当前位置:文档之家› 浅谈溴化锂吸收式制冷机的运转性能

浅谈溴化锂吸收式制冷机的运转性能

浅谈溴化锂吸收式制冷机的运转性能
浅谈溴化锂吸收式制冷机的运转性能

浅谈溴化锂吸收式制冷机的运转性能

(岳阳中湘康神药业集团有限公司,岳阳414000)殷应龙

摘要:本文详尽介绍了外界因素对溴化锂制冷机性能的影响状况,以精确的性能曲线图向读者展示了其运转性能特性。关键词:溴化锂;制冷;性能

中图分类号:T B61+6 文献标识码:A 文章编号:1004-7948(2002)06-0034-02

随着人们节能、节电意识的增强,溴化锂吸收式制冷机组得到了越来越广泛的应用。在实际运行中的溴化锂吸收式制冷机,常常由于热源工作参数,如蒸汽压力的波动、季节气候变化及负荷的改变,使制冷机不能在设计工况点工作,于是制冷机的工作性能发生了一系列的变化,例如引起制冷量、蒸汽与冷却水的消耗量变化。由于制冷机热力系数等的变化,导致了制冷机在新的工况点工作。因此我们必须了解制冷机的这种运转性能,研究它们的变化规律,从而确定合理的调节、控制方案,使制冷机在最合理的工况点工作。根据制冷机的这种变工况特性,用户能够按自己的具体条件恰当地操作制冷机。对于近年发展的溴化锂制冷机,这种调节与控制应是自动化的。它不仅可以减少操作人员的劳动强度,而且可以准确地保证在合适的工况点运行。从而降低运转费用,防止事故的发生。

另外,制冷机在运转一段时期后,由于泄漏、腐蚀、冷剂水污染等情况都会对制冷机的性能产生较大的影响。我们必须研究掌握、采取措施,改善传质、传热性能,提高制冷量。1加热蒸汽压力与机组性能

制冷是随加热蒸汽压力的提高而增强的。提高加热蒸汽的压力,使制冷机性能变化的情况可用i -ξ图说明。图1中实线表示制冷机原来的工况,虚线表示工作蒸汽压力提高后的工况。在发生器中,

由于蒸汽压力提高,蒸发出更多的水蒸气,浓溶液浓度上升。所以冷凝器中冷剂水量增加

,制冷量增大。这时冷凝压力、温度均上升,在图1中发生浓缩液终了状态由点4变为点4’。在吸收器中,主要是从发生器来的浓溶液浓度增加,喷淋溶液的浓度也相应增加,但因吸收水也增加,稀溶液的浓度没有浓溶液

的浓度上升得那么多,即Δξa <Δξr 。放气范围增大,Δξ’>Δ

ξ。另外,由于从发生器来的浓溶液温度上升而冷却水条件不变,吸收终了的溶液温度也有所上

升。随着冷量的增加,蒸发压力下降。吸收终了稀溶液状态点由点2变为点2’。实际上,随着冷量的变化,循环中各有关参数也要发生变化。根据试验结果,当其他条件不变时,单效机组加热蒸汽压力增加0.01MPa (表压),制冷量约增加3%~5%,双效机组加热蒸汽压力变化0.1MPa (表压),制冷量约变化9%~11%,图2所示的即为这种变化关系。

图1 加热蒸汽压力变化对循环的影响

图2 加热蒸汽压力与制冷量的关系

必须指出的是,每一系列的制冷都有它自己特定的性能曲线,图例仅仅说明了制冷量的变化趋势。

2冷却水进口温度与机组性能

制冷量随冷却水进口温度的下降而增加。降低冷却水进口温度,使制冷机性能变化的情况也可用i -ξ图说明。图3中实线表示制冷机原来的工况,

43— 节 能 2002年第6期 E NERGY C ONSER VATI ON (总第239期) 

虚线表示冷却水进口温度降低后的工况。在发生器和冷凝器中,因冷却水温度也下降,促使吸收效果增强;吸收大量水蒸气,稀溶液浓度下降,制冷量有所增加。吸收终了溶液的状态由点2变为点2’。虽然进发生器的稀溶液浓度是低了,但由于冷却水温度降低了,冷凝压力下降,水气大量蒸发,仍可获得较前浓度更高的浓溶液。

发生终了浓溶液状态点由点4变为点4’。因之,当冷却水温度下降时,

由于稀溶液浓度降低,浓溶液浓度升高,放气范围增大,制冷量提高了。

冷却水进口温度受到一定的限制,其过低将引起稀溶液温度过低与浓溶液浓度过高,两者均容易导致溶液产生结晶。一般不允许冷却水进口温度低于20℃。图4表示冷却水进口温度与制冷量的关系,冷却水进口温度变化1℃时,制冷量的变化大约为5%~6%。

图3 冷却水温度变化对循环的影响

图4 冷却水进口温度与制冷量的关系

3冷媒水出口温度与机组性能

制冷量随冷媒水出口温度的降低而降低。降低冷媒水出口温度,使制冷机性能变化的情况,也可用

i -ξ图来说明。图5中实线表示制冷机原来的工况,虚线表示冷媒水出口温度降低后的工况。在蒸汽器和吸收器中,主要因冷媒水出口温度降低,蒸发

压力下降,吸收能力减弱,溶液吸收水分减少,稀溶液浓度上升,制冷量下降。另外,因吸收器负荷减少,冷却水条件不变,因此,溶液温度有所降低,吸收终了稀溶液状态由点2变为点2’。在冷凝器中随制冷量降低,冷凝器负荷降低,冷却水条件不变,冷凝温度和压力均下降。虽然发生器稀溶液浓度比前增

加,浓溶液浓度也比前增加,但由于冷媒水出口温度变化直接影响到稀溶液浓度的变化,

而后才影响到浓溶液的变化,但终因冷量下降,浓溶液浓度没有稀

溶液浓度增加那么多。即Δξa <Δξr 。发生终了状态由点4变为点4’。图6表示出了冷媒水出口温度与

制冷量的关系,冷媒水出口温度变化1℃时,制冷量约变化6%~7%。

图5 冷媒水出口温度变化对循环的影响

图6 冷媒水出口温度与制冷量的关系

4冷却水量、冷媒水量与机组性能

冷却水量的变化对制冷量的影响与上述冷却水进口温度变化对制冷量的影响相似,循环各参数的

变化也基本相同。即制冷量随冷却水量的减少而降低。

冷媒水出口温度恒定,而冷媒水量在较小范围内变化时,制冷量几乎不变。这是因为冷媒量减少,一方面传热管内流速降低,传热系数下降,制冷量降低;另一方面由于造成进口温度上升,又引起平均温差增大,制冷量增加。两者综合结果是制冷量变化甚微。

53—2002年第6期 节 能 (总第239期) E NERGY C ONSER VATI ON

加热炉热管烟气余热回收系统的长周期运行

(中国石油哈尔滨石化分公司常压车间,哈尔滨150056)吴力明

摘要:本文阐述了影响常压炉热管长周期高效率运行的主要因素,分析出热管腐蚀和积灰的成因,提出减缓热管腐蚀和积灰、延长其运行周期的措施。

关键词:热管;传热效率;腐蚀;积灰

中图分类号:TE683 文献标识码:B 文章编号:1004-7948(2002)06-0036-03

1前言

加热炉是炼油生产中的主要耗能设备,其能耗量约占全厂能耗的一半,而常减压蒸馏装置的加热炉能耗约占装置能耗的80%,因此,提高加热炉热效率,减少燃料消耗,对降低全厂能耗具有重要意义。

在提高加热炉热效率的措施中,回收烟气余热是最有效的。热管换热器因具有传热效率高、检修方便、占地面积小、投资省等优点而被广泛应用于加热炉烟气余热回收。热管烟气余热回收技术一般可以把加热炉烟气温度从300~330℃降低至160~200℃,可提高加热炉热效率5%~9%。

哈尔滨石化分公司一套常减压蒸馏装置于2000年改造一台34.83MW的常压炉,并配置热管烟气余热回收系统,取得较好节能效果,但在设备投用一年后发现热管表面腐蚀和积灰严重,影响到常压炉的运行水平,通过查找原因并进行改造,基本控制了腐蚀和积灰。

2热管烟气余热回收系统的结构与工作原理热管烟气余热回收系统由热管空气预热器、低频声波除灰器、烟气系统、空气系统及控制系统组成,其中热管空气预热器是其主要部件,它由热管管束、上下箱体、中间密封隔板组成。上箱体走空气,下箱体走烟气,呈逆向流动。热管空气预热器的主要设计参数如下:

外形尺寸(长×宽×高) 3650mm×2798mm×4270mm

热管(长×外径×壁厚) 4200mm×38mm×315mm

热管烟气侧长度 2420mm

热管空气侧长度 1740mm

翅片高度 18mm

烟气侧翅片厚度 1.2mm

空气侧翅片厚度 1.0mm

热管排列型式 三角形

烟气侧翅片间距 10.0mm

空气侧翅片间距 5.0mm

热管烟气余热回收系统是将对流室出口的高温烟气,经烟道引入热管空气预热器与空气换热,烟气放热降温后,通过引风机加压经加热炉烟囱排出;空气则由鼓风机送入热管空气预热器,吸热升温后进入加热炉风道,供加热炉燃烧。这样,烟气放热,空气吸热就实现了烟气余热回收的目的。

热管是烟气余热回收系统的核心元件,由壳体

5加热蒸汽消耗量与机组性能

加热蒸汽消耗量的变化对制冷量的影响与上述加热蒸汽压力的变化对制冷量的影响相似。即制冷量随加热蒸汽耗量的减少而降低。但当制冷量低于50%时,因其稀溶液循环量不变,进发生器溶液由过冷加热到沸腾所需热量也不变,故热效率降低。

6结论

综上所述,加热蒸汽的压力、蒸汽耗量,冷却水温、冷却水量,冷媒水温、冷媒水量等因素的变化与溴化锂制冷机组运转性能的变化有关。在实际操作中,我们只有充分地了解这些性能,才能在不断变化的工况下操作好溴化锂制冷机组,为生产、生活服务。

参考文献

[1]王长生.制冷与空调技术[M].中南工业大学出版社,

1989.

[2]青岛同和空调设备厂.溴化锂吸收式制冷机使用说明书

[M].

作者简介:殷应龙(1967-),男,湘潭大学化工机械专业毕业,工程师,从事动力设备基础管理工作。

E nergy Conservation(Monthly)

Sponsor:Liaoning Provincial Institute of Science and

T echnology In formation

Publisher:《Energy C onservation》M agazine Publishing

H ouse

Chief Editor:ZH ANG W ei2hua

Address:N o.274Qingnian Boulevard Shenyang City

Liaoning Province China

Post Code:110016

ABSTRACTS

June2002N o.6T otal Issue N o.239

The m athem atical model for optimization design of

utility boiler heat pipe air precheater

SHI Bo,ZH AO Jin2xiang

F ormulates a mathematical m odel for optimization design of generating plant boiler beat pepi air preheater.The lowest wall tem perature constratint is inserted into the constraint funcition vector,S tartes the specific application of optimization to heat pipe air preheater designs.And gives a calcuting exam ple by this method for a engineering design.

K ey w ords:boilers;heat pipes;air preheaters;mathematical m odel,opti2 mization design7 Solid m aterial heat2storage electric boiler

W ANG Ru2wu S olid material heat2storage eclectric boiler utilizes off2peak electricity and helps to reduce the ever w orsening gap between the peak and off2ripeak power usage.The device uses s olid heat2storage material and has many advan2 tages over the currently hot2water heat2storage boilers,including smaller size (approximately1Π7),lower price,normal pressure,and is capable of w ork au2 tomatically,it is an ideal new type of heat supply device.

K ey w ords:heat2storage electric boiler;s olid material;off2peak electici2 ty utilization;clean energy10 Theoretical and experimental study on heat circuit

XIE Ji2hong,CHE N D ong Heat circuit is a kind of energy saving equipment used bytween non2ad2 jacent heat s ources.On the base of a brief introduction to heat circuit,a series of equations are set up to determine the capacity,efficiency and w orking tem2 perature of heat circuit,and a set of experimental data are given at the end of this paper.

K ey w ords:recovery of waster heat;heat trans fer;heat circuit;energy saving12

V alid w ay for coal replace oil

FU W ei2biao,CHE N K e2zheng This article describes the valid method to s olve the problem of m ore2coal2 and2less2oil in our country by using the im proved gas generator(for using in industy)to achieve coal replace oil this generator is in normal condition(0. 06MPa),its strength highs to1100kgΠ(m2?h)(standard is no m ore than 380kgΠm2?h),suitable to alm ost all kinds of coal,low gas heat2value,but s ome higher than standard gas generator’s(about10%higher),com pletely suitable for using in industry.

K ey w ords:gas generator;coal replace oil;energy saving19 The application of displacement ventilation about m any

pollution heat sources and energy conservation

CHE N Jun2jun,W ANG X iao2tong,W U W en2fei This text com pendiums the principle and property of displacement venti2 lation,and com pares the displacement ventilation to the mixing ventilation. This text still lists the engineering exam ples and analyses th energy2saving ef2 ficient of these exam ples.Thus the text point out the displacement ventilation of many pollution heat s ources is w orth popularizing.

K ey w ords:many pollution heat s ources;displacement ventilation;ener2 gy conservation21 The application of multi2velocity electric motor on

variable carrying cap acity belt conveyor to save energy

Y ANGLin Through theory analysis and calculating for a exam ple,this paper ex2 pounds the necessity that variable carrying capacity belt convey or make use of multi2velocity electric m otor,and proves the effects of energy saving.

K ey w ords:multi2velocity electric m otor;belt convey or;belt velocity; belt intensity;carrying capacity;energy saving23

A nalysation of the apply effect of the hot2tube preheater

on boiler212275Π3.82

Y ANG Shui2jun,ZH OU Nai2jun This article describes the apply effect analysation of using hot2tube pre2 heater on the fine2coal boiler212275Π3.82,and tells it w ould cause better ef2 fect of the hot2tube preheater in com prehensive reform on boiler hot2tube pre2 heatrer and its tail heated surface during the boiler overhauling,which prevent the corrosion in low tem perature and reduce the tem perature of the sm oke.

K ey w ords:boiler;air2preheater;hot2tube25 Studies of running ch aracteristics of bromide

lithium hermetic absorption liquid chiller

Y IN Y ing2long This article has introduced in detail the in fluence of external elements on the function of Bromide Lithium Hermetic Liquid Chiller,it shows the reader the operation characteristics of the chiller with accurate curved line chart.

K ey w ords:bromide lithium;chill;characteristics34 The long period operation recovery system of w aste

heat in atmospheric still’s heat pipe

Wu Li2M ing The article explaines the main element which effect long period and high efficency of the heat pipe in atm ospheric still,and analysis the factor which cause corrosion and age2old dust of heat pipe.At same time it puts forward th step which slow down the corrosion and age2old dust to prolong the operating peroid.

K ey w ords:heat pipe;heat tran fer efficiency;corrosion;dust stratifica2 tion36

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0。85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。87kPa)为止. 图1 吸收制冷的原理

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.doczj.com/doc/a613395929.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利 用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调 节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔 范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

溴化锂制冷机技术协议

溴化锂制冷机组技术协议 甲方:山东鲁泰控股集团有限公司鹿洼煤矿 乙方: 甲方因生产需要,需从乙方购置溴化锂吸收式制冷机1台,双方经协商一致,达成以下协议条款,本技术协议是商务合同不可分割的一部分,与商务合同具有同等法律效力。 一、概况: 1、适用范围:生活区室内制冷; 2、设备性能指标满足本技术协议的要求并不意味着设备能满足实际需要,乙方应根据招标设备的性能特点,提供满足甲方实际需求的设备;如果由于提供的设备不能满足实际需要,确定乙方的原因,其应对提供的设备负全责,造成经济损失的,甲方有权提出索赔并保留通过法律途径索赔的权利; 3、本技术协议提出了该设备的性能指标、维护要求等方面的基本技术要求,并未对一切技术细节进行描述和规定,也为充分引述所有标准规范的条文,卖方应保证提供符合现行技术规范和现行工业标准的优质产品,严禁提供已淘汰或即将淘汰产品。 4、卖方提供的产品应完全符合买方以书面形式提出的有关供货设备的技术要求。 5、在签订合同之后买方有权提出因规范标准、规程及现场条件发生变化而产生的一些补充修改要求,具体款项由买、卖双方共同商定。 6、卖方负责应严格按照买方提供的技术要求进行生产,严格执行买方所提供的技术资料中关于制造规范和检验标准。 7、卖方负责履行设备制造和交货进度。卖方应保证不能因正在履约的其它项目及其它任何原因,而影响到本投标设备按期保质保量的完成与交货。

8、当本技术协议与承揽方执行的技术标准规范相矛盾时,按满足上述溴化锂制冷机组的安全、经济运行的较高标准执行。 9、卖方在设备制造过程中发生侵犯专利权的行为时,其侵权责任与买方无关,应由卖方承担相应的责任,并不得影响买方的利益。 二、技术参数; 基本技术参数: 三、设备与配件参数 1、主要部件:低温再生器、高温再生器、冷凝器、吸收器、、蒸发器、抽气装置、低温热交换器、高温热交换器、热回收器、蒸汽疏水器,控制盘、变频器、抽气泵、冷媒泵、吸收泵配套蒸汽控制阀等。 2、传感器监测主要数据:冷水出口温度、冷却水出口温度、高温再生器温度、低温再生器温度、冷凝器温度、冷水入口温度、冷却水入口温度、吸收器稀液出口温度、冷媒温度、冷却水中间温度、蒸汽冷凝水温度、高温再生器液面电极、高温再生器压力、贮室压力等。 3、制冷机采用微机控制,组态模拟采用彩色液晶显示、高密度触摸屏,显示屏大小不低于寸,分辨率不低于640*480,16位彩色显示,画面真实生动、配有2个标准串行口,具备RS-485通讯,支持modbus-rpu通讯,免费提供配套通讯协议,可实现远程通讯,具有自动消屏功能,10分钟内无人触摸自动消屏,耐环境等级达到IP65F,能够适应潮湿、粉尘大的恶劣环境,

溴化锂机组的制冷原理

工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液。 实际上采用对稀溶液加热的方法,使之沸腾,从而获得蒸馏水供不断蒸发使用。系统由发生器、冷凝器、蒸发器、节流阀、泵和溶液热交换器等组成。稀溶液在加热以前用泵将压力升高,使沸腾所产生的蒸气能够在常温下冷凝。例如,冷却水温度为35℃时,考虑到热交换器中所允许的传热温差,冷凝有可能在40℃左右发生,因此发生器内的压力必须是7.37kPa或更高一些(考虑到管道阻力等因素)。 发生器和冷凝器(高压侧)与蒸发器和吸收器(低压侧)之间的压差通过安装在相应管道上的膨胀阀或其它节流机构来保持。在溴化锂吸收式制冷机中,这一压差相当小,一般只有6.5~8kPa,因而采用U型管、节流短管或节流小孔即可。离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。 由于水蒸气的比容非常大,为避免流动时产生过大的压降,需要很粗的管道,为避免这一点,往往将冷凝器和发生器做在一个容器内,将吸收器和蒸发器做在另一个容器内。也可以将这四个主要设备置于一个壳体内,高压侧和低压侧之间用隔板隔开。 综上所述,溴化锂吸收式制冷机的工作过程可分为两个部分: (1)发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。这些过程与蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过程完全相同; (2)发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。这些过程的作用相当于蒸气压缩式制冷循环中压缩机所起的作用。

溴化锂制冷知识

溴化锂机组的制冷原理 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa 的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液。 实际上采用对稀溶液加热的方法,使之沸腾,从而获得蒸馏水供不断蒸发使用。系统由发生器、冷凝器、蒸发器、节流阀、泵和溶液热交换器等组成。稀溶液在加热以前用泵将压力升高,使沸腾所产生的蒸气能够在常温下冷凝。例如,冷却水温度为35℃时,考虑到热交换器中所允许的传热温差,冷凝有可能在40℃左右发生,因此发生器内的压力必须是7.37kPa或更高一些(考虑到管道阻力等因素)。 发生器和冷凝器(高压侧)与蒸发器和吸收器(低压侧)之间的

压差通过安装在相应管道上的膨胀阀或其它节流机构来保持。在溴化锂吸收式制冷机中,这一压差相当小,一般只有6.5~8kPa,因而采用U型管、节流短管或节流小孔即可。 离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。 由于水蒸气的比容非常大,为避免流动时产生过大的压降,需要很粗的管道,为避免这一点,往往将冷凝器和发生器做在一个容器内,将吸收器和蒸发器做在另一个容器内。也可以将这四个主要设备置于一个壳体内,高压侧和低压侧之间用隔板隔开。 综上所述,溴化锂吸收式制冷机的工作过程可分为两个部分: (1)发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。这些过程与蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过程完全相同; (2)发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。这些过程的作用相当于蒸气压缩式制冷循环中压缩机所

溴化锂制冷机

第一部分溴化锂制冷机发展过程 一、国外的发展过程 1. 美国是溴化锂制冷机的创始国,目前日本等国的溴冷机也都有较大的发展。 2.美国开利公司于1945年试制出第一台制冷量为523KW(45×104kcal/h)的单效溴冷机,开创了利用溴化锂水溶液为工质对做为吸收剂的吸收式制冷新领域。美国不仅创造了单效溴冷机,而且在世界上又率先研制出了双效溴冷机。现已研制出了直燃型、热水型和太阳能型等新型溴冷机。同时还研制了冷温水机组和吸收式热泵等新机组。 3. 日本一家汽车公司于1959年研制出制冷量为689KW(60×104kcal/h)的单效溴冷机,1962年茬原制造所又研制出双效溴冷机。日本溴冷机无论在生产数量、性能指标、应用范围和新技术、新产品研制等方面,均超过了美国,成为世界上溴冷机研究与生产领先的国家。特别是燃气两效温水机组的产量很大,约占世界上溴冷机生产总台数的2/3;目前已致力于第三种吸收式热泵和溴化锂热电并供机组的研制工作。 4. 前苏联奔萨化工厂于1965年研制出2908KW(250×104kcal/h)溴冷机。目前溴冷机的应用范围已从化纤厂扩展到其它纺织厂、橡胶厂酿酒厂、化工厂、冶金厂和核电站。 二、中国溴化锂制冷机的发展过程 我国研制溴冷机起步于60年代初期,至今已有四十多年,其发展过程大体分为四个阶段: 1. 研制阶段。60年代初船舶总公司704所(原六机部704所)、一机部通用机械研究所与高等院校以及设备制造厂通力合作,试制了两台样机。1966年上海第一冷冻机厂试制出了制冷量1160KW(100×104kcal/h)全钢结构的单效溴冷机,安装于上海国棉十二厂。60年代末期,许多单位都着手研制单效溴冷机,这一研制工作持续到了70年代初期。 2. 单效机生产应用阶段。70年代初先后有上海、青岛、天津、北京和长沙等地的棉纺厂为了适应生产的需要,各自设计与制造了单效溴冷机。继而更多地区也都自行设计制造单效溴冷机,尤以上海、天津两地更为突出。以天津为例,70年代初至80年代初,制造出3480KW(300×104kcal/h)大型溴冷机七台,总制冷能力达到24360KW(2100×104kcal/h)。单效溴冷机在这一时期虽然有了较

一、国外溴化锂制冷机的发展过程

一、国外溴化锂制冷机的发展过程 美国是溴化锂制冷机的创始国,目前日本、前苏联等国的溴冷机也都有较大的发展。1、美国开利公司于1945年试制出第一台制冷量为523KW(45×104kcal/h)的单效溴冷机,开创了利用溴化锂水溶液为工质对做为吸收剂的吸收式制冷新领域。美国不仅创造了单效溴冷机,而且在世界上又率先研制出了双效溴冷机。现已研制出了直燃型、热水型和太阳能型等新型溴冷机。同时还研制了冷温水机组和吸收式热泵等新机组。2、日本一家汽车公司于1959年研制出制冷量为689KW(60×104kcal/h)的单效溴冷机,1962年茬原制造所又研制出双效溴冷机。日本溴冷机无论在生产数量、性能指标、应用范围和新技术、新产品研制等方面,均超过了美国,成为世界上溴冷机研究与生产领先的国家。特别是燃气两效温水机组的产量很大,约占世界上溴冷机生产总台数的 2/3;目前已致力于第三种吸收式热泵和溴化锂热电并供机组的研制工作。 3、前苏联奔萨化工厂于1965年研制出2908KW(250×104kcal/h)溴冷机。目前溴冷机的应用范围已从化纤厂扩展到其它纺织厂、橡胶厂酿酒厂、化工厂、冶金厂和核电站。 二、中国溴化锂制冷机的发展过程 我国研制溴冷机起步于60年代初期,至今已有四十多年,其发展过程大体分为四个阶段: 1、研制阶段60年代初船舶总公司704所(原六机部704所)、一机部通用机械研究所与高等院校以及设备制造厂通力合作,试制了两台样机。1966年上海第一冷冻机厂试制出了制冷量1160KW(100×104kcal/h)全钢结构的单效溴冷机,安装于上海国棉

十二厂。60年代末期,许多单位都着手研制单效溴冷机,这一研制工作持续到了70年代初期。 2、单效机生产应用阶段70年代初先后有上海、青岛、天津、北京和长沙等地的棉纺厂为了适应生产的需要,各自设计与制造了单效溴冷机。继而更多地区也都自行设计制造单效溴冷机,尤以上海、天津两地更为突出。以天津为例,70年代初至80年代初,制造出3480KW(300×104kcal/h)大型溴冷机七台,总制冷能力达到24360KW (2100×104kcal/h)。单效溴冷机在这一时期虽然有了较大发展,但仍有许多问题尚待解决,如严重的腐蚀、冷量的衰减和机器的寿命等,限制了溴冷机的进一步发展。 3、双效机生产应用阶段80年代初期开始研制双效溴冷机,并于1982年由开封通用机械厂生产出1744KW(150×104kcal/h)双效溴冷机组。双效机组的热力系数可提高到1.1以上,而单效机组一般为0.6~0.7,双效机组的蒸汽单耗比单效机减少约1/2,冷却水量减少约1/3,是值得提倡的节能型制冷机组。86年我厂研制出省内首台双效溴冷机1160KW(100×104kcal/h)并首家通过省级鉴定。 4、多种新型机研制应用阶段80年代末期国家计委提出,凡有蒸汽等热源的地区要发展溴冷机;1991年我国在世界禁用氟里昂(CFC)生产与使用的“蒙特利尔议定书”上签了字,这对进一步发展溴冷机创造了良好条件。大专院校、科研院所和制造厂家共同协力,一方面在加紧改进与提高双效溴冷机的加工技术和性能水平,另一方面也竟相研制新型的多种溴冷机。现已推出的和正在研制的有热水型、直燃型、低压型、降膜式溴冷机和吸收式热泵等。

溴化锂制冷机组操作规程

3溴化锂制冷机组 3.1结构原理 热水单效型溴化锂吸收式冷水机组(以下简称机组)是一种以热水为热源,水为制冷剂、溴化锂水溶液为吸收剂,在真空状态下制取工艺用冷水的设备。 机组由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部分及抽气装置、熔晶管、屏蔽泵(溶液泵和冷剂泵)等辅助部分组成。 3.1.1发生器 管壳式结构,由管体、传热管、隔热层、挡液板和传热管支撑板等组成。来自装置的低位能热水流经发生器的传热管,加热管外的溴化锂稀溶液,使其产生出冷剂蒸汽,溶液浓缩成浓溶液。发生器压力约为7.6kPa(57mmHg)。 热水型机组的热水在传热管放出热量,温度降低后流出机组。 3.1.2冷凝器 由传热管及前后端盖组成。来自Ⅱ循的冷却水(约32℃)从端盖流进导热管,使传热管外侧的来自发生器的冷剂蒸汽冷凝,产生的冷剂水由U形管流入蒸发器水盘。冷凝器与发生器处在一个筒体(上筒体),中间由隔热层和挡液板隔开,压力相当。 冷却水在吸收了冷剂蒸汽冷凝放出的热量后流出冷凝器。 3.1.3蒸发器 由传热管、前后端盖、喷淋管、冷水水盘、液囊、冷剂泵组成。从系统来的冷水从端盖进入传热管,,喷淋在传热管外的冷剂水(由冷剂泵从冷剂水液囊中抽出)获得热量蒸发,成为冷剂蒸汽,部分未蒸发的冷剂水落到水盘后被冷剂泵再次送入喷淋管喷淋。冷水的热量被冷剂水吸收后温度降低,流出蒸发器,进入冷水系统。产生的冷剂蒸汽流入吸收器。蒸发器压力约为0.8kPa(6~7mmHg)。 3.1.4吸收器 由传热管前后端盖及喷淋盘、液囊、溶液泵组成。来自Ⅱ循的冷却水从端盖进入传热管,冷却淋激在传热管外的浓溶液。溴化锂溶液在一定温度和浓度条件下(如浓度63%及温度50℃),具有极强的吸收水蒸汽性能,它大量吸收同一筒体蒸发器中产生的冷剂蒸汽,并把吸收热量传给冷却水带走。吸收了冷剂蒸汽的溴化锂溶液因变稀而丧失吸收能力,这时它由溶液泵送入发生器,再次产生冷剂蒸汽并浓缩。吸收器与蒸发器处于同一筒体,压力相当。吸收器有两个,分别位于蒸发器的两侧。 3.1.5溶液交换器 . .

溴化锂冷水机组工作原理及分类教学提纲

溴化锂冷水机组工作原理及分类

溴化锂冷水机组工作原理及分类 溴化锂溶液的特性 在溴化锂吸收式制冷机中,水作为制冷剂用来产生冷效应,溴化锂溶液作为吸收剂,用来吸收产生冷效应后的冷剂蒸汽。因此,水和溴化锂溶液组成制冷机中的工质对。 1.溴化锂水溶液是由固体的溴化锂溶质溶解在水溶剂中而成。常压下, 水的沸点是100℃,而溴化锂的沸点为1265℃。供制冷机应用的溴化锂,一般 以水溶液的形式供应。性状为无色透明液体;浓度不低于50%;水溶液PH值8以上。 2.20℃时溴化锂溶解至饱和时量为111.2克,即溴化锂的溶解度为 111.2克。溶解度的大小与溶质和溶剂的特性的关,还与温度有关,一般随温 度升高而增大,当温度降低时,溶解度减小,溶液中会有溴化锂的晶体析出而 形成结晶现象。这一点在溴冷机中是非常重要,运行中必须注意结晶现象,否 则常会由此影响制冷机的正常运行。 3.溴化锂溶液对普通金属有腐蚀作用。尤其在有氧气存在的情况下腐蚀 更为严重。 溴化锂制冷原理 溴化锂吸收式制冷原理和蒸汽压缩制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、汽化吸收载冷剂的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是在利用“溴化锂-水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质中,水是制冷剂。水在真空状态下蒸发,具有较低的蒸发温度(6℃),从而吸收载冷剂热负荷,使之温度降低。溴化锂水溶液是吸收剂,在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。吸收与释放周而复始制冷循环不断。制冷过程中的热能为蒸汽,也可叫动力。

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有 1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1吸收制冷的原理

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机参 数 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。 如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利用。具有很好的节 电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、无公害、 有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(~/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机组的维修保养工 作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命,而且影 响机组的性能和正常运转。 (二)机组在真空下运行.空气容易漏入。即使漏入微量的空气,也会严重地损害机组的性能。为此,制冷机要求严格密封,这就给机器的制造和使用增添了困难。 (三)机组的排热负荷较大,因为冷剂蒸汽的冷凝和吸收过程均为排热过程。此外,对冷却水的水质要求也比较高,在水质差的地方,使用时应进行专门的水质处理,否则将影响机组性能的正常发挥。 溴化锂吸收式制冷机与电制冷空调机组的比较(一)

溴化锂吸收式制冷机的工作原理

溴化锂吸收式制冷机的工作原理 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 单效溴化锂吸收式制冷机 溴化锂吸收式制冷机原理工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液,如图1所示。显然,这样做是不经济的。

溴化锂吸收式制冷机和电制冷空调机组的比较

溴化锂吸收式制冷机与电制冷空调机组的比较(2008-08-28 13:29:53) 标签: 溴化锂吸收式制冷机与电制冷空调机组的比较(一) ----摘自《全国暖通空调制冷1996年学术年会论文集》P435-437页 对溴化锂吸收式制冷机与其它制冷机进行比较研究,认为:在一些特定场合(如高温环境)大型集中式中央空调设计中,选用溴化锂吸收式机组是利大于弊的;而在现有的条件下:电力取消电力增容费、螺杆式压缩机CNC加工技术的提高、螺杆机能量调节技术的成熟及配备先进的自动化控制技术等,其螺杆式机组的优越性显现出来,其螺杆式机组逐步在取代溴化锂吸收式制冷机,从一些溴化锂吸收式制冷机生产厂家逐步在开发、推广螺杆式机组的实际情况可以得到说明。下面将从如下方面加以说明: 一、冷水机组的能耗分析 1、冷水机组的选择 从循环效率来看:在压缩式冷水机组中,当以螺杆式和离心式机组为高,它们的单位制冷量能耗一般都在0.2Kw~0.22Kw。它们的节能型机组的单位制冷。溴化锂吸收式制冷机组的实际循环效率COP值为1.0~1.2左右。(工作条件一致:冷水进出口温度为 2/12冷却水进出口温度为30/35℃) 目前国际上公开的不同制冷机的投资估算价格,依照国际价格,单机容量在1400KW以内的制冷系统,可选用螺杆机组;而单机容量在2000KW的制冷系统,采用离心式机组较为经济;吸收式制冷机组的价格平均为离心式机组的2倍左右。国内的情况有所不同,在单机容量相同的情况下,溴化锂吸收式制冷机组的价格略为离心式机组组的1.5倍左右.压缩式机组如采用新型替代工质(如R134a 或R123等),其价格将有所提高。 2、各机组能耗及一次能源消耗分析。 在冷水机组中,人们惯于选用的机组是离心式、螺杆式及溴化锂吸收式三类机组。 表1中例举了在相近制冷量下的三类国产机组的型号、制冷量及它们的能耗。

溴化锂吸收式制冷机优缺点

溴化锂吸收式制冷机优 缺点 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

一、溴化锂吸收式制冷机的优点 (1)以热能为动力,勿需耗用大量电能,而且对热能的要求不高。能利用各种低势热能和废气、废热,如高于20kPa(o.2kgf/cm2)(表压)饱和蒸汽,各种排气;高于75℃的热水以及地热、太阳能等,有利于热源的综合利用,因此运转费用低。若利用各种废气、废热来制冷,则几乎不需要花费运转费用,便能获得大量的冷源,具有很好的节电、节能效果,经济性高。 (2)整个制冷装置除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低,运行比较安静,特别适用于医院、旅馆、食堂、办公大楼、影剧院等场合。 (3)以溴化锂溶液为工质,制冷机又在真空状态下运行,无臭、无毒、无爆炸危险,安全可靠,被誉为无公害的,有利于满足环境保护的要求。 (4)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量无级调节,且低负荷调节时,热效率几乎不下降,性能稳定,能很好地适应变负荷的要求。 (5)对外界条件变化的适应性强。如标准外界条件为蒸汽压力 5.88XlOSpa(6kgf/cm2)(表压),冷却水进口温度32℃,水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)XlOSPa(2.0~8.okgf /emz)(表压),冷却水进口温度25~40℃。冷媒水出口温度5—15℃的宽阔范围内稳定运转。

(6)安装简便,对安装基础的要求低。因运行时振动极小,故无需特殊的机座。可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,接上气,水管道和电源便可。 (7)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空阀门等附属设备外,几乎都是热交换设备,制造比较容易。由于机组性能稳定,对外界条件变化的适应性强,因而操作比较简单。机组的维修保养工作,主要在于保持所需的气密性。 二、溴化锂吸收式制冷机的主要缺点 (1)在有空气的情况下,溴化锂溶液对普通碳钢具有较强的腐蚀性。这不仅影响机组的寿命,并且影响机组的性能和正常运行。 (2)制冷机在真空下运行,空气容易漏人。实践证明,即使漏人微量的空气,也会重地损害机组的性能。为此,制冷机要求严格密封,这就给机组的制造和使用增添了困难。 (3)由于直接利用热能,机组的排热负荷较大,因为冷剂蒸汽的冷凝和吸收过程,均需冷却。此外,对冷却水的水质要求也比较高,在水质差的地方,使用时应进行专门的水质处理,否则将影响机组性能正常发挥。

溴化锂制冷机组的工作原理及应用

溴化锂制冷机组的工作原理及应用 作者:闫健, 林绍勇 作者单位:山东华阳农药化工集团有限公司,泰安,271411 刊名: 通用机械 英文刊名:GENERAL MACHINERY 年,卷(期):2009,(10) 被引用次数:0次 相似文献(10条) 1.期刊论文刘志刚溴化锂制冷技术在火力发电厂中的应用-节能技术2002,20(6) 简要地分析了溴化锂吸收式制冷技术的一般原理及其特点,通过实例说明溴化锂吸收式制冷技术在火力发电厂集中空调中的应用前景. 2.期刊论文鞠振河.李雪.康微微.高微太阳能房的可行性研究及其技术经济评估-现代农业2007(12) 一种光电与光热装置相结合,全天候使用的可移动式太阳能房.太阳能集热器设在屋顶收集太阳辐射能量,通过循环回路的介质水给储水箱加热,再通过相变贮能介质贮存能量,实现整套房间的采暖、热水供应,并通过热能启动吸收式溴化锂制冷机组在夏天实现空调的制冷工作.墙面太阳能电池提供屋内的照明用电设备.利用"全年均衡冬半年最大"的接收太阳能辐射量原则以及利用全年累计最大亏欠量计算蓄电池容量,利用当地太阳能分布系数并结合PolySun软件模拟结果对集中供热的太阳能房系统进行综合设计分析.利用净现值及动态回收期原理对改造的系统投资作出技术经济评估. 3.期刊论文冯质杭.高廷.刘德胜溴化锂制冷技术的应用总结-氮肥技术2009,30(1) 阐述了溴化锂制冷机组的工作原理、功能,在合成氨、尿素装置上应用溴化锂制冷技术的工艺流程、运行状况及应用总结. 4.期刊论文李明华.白华林.冯质杭.LI Ming-hua.BAI hua-lin.FENG Zhi-hang溴化锂制冷技术在合成氨及尿素装置的应用-化肥设计2008,46(5) 简述了溴化锂制冷机组的工作原理及功能;介绍了其应用于合成氨和尿素装置的工艺流程及运行状况.应用结果表明,其可利用尿素装置的低位余热降低合成氨装置脱硫系统半水煤气的温度,达到提高压缩机打气量、降低合成氨电耗、增加氨产量的目的. 5.期刊论文孙勇.张华文直燃式溴化锂制冷(热)机组微机控制系统-山东电子2003(4) 介绍了在直燃式溴化锂制冷(热)机组中应用的微机控制系统,阐述了总体结构及软、硬件设计原理.其运行效果良好,可广泛应用于溴化锂中央空调系统. 6.会议论文王中刚.韩喜民.张凌云大型溴化锂制冷在化肥生产中的应用实例2004 本文简要介绍了澳化锂制冷机组的工作原理,用溴化锂机组制冷冷却半水煤气增加合成氨产量,它既没有污染又节约能源,是化肥行业低位热源合理利用的极好项目。 7.期刊论文邸书玉.孟亚男.翟羽鹏.徐全胜.周海德.Di Shuyu.Meng Yanan.Zhai Yupeng.Xu Quansheng.Zhou Haide组态王在溴化锂制冷中的应用-仪器仪表标准化与计量2005(4) 本文阐述了吸收式溴化锂制冷机组的工作原理,制冷循环及控制工艺流程,并应用组态王监控软件实现控制方案,给出了运行的曲线. 8.期刊论文王中刚.韩喜民.张凌云大型溴化锂制冷在化肥生产中的应用-小氮肥设计技术2005,26(2) 简要介绍了溴化锂制冷机组的工作原理,用溴化锂机组制冷冷却半水煤气增加合成氨产量及效益. 9.期刊论文杨维嵘.Yang Weirong溴化锂吸收式制冷机的结构及原理-广东化工2009,36(5) 介绍澳化锂吸收式制冷方式,以江苏省江阴溴化锂制冷机场生产的蒸汽双效溴化锂吸收式制冷机为例介绍机组的结构及运行原理. 10.期刊论文王志国.永昭溴化锂制冷机组在新疆中泰的应用-聚氯乙烯2005(12) 1 溴化锂机组制冷原理及工艺 溴化锂制冷主要原理是:冷剂水在低温、低压条件下汽化成水蒸气,由浓溴化锂溶液吸收,其浓度变稀;稀溴化锂溶液由低温被加热至高温后释放出水蒸气,其浓度又变浓,如此循环. 本文链接:https://www.doczj.com/doc/a613395929.html,/Periodical_tyjx200910014.aspx 授权使用:河北科技大学(hbkjdx),授权号:b1ae6f27-e0e6-4a94-aceb-9ead00e87944 下载时间:2011年3月21日

相关主题
文本预览
相关文档 最新文档