始数据 复合材料不仅具有细观的非均质性和宏观的各向异性,还具有明显的物理非线性?由正交各向异性单层板层叠成的复合材料层合板在低应力水平时就表现出明显的非线性[3],是一类典型的非线性材料?本文就以这类材料为例?原始数据来源于美国斯坦福大学Lessard 和Chang 所做的实验[4]?实验如图1所示?实测的是层合板的面内荷载2位移数据?本次计算从中选择了两组实验数据:将对[(±45)6]S 板的实验数据作为学习样本,用于建立复合材料单层板的非线性本构模型;

混凝土化学_力学损伤本构模型

第23卷第9期 Vol.23 No.9 工 程 力 学 2006年 9 月 Sep. 2006 ENGINEERING MECHANICS 153 ——————————————— 收稿日期:2004-12-11;修改日期:2005-03-19 基金项目:国家自然科学基金资助项目(50379004) 作者简介:张 研(1979),男,江苏南京人,博士生,主要从事工程材料和工程力学研究; *张子明(1951),男,江苏姜堰人,教授,硕士,主要从事工程力学和水工结构工程研究(E-mail :ziming58@https://www.doczj.com/doc/ae13826999.html,); 邵建富(1961),男,浙江宁波人,教授,博士,岩石力学研究室主任,主要从事岩石和混凝土材料本构模型的试验和理论研究。 文章编号:1000-4750(2006)09-0153-04 混凝土化学—力学损伤本构模型 张 研1,2,*张子明1,邵建富2 (1. 河海大学土木工程学院, 南京 210098;2. 里尔科技大学, 里尔59650 法国) 摘 要:水使混凝土孔隙溶液中钙离子流失是混凝土结构力学性能劣化的重要原因。根据试验结果,提出了一个新的混凝土化学—力学损伤耦合本构模型,用各向同性损伤变量描述混凝土化学—力学损伤。混凝土孔隙中钙浓度满足钙离子质量守恒的非线性扩散方程。有限元计算和试验结果表明,计算值和试验数据吻合很好,提出的本构模型能较好地反映混凝土化学—力学损伤耦合作用。 关键词:固体力学;化学—力学损伤;本构模型;混凝土;耐久性;耦合作用 中图分类号:O346.5 文献标识码:A CONSTITUTIVE MODEL OF CHEMICAL-MECHANICAL DAMAGE IN CONCRETE ZHANG Yan 1,2, *ZHANG Zi-ming 1, SHAO Jian-fu 2 (1. Institute of Civil Engineering, Hohai Univ., Nanjing 210098, China; 2. Lille University of Science and Technology, Lille 59650 France) Abstract: Deterioration of mechanical behavior of concrete structures results from the leaching of calcium ion in concrete pore solution, which is caused by water. Based on the experimental data, a new coupled constitutive model of chemical-mechanical damage is presented. An isotropic damage variable is used to describe the chemical-mechanical damage. The calcium concentration in concrete pore solution satisfies the nonlinear diffusion equation of calcium mass conservation. The results of finite element computations and experiments demonstrate that the calculated values agree very well with the testing data and the model can describe the chemical-mechanical coupling effects fairly. Key words: solid mechanics; chemical-mechanical damage; constitutive model; concrete; durability; coupling 混凝土作为重要的建筑材料被广泛应用于水利、海洋与核电站等工程。水将混凝土中氢氧化钙Ca(OH)2溶解,使水泥液相中氧化钙CaO 浓度低于某些水泥水化产物稳定存在的极限浓度。因此,这些水化物随即发生分解,形成没有粘结力的SiO 2?nH 2O 及Al(OH)3,造成水泥中钙缓慢流失,形成孔隙,使混凝土强度降低。混凝土孔隙结构的变化加速钙离子扩散,导致混凝土力学性能进一步劣化。因此,研究混凝土化学-力学损伤本构模型,对于掌握混凝土结构使用期内产生不同损伤的机理 和数值模拟方法,预测混凝土的耐久性,具有重要理论意义和实用价值。 1 受化学侵蚀混凝土的本构模型 不同种类混凝土的力学性质不同,可以根据试验用弹塑性模型描述混凝土的力学性质。假定热力学势Ψ可以表示为弹性自由能和塑性能p Ψ之和, p Ψ是反映塑性硬化内变量k V 的函数。热力学势可 以表示为

相关主题
相关文档 最新文档