当前位置:文档之家› 我国资源环境遥感发展与应用(转)

我国资源环境遥感发展与应用(转)

我国资源环境遥感发展与应用(转)
我国资源环境遥感发展与应用(转)

我国资源环境遥感发展与应用

遥感卫星经过30多年的发展已经形成了以陆地卫星、海洋卫星、气象卫星、环境卫星等四大卫星业务运行系统和以科学研究为目的的实验卫星。卫星遥感构成了对地圈、生物圈、大气圈及其相互作用的物理、化学过程和时空演变规律的系统化、立体化的探测系统,形成了全面的观测能力,在资源环境研究及其相关领域的应用日益广泛和深入。

一、遥感技术的发展与应用能力

遥感(RS)与地理信息系统(GIS)技术的发展及其在地理学研究中越来越广泛和深入的应用,已经导致这一学科研究方法,特别是地理学研究中空间对象的观测与信息获取方法产生了根本性的变化,极大地提高了对地观测能力和丰富了观测内容,深化了人们对地理现象的认识。

目前,遥感技术已形成多星种、多传感器、多分辨率共同发展的局面。各种遥感卫星包括资源卫星、环境卫星、海洋卫星、气象卫星等等,所获取的遥感信息具有厘米到千米级的多种尺度,如63cm、1m、3m、4m、5m、10m、20m、30m、60m、120m、150m、180m、250m、500m、1000m等多种分辨率,重访周期从1天到40~50天不等,在获取资源环境空间和时间信息方面构成很好的互补关系。遥感技术在地球资源与环境研究和测量任务中扮演着越来越重要的角色,它所具有的高度的空间概括能力,有助于对区域的完整了解;而且各种空间分辨率遥感影像互补,成为获取地球资源信息的重要技术手段;不同卫星的适宜的重访周期有利于对地表资源环境的动态监测和过程分析;以多光谱观测为主并辅以较高分辨率的全色数据,极大的提升了对地物的识别和分类。卫星遥感技术的发展使资源环境研究得到了极大的促进,在研究资源环境时空特征方面取得了一系列的具有重要影响的成果。技术发展提高了成果质量,加强了研究深度,而且促进了成果应用。

二、资源研究中遥感技术的应用

1.土地资源

自1990年起,国际地圈生物圈计划(IGBP)和国际全球变化人文因素计划(IHDP)两组织积极筹划全球性综合研究计划,于1995年共同拟定并发表了《土地利用与土地覆被变化科学研究计划》,将其列为全球环境变化的核心项目。国际应用系统分析研究所(IIASA)于1995年启动了“欧洲和北亚土地利用与土地覆被变化模型”项目;联合国环境规划署(UNEP)亚太地区环境评价计划于1994年启动了“土地覆被评价和模拟”(LCAM)项目;美国全球变化研究委员会(USGCRP)把土地覆被变化与气候变化、臭氧层的损耗一起,列为全球变化研究的主要领域,并从1996年起重点开展北美洲土地覆被变化的研究;***国家科学院全球环境研究中心提出了"为全球环境保护的土地利用研究"项目(LU/GEC)等。

从20世纪80年代初期开始,我国已经利用资源卫星数据进行了多次全国范围的土地资源调查、土地利用监测等工作。1980年6月至1983年12月,在全国农业区划委员会办公室的组织下,利用地球资源卫星的MSS进行全国土地资源概查。第一次利用MSS数据进行了全国15个地类的土地利用现状调查,完成了1:50万比例尺制图。进入20世纪90年代以来,国民经济的发展和人口的增长给国家资源环境的开发利用与保护提出了新的要求。中国科学院1992年决定设立“国家资源环境遥感宏观调查与动态研究”,作为“八五”重大应用项目研究,于1996年完成。“九五”期间,国家科技部设立科技攻关重中之重项目“遥感、地理信息系统、全球定位系统技术综合应用研究”,其中的“国家级基本资源与环境遥感动态信息服务体系的建立”作为第一课题于2000年完成。利用遥感和GIS技术,首次建立了全国1:10万比例尺土地利用数据库。1997~1998年,中国科学院和国家统计局共同完成了“全国

农业土地资源遥感调查”,遥感调查完成的土地资源成果首次在国家统计工作中发挥实质作用。1999年完成的全国土地资源调查工作,于1984年启动实施,以县为单位,采用航空遥感技术和航天遥感技术为主,严格按照全国统一的技术规程和土地分类标准,进行野外调查和内业工作,1996年在县级成果基础上完成了统一时点的变更调查。该项工作历时近20年,首次全面查清了我国农村土地的权属界线、各个地块的面积和用途,各个乡(镇)、县、地(市)、省(区、市)和全国土地的类型、数量、分布、利用和权属状况。

在新一轮的国土资源大调查中,从1999年开始,国土资源部在全国相继开展了人口50万以上城市的土地利用动态遥感监测。采用SPOT、Landsat等卫星数据,成功监测了全国60多个大中城市在近二、三年间土地利用的变化情况,监测面积达71.4万平方公里。

2.地质与矿产资源

地球资源卫星遥感数据普遍用于地质调查,法国地矿局在尼日利亚发现铀矿、前苏联在第聂伯-顿涅茨沼泽地区的油田、美国阿拉斯加的含油地质构造、挪威北部卡拉斯约克地区发现铜琉化矿床等,都利用了遥感卫星资料,通过分析不同的地磁、重力异常、线性构造等辅助找矿,大大节省了野外考察的时间和人力、物力的投入。

近几年,我国利用资源卫星资料在寻找多金属富集地段、蚀变带、金矿、铀矿、储油构造、煤田等方面也取得多项成果。在西部地区开展的1:25万地质调查及矿产资源勘查中,卫星遥感数据是基础数据源之一。同时,在金属矿藏、煤炭和油气资源的勘探中也发挥了重要的作用,获得了显著的经济效益。

在新的国土资源大调查中,利用新一代遥感影像进行区域地质填图、进行示矿遥感异常信息识别与提取、地质灾害监测等,使遥感技术在地质研究利用得到了更广泛的应用。3.生物资源

中国科学院等利用NOAA卫星以及MODIS数据等,在陆地生态系统遥感定量监测方面开展了一系列的工作,完成了1km中国植被分类、植被覆盖度、净初级生产力的估算等数据集。

(1)草资源

我国利用遥感技术已经开展了多项草地资源的调查、监测和资源评价工作,区域性和全国性的草地资源遥感应用成果已经发挥了明显作用。

1989~1993 年,利用遥感技术开展了中国北方草原草畜动态平衡监测研究,建立了我国北方草原草畜动态平衡监测业务化运行系统,主要利用NOAA气象卫星资料估测草地生物量。20世纪80年代完成了1:100万比例尺的全国草地资源图。2000年开始,农业部开始草地遥感监测和预警系统建设,完成了全国草地退化的遥感监测评价和北方草地的生产能力估测,配合牲畜饲养量评价我国牧区的草畜平衡情况,查清了近十几年来农牧交错区的农业资源变化情况等。2003年完成的全国草地资源动态监测工作,建设完成了1:50万比例尺的草地资源数据库,包括草地资源的18个类和亚类等类型。

(2)森林资源

国际上,美国利用LANDSAT 7 的ETM+ 遥感数据完成了全球森林资源分布图编制。欧盟联合研究中心利用1996~1998年间NOAA卫星数据完成了欧洲森林覆盖图的编制。

我国现行资源监测体系中除森林资源监测外,荒漠化监测、湿地监测、野生动物植物监测、森林火灾监测、森林病虫害监测等都广泛地应用了遥感技术,在林业的经营管理活动中也逐步推广普及了资源卫星资料的应用。

1977 年利用MSS图像,首次对我国西藏地区的森林资源进行了清查,填补了森林资源数据的空白。1981~1983年,在三北防护林地区自然资源与综合农业区划工作中又应用MSS 资料完成了大面积土地资源调查。1993~1997年,由联合国开发计划署(UNDP)援助的“中国森林资源调查技术现代化”项目顺利执行。

目前,正在利用全国林业监测站点数据和遥感数据为主要信息源,进行全国林地生态类型数据库的建设工作,将在空间上和时间序列上完整、系统的反映林地区域不同的生态系统特点、林种、群落特征及其林(树)龄等,研究工作将进一步深化。

4.水资源

在非洲撒哈拉沙漠、夏威夷岛浅海滩等地区,通过研究资源卫星资料,发现某些岛屿沿海处的温度辐射比周围要低10摄氏度,经实地勘探表明是地下淡水的入海处,解决了淡水源问题。世界上最长的亚马逊河流域面积500万平方公里,大约占南美洲巴西国土的60%,由于原始森林密布、野兽出没,人迹罕至,其资源状况一直是个谜。20世纪80年代中期以后,利用资源卫星对世界第一大河流域的地形地貌、土壤植被、森林、矿藏等资源进行了系统调查。

我国“六五”和“七五”期间开展并完成的“黄淮海平原地区水域动态演变遥感分析”,利用遥感技术对黄淮海平原地区的河流、湖泊、洼淀等地表水体开展了演变过程、空间差异等方面的系统研究。

三、环境研究中遥感技术的应用

随着遥感技术在资源领域应用的深化和发展,在生态环境领域的应用得到了极大的促进,相继开展了一系列的环境监测与评价工作。

1.环境综合评价

1991~2000 年间,中国科学院与西藏自治区气象局合作,完成了西藏“一江两河”中部流域地区环境动态遥感监测工作。在获得比较丰富、全面的航空遥感监测图片与行业调查数据资料的基础上,从土地利用、植被、土壤、水文、气候等方面,研究区的生态环境状况,作出了比较科学、客观的分析评价和描述。

“九五”期间,针对土地资源利用的变化与分析的需要,利用1:100万和1:25万DEM数据、AVHRR数据和温度、降水等地面观测数据,构建了生态环境背景数据库,为土地利用数据的应用和综合分析提供了支持。

1998~2003 年,中日信息化合作项目“基于RS和GIS的环境监测、灾害监测信息系统”的环境监测与评价系统建设研究,以湖北省为研究区,开展了基于遥感的省级区域环境遥感监测与综合评价工作。2000年国家环保部门充分利用了资源卫星数据,对我国西部12个省、市、自治区的生态环境现状进行了全面的调查和分析,为我国西部大开发的生态环境战略提供了最新的科学依据。以陆地卫星TM和NOAA卫星NDVI等数据为主要信息源,对影响生态环境质量的相关要素进行定性、定量分析,客观的对中国西部生态环境质量进行综合评价与描述,包括生态功能区域划、评价指标体系、评价标准与指标权重的确定、生态质量综合等部分。

2.水土流失

水土流失是复杂的人文和地理过程,受到诸如降水、下垫面基底岩性、地形坡度、土地覆盖类型及管理方式等众多因素的影响。其调查方法主要有工程实验法、定性遥感法和基于地理信息系统(GIS)的遥感定量法。其中,基于GIS的遥感定量法是近年来随着遥感的迅速发展才得以出现的水土流失调查新方法。

20 世纪80年代中期,利用陆地卫星资料进行了土壤侵蚀分区、分类、分级制图,成图比例尺1:50万,并制成1:400万比例尺土壤侵蚀区划图。1999年开始,水利部和中国科学院合作,利用资源卫星数据完成了全国土壤侵蚀数据库建设,完成了全国水蚀-风蚀交错区遥感调查工作,对于我国的水土流失情况有了全面了解。本项研究在实现全国土壤侵蚀动态监测与数据库快速更新能力等方面均有突破与创新,成果内容丰富,科学性、系统性、时效性强,对于我国生态建设与环境保护具有重要科学意义和应用价值,该项成果在宏观尺度和多类型土壤侵蚀综合调查方面达到了国际先进水平。基于此成果,水利部于2002年1

月21日水利部发布了《全国水土流失公告》。

3.土地退化

在近年开展的全国沙漠化土地遥感监测、荒漠化监测等工作中,以及相关的流域治理、湿地保护、生物多样性调查等工作中,遥感、GIS等高新技术在各种尺度的土地退化研究中发挥着重要作用。

20 世纪90年代,在华北平原地区开展了基于陆地卫星TM数据的盐碱土分类研究。在土壤水分、土壤腐植质含量、土壤氧化铁含量等方面开展了试验研究,利用TM 的7个波段的数据对于盐碱土反射率特性的研究,辅之以植被指数、居民点分布、人口密度等空间化辅助数据指标,实现了盐碱土壤的细分类。

沙漠化严重阻碍了人类生存环境和区域经济可持续发展。位于我国北方农牧交错带的科尔沁沙地,环境脆弱,不合理的土地利用造成沙漠化,风沙危害日趋严重。利用TM数据,分析沙漠化地区地物光谱特征差异,并结合实地调查资料,采用聚类与监督分类结合、图像纹理特征分析与分类、模糊聚类、改进最小距离分类等图像处理与分类方法,分类精度可以达到75.5%~89.5%。

黄河上游地区的共和盆地处于半干旱干草原和干旱荒漠草原的过渡带,生态环境及其脆弱,不合理的人类经济活动导致沙漠的强烈发展。在GIS技术支持下,利用陆地卫星TM 遥感数据开展了动态监测。研究表明,在GIS技术支持下利用遥感数据开展沙漠化动态监测是定量研究沙漠化灾害的有效途径,实现了沙漠化土地的沙漠化程度分级,包括潜在沙漠化土地、正在发展中的沙漠化土地、强烈发展中的沙漠化土地及严重沙漠化土地等。

2002年末启动实施的生态安全相关要素遥感定量反演研究中,土地退化的遥感监测与相关要素遥感定量反演研究是重要组成部分。选择我国西北等土地退化相对显著的区域,从植被覆盖度、植被类型、生物量、土壤表层含水量、土壤盐碱化、土壤类型等方面进行研究,以期形成适用与大区域、相对快速的土地退化遥感监测与过程研究,特别侧重于高时间分辨率遥感技术的应用,从时空两个方面系统、全面了解、研究区域土地退化。

遥感技术的发展,使大面积土壤水分实时或准实时动态监测成为可能。特别是随着GIS 与RS一体化的技术日益成熟,用GIS支持RS信息解译,用RS快速更新、补充GIS数据库,促进了土壤水分遥感监测精度的提高。

进入80年代后,遥感监测土壤水分的研究工作得到了迅速而全面的发展。其手段有地面遥感、航空遥感和卫星遥感;遥感波段有可见光,近红外、中红外、远红外、热红外波段和L波段、C波段、X波段等微波遥感波段。

1990 年以来,国外在土壤水分遥感监测方面又有了新的发展。在遥感手段上,除了仍有微波遥感的深入探讨外,气象卫星遥感也日益受到重视。基于作物层能量平衡等原理之上,并与遥感热惯量方法、作物缺水指数法相结合,进行土壤水分或干旱监测的研究日益完善。在监测尺度上,从一个特定地区、一个国家到全球范围;在监测方法上,由个例分析到统计应用,都有了模拟模式。

20世纪90年代后,我国在土壤水分遥感监测理论方面的研究得到了深入,土壤含水量遥感模型及其应用研究也有了提高,利用NOAA/AVHRR资料进行土壤水分或干旱的宏观监测研究工作也有了很大进展。隋洪智等通过简化能量平衡方程,直接使用卫星资料推算出一个被称为表观热惯量(ATI)的量,并以此量和土壤水分建立关系式来监测旱灾;田国良等依据土壤水分平衡及能量平衡的原理,结合冬小麦耗水规律,对冬小麦干旱遥感监测模型进行了研究,提出了一套利用NOAA/AVHRR遥感资料和实测土壤湿度资料监测冬小麦干旱的方法;陈维英等利用NOAA极轨气象卫星距平指数,对1992年特大干旱进行了监测应用研究;肖乾广等从土壤的热性质出发,在求解热传导方程的基础上引入了“遥感土壤水分最大信息层” 概念,并以此理论建立了多时相的综合土壤湿度统计模型;刘培君等以土壤水

分光谱法为基础,提出了“光学植被盖度”的概念,以TM数据为桥梁,建立了以AVHRR1、2通道资料为基础的土壤水分遥感估测模型;陈怀亮利用遥感资料估算深层土壤水分、风速和土壤质地对遥感估算土壤水分的影响、单时相遥感资料在估算土壤水分中的应用等几个方面进行了研究。

4.碳循环研究

1992年在巴西里约热内卢召开的联合国环境与发展大会签署了《联合国气候变化框架公约》(UNFCCC)。1997年通过的《京都议定书》首次为41个工业化国家规定了具有法律约束力的CO2减排目标,标志着人们已经开始走出共同努力保护气候资源的重要一步。温室气体排放导致气候变暖引起的冰川溶化、海平面上升以及干旱、洪涝、病虫害自然灾害增加等问题,也同样会对我国社会经济的可持续发展产生重要影响。2002年,国家重点基础研究发展规划设立并启动了“中国陆地生态系统碳循环及其驱动机制研究”项目。中国陆地生态系统的多样性、地形地貌的复杂性以及地理区位的特殊性为全球碳循环研究提供了得天独厚的天然实验室,遥感正是能够有所作为的重要技术支撑。

四、相关领域的遥感应用

1.灾害监测

联合国粮农组织在意大利建立的遥感与GIS中心,负责对欧洲和非洲的农作物生产的病虫害防治提供实时的监测。1973年美国密西西比河长距离的严重泛滥情况,1974年北亚拉巴马州强龙卷风的活动情况,都是利用陆地卫星获取的遥感资料来评估,这对灾情预报、监测和采取对策来减少灾害的破坏程度起了很大的作用。1998年我国特大洪涝灾害期间,我国利用遥感技术进行了多次灾害损失监测与灾害过程监测,准确计算了受灾面积及其灾害损失评估。2000年4月在西藏易贡滑坡这一严重地质灾害及其连带造成的洪水灾害发生与发展的全过程中,中巴地球资源卫星01星资料发挥了极其重要的作用。我国的森林火灾、旱灾、2000年春季华北地区的沙尘暴灾害等,均利用了资源卫星数据开展灾情、发生区域、发展过程、灾害损失、孕灾环境等方面的研究与评价工作。

近年来,水利部门利用遥感技术开展了洪涝灾害的监测评估、水环境调查和生态需水量估算等工作。林业部门利用资源卫星遥感也在荒漠化、林火、野生动物与野生植物、环境与湿地资源等监测中发挥了作用。林业系统现已建成了以北京卫星林火监测中心、昆明西南分中心和乌鲁木齐西北分中心为骨干的全国气象卫星林火信息监测网络。通过气象卫星图像的定标、定位处理,及时提取林火热点信息,确定林火发生地的环境、地类、林况和资源等内容,编制林火监测图像、林火势态图和报表,为林火扑救指挥提供决策依据,并赢得了宝贵的时间。同时,林业部门还应用TM、SPOT等遥感资料对森林病虫害、风灾进行了监测评估,提供数据和图件。

早在1983年,水利部就利用陆地卫星的TM数据三江平原挠力河的洪水,成功地获取了受淹面积和河道变化的信息。1984年和1985年,用极轨气象卫星分别调查了发生在淮河和辽河的洪水。在水利部进行的防洪减灾工作中,利用遥感和地理信息系统技术,建设完成了运行体系,并得到了多年的实际应用。以气象卫星、星载SAR和机载SAR、直升机以及地面水文、水位观测等,进行多平台监测,在宏观监测、灾情监测与紧急情况监测等方面发挥作用,从灾害发生时的遥感影像提取的现势水体与基础背景数据库中的水体叠加就可以进行洪涝灾害评估。

从“八五”开始,国家科技攻关项目组织了“我国重大自然灾害遥感监测评估”研究,“洪水灾害遥感监测评估技术”等研究,解决了洪涝灾害遥感监测评估的一系列关键技术,建设完成了“基于网络的洪涝灾情遥感速报系统”。其核心内容包括遥感图像预处理、洪涝灾情信息提取、灾害损失遥感评估和灾害速报信息发送等4部分,能够实现动态监测、农作物损失评估、防洪工程有效性分析、险工险段调查分析、城市洪灾监测、工业区生命线工程易

损性评估、洪水蓄洪分洪必要性分析、防灾减灾监测建议、灾后重建功能分区规划等多项应用,该系统在1998年的我国特大洪涝灾害监测与损失评估、救灾减灾等工作中发挥了显著作用。

目前,利用遥感技术进行灾害监测的内容和手段得到了极大的发展。我国地域辽阔,自然地理环境和地质环境复杂,各种灾害频发,防灾、减灾、救灾一直是我国发展中非常重视的内容。除了水灾、火灾等相对成熟的遥感监测、评估外,在雪灾、旱灾、沙尘暴等气候灾害,水质污染、土地退化等资源环境灾害,泥石流、滑坡、地震等地质灾害,生物多样性损失、外部生物入侵、病虫害等生物灾害方面,也开展了一系列的研究。实践征明,卫星遥感在减轻灾害损失方面是可以发挥重大作用的,特别是在紧急救灾和灾后重建方面,卫星提供的灾情信息比其他常规手段有着更快速、客观、全面等优越性。

2.农作物长势监测与估产

应用资源卫星数据,许多国家开展了农业资源调查、农作物长势监测和产量预报等。农情信息是指导农业生产、制定粮食政策与对外贸易政策的重要信息。1974~1977年间,美国农业部、宇航局和国家海洋大气管理局等单位协作开展了大面积农作物估产计划(LACIE),充分利用了农业、气象、数学、计算机、地面调查及遥感技术。随后又开展农业和资源的空间遥感调查计划(AGRISTARS,1980~1986),集成系统已运行多年。近20年来,一些西方国家利用资源卫星进行小麦、大豆、水稻、玉米和马铃薯等农作物的估产,以增加或减少某种农作物的种植或确定粮食政策。据报道,加拿大近年来利用资源卫星图像并结合其它资料,在125平方公里内清楚地识别出马铃薯与牧草、玉米及耕地与森林的界限,并查得该区域栽种马铃薯面积为3000~4000公顷,利用图片资料进行农作物产量评估,其可靠率为90%。法国、德国、前苏联、加拿大、印度、泰国、澳大利亚、阿根廷、巴西等国家也相继开展了作物估产工作。

遥感技术在我国农业上的应用,从20世纪70年代末起步,经过20多年的艰苦努力,目前已发展到实用化水平。国家气象局等单位自1984年开始进行全国11个省、市、自治区冬小麦气象卫星遥感综合测产研究和试验,创建了气象卫星动态监测大面积冬小麦长势的方法与技术。1989~1995年农业部利用美国陆地卫星资料开展了北方7省冬小麦长势、旱情、单产和总产等项目的监测预报研究工作,从1996年开始,冬小麦长势和旱情评估转入实际运行。1993~1998年的15年间,我国农作物遥感估产研究取得了很大发展,从冬小麦单一作物发展到小麦、水稻、玉米等多种作物,从小区域发展到大区域,从单一信息源发展到多种遥感信息源的综合应用,监测精度不断提高。

1998年以来,中国科学院支持开展了知识创新工程重要方向项目“全球农作物遥感估产研究”、“九五”重中之重和特别支持项目“中国资源环境遥感信息系统及农情速报”,主要开展全球尺度的作物长势动态监测和重点产粮国的总产预测。

农作物遥感估产包括长势与趋势监测和产量早期预报等2个方面。在充分利用多年来我国遥感估产成果的基础上,建成了NOAA AVHRR数据实时预处理系统,并利用每旬AVHRR 最大NDVI图像与上年同期数据对比实现全国范围农作物长势遥感监测;在高精度耕地数据库的支持下,通过提取耕地上的不同作物种植成数了提取作物种植面积。经过近年来的发展,现已建成了全球农作物长势监测系统、全国单产模型系统、全球遥感估产数据库、全球典型地区作物遥感监测、全国农情野外采样网络、NOAA/AVHRR标准数据集。在此基础上,解决和研发了作物长势遥感监测综合方法、区域作物生长过程遥感提取方法。从实时作物长势监测、作物生长过程监测、农业气象分析、物候和土地利用等辅助信息的运用等角度,构建了综合分析作物长势的技术,具备分旬进行各主产粮国家的长势监测。该体系具有效率高、费用低、灵活性强、简单易用和多用途的特点,可以对多达十几种作物成数调查,精度证明可达到95%以上。

3.海图编制

我国海域面积广阔,沿海岛屿众多,由于各种原因,相关研究较陆地区域困难更多。近年来我国发射了海洋卫星,加快了海洋遥感发展的步伐,特别是在海洋污染、洋流和海浪研究、海岸带研究、海洋行政属区划分等方面开展了越来越多的工作。

南沙群岛是我国领土不可分割的一部分,20世纪70年代以来,原地矿部、中国科学院、农业部等部门就油气勘探、海洋综合科学考察及渔业等方面开展了大量工作。国土资源部航空物探遥感中心等1995年4月又在南沙海域的三个不同海区进行了航空透水感蓝片浅海水深测量,同时进行无地面控制点机载GPS差分定位工作,并利用上述数据及资料开展了覆盖南沙群岛海域的岛、礁、滩、沙、洲的航空航天遥感调查工作。

遥感技术的应用以及发展趋势

遥感技术的应用以及发展趋势

一前言 二遥感信息技术基础 三遥感信息技术的应用 3.1遥感信息技术在环境监测方面的应用 3.1.1利用红外扫描仪监视石油污染 3.1.2利用遥感技术监测水体富营养化 3.1.3通过遥感技术调查废水污染和泥沙污染 3.1.4应用红外扫描仪监测水体热污染 3.1.5通过遥感技术分析水域的分

布变化和水体沼泽化 3.2.遥感技术在大气环境监测方面的应用 3.2.1臭氧层 3.2.2大气气溶胶 3.2.3有害气体 3.2.4气候变化 3.3遥感技术在城市环境监测与管理中的应用 3.4应用遥感技术监控生态环境 3.5 利用遥感技术监测自然灾害 四遥感信息技术的发展趋势 4.1遥感影像获取技术越来越先进 4.2遥感信息处理方法和模型越来越科学 4.3 3S一体化 4.4建立高速、高精度和大容量的

遥感数据处理系统 4.5建立国家环境资源信息系统 4.6建立国家环境遥感应用系统 五总结 六参考文 一前言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内得到广泛的应用。自20世纪80年代以来,随着遥感技术的发展,遥感技术在理论上、技术上和实际应用上发生了重大的变化。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理信息技术也更加成熟;在应用方面,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化的方向发展,是遥感技术的应用更加广

泛和深入。 二遥感信息技术基础 遥感技术是指从飞机、飞船、卫星等飞行器上,利用各种波段的遥感器,通过摄影、扫描、信息感应,识别地面物质的性质和运动状态的技术,具有遥远的感知的意思。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、航天、地质、矿产、考古、旅游等领域,影响了人类生活的方方面面,它为人类提供了从多维和宏观角度去认识世界的新方法与新手段,遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。 三遥感技术在环境科学中的应用 3.1.遥感技术在水污染监测方面的应用 3.1.1利用红外扫描仪监视石油污染

遥感技术在海洋中的应用

遥感技术在海洋中的应用 海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。在种种情况下,遥感技术应运而生。 1.遥感技术在海洋中应用的优越性 与常规的海洋调查手段相比海洋遥感技术具有许多独特的优点: 第一,它不受地理位置、天气和人为条件的限制,可以覆盖地理位置偏远、环境条件恶劣的海区及由于政治原因不能直接去进行常规调查的海区。 第二,卫星遥感能提供大面积的海面图像,每个像幅的覆盖面积达上千平方公里,对海洋资源普查、大面积测绘制图及污染监测都极为有利。 第三,卫星遥感能周期性地监视大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等。 第四,卫星遥感获取的海洋信息量非常大。 第五,能同步观测风、流、污染、海气相互作用和能量收支情况。 2.遥感技术在海洋中的应用 2.1在海岸开发中的应用 我国有1.8万公里海岸线,海岸带面积约35万平方公里,其中泥沙问题比较突出,特别是黄河、长江、杭州湾、珠江口等大的河口,年平均输沙量在5—12亿吨以上。如果我们掌握了泥沙的运动规律,加以很好地利用,就是一笔巨大的财富;反之,则会带来巨大的灾难。利用多时相的卫星遥感图像不仅可以反映大面积海区水体表层悬浮泥沙的分布规律和变化动态,而且还可以确定大风天时高含沙量的活动范围。这些信息对新港口选址、新航道的开辟、近海石油开采以及解决旧港口淤积等问题是必不可少的依据。 2.2在海洋渔业中的应用 卫星遥感信息可以用于渔场海洋环境研究,主要有: ①水温反演:海水温度与鱼类的生存、洄游有着密切关系,各种鱼类不仅有自己最适生存温度范围,而且随季节进行适温洄游。气象卫星可提供大面积海面

浅谈对遥感学科、专业、遥感应用与发展的认识

浅谈对遥感学科、专业、遥感应用与发展的认识 摘要 遥感技术是一门建立在空间科学、电子技术、光学、计算机技术、信息论等新的技术科学以及地球科学理论基础上的综合性技术,为现代前沿科学技术之一,具有宏观、动态、综合、快速、多层次、多时相的优势。在新技术迅猛发展的今天,遥感技术伴随着航空、航天技术的发展而不断提高与完善,服务领域因之而不断扩展,受到普遍重视,显示出极其广泛的应用价值、良好的经济效益和巨大的生命力。 关键词 遥感发展现状发展趋势应用范围 引言 遥感作为一种空间数据的获取方法,遥感技术及其图像信息处理信息技术集合了空间、电子、光学、计算机、生物学和地学等科学的最新成就,是现代高新技术领域的重要组成部分。主要为GIS提供全天候的实时的遥感影像,之后GIS便拿这些数据进行利用和分析。遥感是从远离地面的不同工作平台上,如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船和航天飞机等,通过传感器对地球表面的电磁波辐射信息进行探测,然后经信息的传输、处理和判读分析,对地球的资源与环境进行探测与监测的综合性技术。遥感技术从远距离采用高空鸟瞰的形式进行探测,包括多点位、多谱段、多时段和多高度的遥感影像以及多次增强的遥感信息,能提供综合系统性、瞬时或同步性的连续区域性同步信息,在环境科学领域的应用具有很大优越性。 1、遥感学科发展回顾 遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。萌芽时期 1608年制造了世界第一架望远镜。 1609年伽利略制作了放大三倍的科学望远镜并首次观测月球。 1794年气球首次升空侦察。 1839年第一张摄影像片。 初期发展 1858年用系留气球拍摄了法国巴黎的鸟瞰像片。 1903年飞机的发明。 1909年第一张像片。 一战期间(1914-1918):形成独立的航空摄影测量学的学科体系。 二战期间(1931-1945):彩色摄影、红外摄影、雷达技术、多光谱摄影、扫描

高光谱遥感技术的发展与展望

高光谱遥感技术的发展与展望 中科院上海技术物理研究所 引言 高光谱遥感技术,又称成像光谱遥感技术,是20世纪最后20年中遥感领域最重要的发展之一,它将传统遥感的成像技术和物理中的光谱分析技术有机结合起来,利用图像和光谱二合一(图谱和一)的优势,在探测物体空间特征的同时,研究地球表层物质特征,识别其类型,进行物质成分分析。十几年来,高光谱成像技术和理论一直是遥感对地观测领域内一个活跃的研究和发展方向,随着本世纪初多个星载高光谱成像仪器的发射和实用化机载商业系统的出现,高光谱遥感图像数据开始进入主流遥感数据源的行列,越来越多的用户将在资源管理、农林矿业调查、环境监测等方面发现其独特的作用。 高光谱遥感技术属于多学科交叉技术,主要由信息获取系统——“成像光谱仪”或“高光谱成像仪”和高光谱图像数据处理系统两大部分组成。成像光谱仪的突出特点是:光谱分辨力高、空间分辨力高,波段数多,数据量大,因此高光谱图像数据包含的地物信息更加丰富,要充分发挥高光谱数据的潜能,必须深刻全面地了解要测量的地表物质的光谱特性及其与高光谱传感器的真实测量值之间的关系,并开发适合高光谱数据特点的严密、精确的数据处理方法和理论。正是高光谱成像设备性能的不断提高和高光谱遥感图像数据处理技术的进步促进了高光谱遥感技术实用化的进程,这两大支撑技术的进一步发展也是该技术的应用能否走向辉煌的保证。 1.高光谱遥感的原理 任何物质都会反射、吸收、透射和辐射电磁波,且不同的物体对不同波长的电磁波的吸收、反射或辐射特性是不同的,物质的这种对电磁波固有的波长特性叫光谱特性,是由物质本身包含的原子、分子与电磁波的关系决定的,因此分析物质的光谱曲线是识别物质的有效手段。遥感成像光谱学所研究的波长范围包括可见光、近红外、短波红外,以及中-热红外波段,在可见光、近红外和短波红外波段,地表物质以反射太阳光能量为主,固体盐矿物质、水体、植被、冰雪、土壤等物质都有诊断性识别信息的特征谱,而在热红外区,地表物质以热辐射为主,其辐射光谱也可以作为矿物岩石等的物质识别的判据[ ]。本文主要介绍反射光的高光谱图像。 反映物质差别的特征光谱的吸收峰或反射峰的宽度一般在5~50nm左右[ ],且越精细的物质分类需要越高的光谱分辨力,而传统的多光谱遥感数据源的光谱分辨力(几十到几百nm)显然无法满足需要,必须采用高光谱图像数据,例如图1为三条光谱曲线,分别属于健康叶面,病害叶面和松软土地,其中土地和叶面的光谱差别很大,利用多光谱数据就可以区分,而两种状况的叶面光谱差别比较小,只能利用光谱分辨力更高的数据才能区分。目前国际上典型的高光谱成像仪,包括我国上海技术物理研究所研制高光谱成像仪的光谱分辨力都优于5-20nm,基本满足地物分类的要求。 图1 光谱曲线与相应的地物波长 反射率

我国遥感产业发展的现状

我国遥感产业发展的现状 一.引言 遥感技术是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术,通过遥感技术,可查询到高分一号、高分二号、资源三号等国产高分辨率遥感影像。1它集中了航天、航空、电子、计算机、现代光学以及生物地学等学科的最新成就,成为一种先进而有效的资源调查、环境监测及区域开发综合评价分析手段。遥感科技被公认是一种大容量的信息获取手段,在各个领域的应用中已显示出明显的社会经济效益,从而日益受到重视。根据联合国不完全的统计,目前全世界至少有1,400多个组织从事遥感活动。美国每年利用陆地卫星所得的效益为14亿美元,利用气象卫星资料避免各种损失为20亿美元,并预测政府在今后每年可以从商业化遥感活动中获取税收14亿美元。2现代遥感技术的发展趋势是由紫外谱段逐渐向 X射线和γ射线扩展。从单一的电磁波扩展到声波、引力波、地震波等多种波的综合。3 我国已成功发射并回收了10多颗遥感卫星和气象卫星,获得了全色像片和红外彩色图像,并建立了卫星遥感地面站和卫星气 1百度百科遥感技术 2《中国科技论坛》1986年第5月 3中国测绘网现代遥感技术发展的趋势与展望

象中心,开发了图像处理系统和计算机辅助制图系统。从“风云二号”气象卫星获取的红外云图上,我们每天都可以从电视机上观看到气象形势。4此外,作为我国卫星遥感平台代表的北斗卫星已得到国际范围的认可。 二.数据与方法 1950年代组建专业飞行队伍,开展航摄和应用。1970年4月24日,第一颗人造地球卫星。1975年11月26日,返回式卫星,得到卫星像片。80年代空前活跃,六五计划遥感列入国家重点科技攻关项目。1988年9月7日中国发射第一颗“风云1号”气象卫星。1999年10月14日中国成功发射资源卫星1 之后进入快速发展期--卫星、载人航天、探月工程等…随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。遥感影像获取技术越来越先进;遥感信息处理方法和模型越来越科学神经网络、小波、分形、认知模型、地学专家知识以及影像处理系统的集成等信息模型和技术,会大大提高多源遥感技术的融合、分类识别以及提取的精度和可靠性。统计分类、模糊技术、专家知识和神经网络分类有机结合构成一个复合的分类器,大大提高分类的精度和类数;53S 4中国测绘网遥感平台 5国土资源遥感

遥感技术及其应用

遥感技术及其应用 第四从人地关系看资与环境 单元活动遥感技术及其应用 一、教材分析 《遥感技术及其应用》是鲁教版必修一第四单元单元活动的教学内容,主要教学内容包括:遥感的概念、遥感的基本原理、遥感影像的初步判读等内容。 二、教学目标 知识要求:了解遥感技术的特点,工作原理流程及其应用领域。 技能要求:能够运用遥感影像中的直接和间接解译标志对遥感影像进行简单的解译。 情感要求:关注现代化的科学技术在地理科学中的应用,思考和理解地理信息技术的应用对协调人地关系的重要影响,培养学生的热爱地理的兴趣。 三、教学重点难点 重点:遥感工作原理 难点:遥感影像的判读 四、学情分析 本节内容是高一学生所学内容,尚未分科的平行班内不少是学理的好手,所以并不担心学生物理知识的不足。对于

气氛不太活跃的班级一定要让学生活动起,投入到角色中去,才能很好的理解遥感的原理。 五、教学方法 1.问题探究教学法:设置若干问题让学生分组讨论,并合作得出答案。 2.学案导学:见后面的学案。 3.新授课教学基本环节:预习检查→情境导入→合作探究→总结检测→布置预习 六、课前准备 1.学生的学习准备:预习“遥感技术及其应用”,初步掌握遥感的基本概念、基本原理及其应用领域和应用前景。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案,并把学生科学分成若干小组。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查学生预习的落实情况,并了解和归纳学生的疑惑,使课堂教学更有效率和更具有针对性。 (二)情景导入、展示目标 前面几节课我们学习了人地关系的一些相关知识,知道了人类的生存与发展离不开资与环境。随着科技的发展和时

遥感在农业中的作用与发展

遥感在农业中的作用与发展 1农作物估产 遥感(RemoteSensing)即遥远的感知,指在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。摄影照相便是一种最常见的遥感,照相机并不接触被摄目标,而是相隔一定的距离,通过镜头把被摄目标的影像记录在底片上,经过化学处理,相片便重现被摄目标的图像。从拍摄目标到再现目标所用的手段,便是一种遥感技术。遥感与其他技术结合,在农业应用中具有科学、快速、及时的特点。这对于充分利用农业资源、指导农业生产、农产品供需平衡等方面有着重要的意义。 2遥感估产的原理及农作物估产方法 遥感估产的基本原理[2] 任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。人眼正是利用这一特性,在可见光范围内识别各种物体的。遥感技术也是基于同样的原理,利用搭载在各种遥感平台(地面、气球、飞机、卫星等)上的传感器(照相机、扫描仪等)接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态。农作物估产则是指根据生物学原理,在收集分析各种农作物不同生育期不同光谱特征的基础上,通过平台上的传感器记录的地

表信息,辨别作物类型,监测作物长势,并在作物收获前,预测作物的产量的一系列方法。它包括作物识别和播种面积提取、长势监测和产量预报两项重要内容。 农作物估产的方法 农作物估产在方法上可分为传统的作物估产和遥感估产两类。传统的作物估产基本上是农学模式和气象模式,采用人工区域调查方法。它们把作物生长与主要制约和影响产量的农学因子或气候因子之间用统计分析的方式建立起关系。这类模式计算繁杂、速度慢、工作量大、成本高,某些因子种类往往难以定量化,不易推广应用。遥感估产则是建立作物光谱与产量之间联系的一种技术,它是通过光谱来获取作物的生长信息。在实际工作中,常常用绿度或植被指数(由多光谱数据,经线性或非线性组合构成的对植被有一定指示意义的各种数值)作为评价作物生长状况的标准。植被指数中包括了作物长势和面积两方面的信息,各种估产模式,尤其是光谱模式中植被指数是一个极为重要的参数。根据传感器从地物中获得的光谱特征进行估产具有宏观、快速、准确、动态的优点[3,4]。 农作物估产中所应用的遥感资料大致可分为3类:一是气象卫星资料,主要为美国第三代业务极轨气象卫星(NOAA系列)装载的甚高分辨率辐射仪(AVHRR)资料,其资料特点是周期短、覆盖面积大、资料易获取、实时性强、价格低廉,空间分辨率低但时间分辨率较高;二是陆地卫星(Landsat)资料,应用较多功能是专题制图仪(TM)资料,它重复周期长、价格高,但其空间分辨率高[5];三是航空遥感和地面遥感资料,主要用于光谱特征及估产农学机理的研究中,其中高光谱数据可提供连续光谱,可消除一些外部条件的影响而成为遥感数据处理、地面测量、光谱模型和应用的强有力的工具[6]。在遥感估产中农作物面积提取是最重要的内容。用遥

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

遥感技术的应用及发展趋势论文

遥感技术的应用及发展趋势

目录 一、遥感的概念 (1) 二、遥感的发展历史 (1) 三、遥感信息技术基础 (1) 四、遥感技术在环境科学中的应用 (2) 4.1遥感技术在水污染监测方面的应用 (2) 4.1.1利用遥感技术监测水体富营养化 (2) 4.1.2通过遥感技术分析水域的分布变化和水体沼泽化 (2) 4.2遥感技术在大气环境监测方面的应用 (2) 4.2.1臭氧层 (2) 4.2.2有害气体 (2) 4.2.3气候变化 (2) 4.3遥感技术在城市环境监测与管理中的应用 (2) 4.4应用遥感技术监控生态环境 (3) 4.5利用遥感技术监测自然灾害 (3) 五、遥感技术的发展趋势 (3) 5.1遥感影像获取技术越来越先进 (3) 5.2遥感信息处理方法和模型越来越科学 (4) 5.3 3S一体化 (4) 5.4.建立高速、高精度和大容量的遥感数据处理系统 (4) 5.5.建立国家环境资源信息系统 (4) 5.6.建立国家环境遥感应用系统 (4) 六、总结 (5)

一、遥感的概念 遥感的英文是“remote sensing”,意即“遥远的感知”,在日本叫“远隔探知”或“远隔探查”。其科学含义一般理解为:在遥远的地方,感测目标物的“信息”,通过对信息的分析研究,确定目标物的属性及目标物之间的关系。也就是说:不与目标物接触,凭借其发出的某些信息识别目标。所以有人将遥感技术作为一种侦察技术。 根据遥感的这一概念,人和动物都具有一定的遥感本领。例如,人的眼睛识别物体的过程就是一种遥感过程,它是靠物体的色调、亮度,以及物体的形状、大小等信息,来判定物体的属性。蝙蝠能发射超声波,并用接收到的回波来判断障碍物的距离、方位和属性。现代遥感技术就是模仿自然界中的遥感现象和过程而产生的。 目前,对遥感比较一致的定义是:在远离被测物体或现象的位置上,使用一定的仪器设备,接收、记录物体或现象反射或发射的电磁波信息,经过对信息的传输、加工处理及分析与解译,对物体及现象的性质及其变化进行探测和识别的理论与技术。 二、遥感的发展历史 任何一门科学和技术的形成与发展,总是和时代的发展和要求相一致,不可能超越时代,遥感技术当然也不例外。它的形成是与传感技术、宇航技术、通讯技术以及电子计算机技术的发展相联系,与军事侦察、环境监测、资源开发利用和全球变化的需要相适应的。 20世纪50年代以来,随着科学技术的发展。在普通照相机和飞机的基础上,一些新的信息探测系统相继出现。人类观测电磁辐射的能力从可见光扩展到了紫外、红外、微波等,对目标物信息的收集方式从摄影到非摄影;资料由像片到数据(非图像);平台由汽车、飞机发展到了卫星、火箭;应用研究从军事、测绘领域扩展到了农、林、水、气象、地质、地理、环境和工程等部门。这就需要引进一个新的术语,以便概括这种信息探测系统及其过程。1960年美国学者伊林L.布鲁伊特(Evelyn L..Pruitt)提出“遥感”这一科学术语,1962年在美国密执安大学召开的<国际环境科学遥感讨论会)上,这一名词被正式通过,从此就标志着遥感这门新学科的形成。 但是,在遥感一词出现以前,就已产生了遥感技术。发展至今,大体经历了三个阶段.常规航空摄影阶段、航空遥感阶段和航天遥感阶段。 三、遥感信息技术基础 遥感技术是指从飞机、飞船、卫星等飞行器上,利用各种波段的遥感器,通过摄影、扫描、信息感应,识别地面物质的性质和运动状态的技术,具有遥远的感知的意思。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测

《遥感技术与应用》教学大纲

《遥感技术及应用》教学大纲 课程代号:0707222080 课程名称:遥感技术及应用 课程英文名称:Remote Sensing Technology and Application 课内学时:48学时 学分:2.5学分 编写人:杨德明 一、课程目的与要求: 遥感技术及应用是为资源环境与城乡规划管理专业设立的专业基础课。本课程教学目的是通过课程的讲授和实验,使学习者掌握遥感科学技术的基本理论;掌握遥感信息的来源和遥感图像的成像原理;掌握遥感技术及应用的基本知识内容;基本掌握遥感在资源与环境等方面应用的技术方法;了解遥感技术的发展与应用领域。 二、课程简介: 遥感技术及应用是一门具有广泛实用性的专业基础课。该课程在遥感技术理论阐述基础之上,讲述该技术在地质、土地、海洋、农林、城市等资源环境调查、监测等方面的应用。遥感技术是当前被全世界广受重视的高新技术,在地球表层系统研究中又具广阔的应用领域。该课程在我校是地质、资源环境、自然地理、土地资源管理、地理信息系统、环境工程的专业的必修课,受到学生的普遍欢迎,也有望成为全校一年级的公共选修课。 课程英文简介: Remote Sensing Technology and Application is a wide-ranging pragmatic specialized basic course. Based on expounding the theory of remote sensing technology, the course tells about it’s applications of resources investigation and monitor in geology, land, ocean, agriculture, urban and so on. Nowadays, as being an advanced high technology, remote sensing technology is paid great attention by all over the world. It has a broad application field in the research of the earth’s surface system. In our school, this course has being widely taught for the specialties such as geology, resources and environment, natural geology, land resource management, GIS and environment engineering. Since it is began lecturing, students extend warm welcome, what’s more, it may be taken as a public elective course for the freshmen. 三、课程内容与学时分配: (一)课程安排(40学时) 第一章绪论2学时 一、遥感与遥感技术 (一)遥感的基本概念 讲解有关遥感的基本概念:遥感的涵义、遥感的信息源、主动遥感、被动遥感、广义遥感、狭义遥感、成像方式遥感和非成像方式遥感。 (二)遥感技术系统和特点 1.遥感技术系统涵义 2.遥感技术系统组成 (1)遥感信息收集系统(遥感仪器和运载平台) (2)遥感信息传输和与处理系统(地面接受站的工作和设备) (3)遥感图像处理解译分析系统(处理设备和专业解译人员)

遥感技术的运用与发展趋势

遥感技术的运用与发展趋 势 Prepared on 24 November 2020

我国遥感技术的运用与发展趋势 【摘要】面对新的世纪、新的形势,世界各国政府都在认真思考和积极部署新的经济与社会发展战略。尽管各国在历史文化、现实国情和发展水平方面存在着种种差异,但在关注和重视科技进步上却是完全一致的。这是因为,我们面对的是一个以科技创新为主导的世纪,是以科技实力和创新能力决定兴衰的国际格局。因此,我们要充分认识遥感技术,了解其发展现状及趋势。 【关键词】遥感技术现状趋势商业化 众所周知,近十年来全球空间对地观测技术的发展和应用已经表明,遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。 一、遥感信息技术基础 遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线结目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。这是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、

遥感技术发展简史

遥感技术发展简史 遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。 遥感是利用遥感器从空中来探测地面物体性质的,它根 不同响应的原理,识别地面上各类地物,具有遥远感知事物的意思。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物[1]。 1 遥感的概念 1.1 广义的遥感 遥感一词来自英语Remote Sensing ,既“遥远的感知”。广义理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。 实际工作中,重力、磁力、声波、地震波等的探测被化为物探(物理探测)的范畴。因而,只有电磁波探测属于遥感的范畴。 1.2 狭义的遥感 遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感不同于遥测和遥控。遥测是指对被测物体某些运动参数和性质进行远距离测量的技术,分接触测量和非接触测量。遥控是指远距离控制目标物运动状态和过程的技术。 遥感,特别是空间遥感过程的完成往往需要综合运用遥测和遥控技术。如卫星遥感,必须有对卫星运行参数的遥测和卫星工作状态的控制等[2]。 2 遥感技术主要特点 2.1可获取大范围数据资料 遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。例如,一张陆地卫星图像,其覆盖面积可达3万多km2。这种展示宏观景象的图像,对地球资源和环境分析极为重要。 2.2获取信息的速度快,周期短 由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图像。Meteosat每30分钟获得同一地区的图像。 2.3获取信息受条件限制少 在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。 2.4获取信息的手段多,信息量大 根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层、水的下层,冰层下的水体,

微波相关领域新技术及发展趋势

微波相关领域新技术及发展趋势 ?移动通信?卫星通信?毫米波通信?微波遥感?自由 光通信?网络课程 在科技发展一日千里的今天,微波技术也得到了迅猛的发展。微波的始用是第二次世界大战期间,英国科学家利用微波方向性强,遇到障碍物发生发射的特点,研制成功雷达用以探测敌机,其后50多年微波技术有了飞速的发展,就其发展方向看大致有如下几个特点: 工作频率不断向高频段延伸。 微波元件及整机设备不断向小型化、宽频带发展。 微波系统和设备不断向自动化、智能化和多功能化的方向发展。 下面移动通信、卫星通信、毫米波通信、微波遥感、无线光通信五个方面来介绍一下微波技术在相关领域近年的发展趋势。

一、移动通信 返回 从20世纪80年代起,移动通信技术获得了很大的发展,从传统的单基站大功率系统到蜂窝移动系统、卫星移动系统;从本地覆盖到区域、全国覆盖,并实现了国内、国际漫游;从提供语音业务到提供包括数据的综合业务;从模拟移动通信系统到数字移动通信系统等。随着第3代移动通信技术的商用和移动网与互联网的融合,全球正在向移动信息时代迈进。 在过去的10年里,移动通信得到了飞速的发展,第三代移动通信系统(3G)的出现更使移动通信前进了一大步。到目前为止,3G各种标准和规范已达成协议,并已开始商用。但也应该看到3G系统尚有很多需要改进的地方,如:3G缺乏全球统一标准;3G所采用的语音交换架构仍承袭了第二代(2G)的电路交换,而不是纯IP方式;流媒体(视频)的应用不尽如人意;数据传输率也只接近于普通拨号接入的水平,更赶不上xDSL等。所以,在第三代移动通信还没有完全铺开,距离完全实用化还有一段时间的时候,已经有不少国家开始了对下一代移动通信系统(4G)的研究。相对于3G而言,4G在技术和应用上将有质的飞跃,而不仅仅是在第三代移动通信的基础上再加上某些新的改进技术。 到目前为止,第四代移动通信系统技术还只是一个主题概念,即无线互联网技术。人们虽然还无法对4G通信进行精确定义,但可以肯定的是,4G通信将是一个比3G通信更完美的新无线世界,它将可创造出许多难以想象的应用。未来的无线移动通信系统是覆盖全球的信息网络中的一部分,它将包括室内的无线LAN、室外的款待接入、智能传输系统(ITS)等。 4G中的关键技术 3G在经过了多年的研究和开发以后,在应用时仍然碰到了许多问题,并且距离个人通信的5个"W"还有一段距离,因此才会提前出现对4G的研究,在4G中将会采用一下一些新技术。

关于遥感技术未来的发展方向

关于遥感技术未来的发展方向 摘要:遥感技术集合了空间、电子、光学、计算机、生物学和地学等科学的最新成就,是现代高新技术领域的重要组成部分。自从1972年美国第一颗地球资源技术卫星发射成功并获取了大量地球表面的卫星图像后,遥感技术就开始在世界范围内迅速发展和广泛应用。遥感技术的出现揭开了人类从外层空间观测地球的序幕,为人类认识国土、开发资源、监测环境、研究灾害以及分析全球气候变化等提供了新的途径。 关键词:遥感技术环境科学应用3S一体化发展趋势 遥感是从远离地面的不同工作平台上,如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船和航天飞机等,通过传感器对地球表面的电磁波辐射信息进行探测,然后经信息的传输、处理和判读分析,对地球的资源与环境进行探测与监测的综合性技术。遥感技术从远距离采用高空鸟瞰的形式进行探测,包括多点位、多谱段、多时段和多高度的遥感影像以及多次增强的遥感信息,能提供综合系统性、瞬时或同步性的连续区域性同步信息,在环境科学领域的应用具有很大优越性。 20世纪90年代以来,环境遥感技术应用越来越广。从陆地的土地覆被变化,城市扩展动态监测评价,土壤侵蚀与地面水污染负荷产生量估算,生物栖息地评价和保护,工程选址以及防护林保护规划和建设。到水域的海洋和海岸带生态环境变迁分析,海面悬浮泥沙、叶绿素含量、黄色物质、海上溢油、赤潮以及热污染等的发现和监测,珊瑚和红树林的现状调查与变化监测,堤坝的规划与水沙平衡分析,水下地形地遥调查以及水域初级生产率的估算。再到大气环境遥感中的城市热岛效应分析,大气污染范围识别与定量评价,大气气溶胶污染特征参数化,全球水、气和化学元素等的循环研究,全球环境变化以及重大自然灾害的评估等,几乎覆盖了整个地球系统。 一、遥感技术在环境科学中的应用 1.遥感技术在水污染监测方面的应用 (1)利用红外扫描仪监视石油污染 全球每年排入海洋的石油及其制品高达1000万吨,利用多光谱航片可对海面石油污染进行半定量分析,将彩色航片同步拍照与近红外片做的彩色密度分割图相比较,更精密地判断和解译信息,参照图片画出不同油膜厚度的大致分级图。通过彩色密度分割图像,特别是数字密度分割图,可以更准确地判断油量的分布情况。通过彩色密度分割可把相差零点零几厚度的海面油膜区分出层次来,这有利于用航空遥感对海面油的扩散分布和半定量研究。浓度大的地方是黄色,往外扩散的油膜变薄,呈黄紫混在一起的颜色,再往外扩散的油膜就更薄些呈紫色。通过对污染发生后各天的气象卫星图像的对比分析,确定油膜的漂移方向,计算出其扩散速度和扩散面积。 (2)利用遥感技术监测水体富营养化 浮游植物中的叶绿素对蓝紫光和红橙光有较强的吸收作用,当水体出现富营养化时,我们就可以利用遥感技术推算出水体中的叶绿素分布情况。赤潮区的海水光谱特征是藻类、泥沙和海水的复合光谱,另外有机或无机颗粒物也会吸收入射光,影响水体的透明度。 (3)通过遥感技术调查废水污染和泥沙污染

海洋遥感的应用与展望

海洋遥感的应用与展望 摘要:海洋遥感利用电磁波与大气和海洋的相互作用原理观测和研究海洋,以海洋及海岸带作为监测、研究对象,具有快速、多波段、周期性、大面积覆盖等观测能力的空间遥感技术。回顾了海洋遥感发展的4个阶段,介绍了海洋遥感在海洋资源环境调查、动态监测以及海洋污染等方面的应用。最后,提出了海岸带遥感动态监测技术的精确化和定量化研究、海洋遥感地理信息系统建设以及海洋小卫星遥感的应用是未来海洋遥感研究和应用的重点。 海洋覆盖地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间,“海洋是全球生命支持系统的一个基本组成部分,是一种有助于实现可持续发展的宝贵财富”(联合国《21世纪议程》,1992),开发利用海洋对人类生存与发展的意义日显重要。多年来国内外投入了大量的人力、物力和财力,利用先进的科学调查技术以求全面而深入地认识和了解海洋,指导人们科学合理地开发海洋、改善环境质量。传统的海岸调查在资料获取、信息处理等方面存在较大局限,主要表现在海岸环境的进入性与通达性较差;近海和海岸环境复杂多变,难以进行多变量同步控制观测;海岸环境变化周期长、信息量大,难以取得理想的可控制数据,在实时处理上也有很大困难。因而,常规的海洋观测手段不可能全面、深刻地认识海洋现象,也不可能掌握全球大洋尺度的过程和变化规律。在海洋资源开发、全球性环境变化监测、海洋权益的维护及沿海地区的综合开发和管理上,都需要有一种新的海洋观测技术替代或补充传统的常规海洋调查方法,而海洋遥感所具有的大范围实时同步、全天时、全天候多波段成像技术优势可以快速地探测海洋表面各物理参量的时空变化规律。海洋遥感(Oceanographic Remote Sensing)是指以海洋及海岸带作为监测、研究对象的遥感,包括物理海洋学遥感,如对海面温度、海浪谱、海风矢量、全球海平面变化等的遥感;生物海洋学和化学海洋学遥感,如对海洋水色、黄色物体、叶绿素浓度等的遥感;海冰监测,如监测海冰类型、分布和动态变化;海洋污染监测,如油膜污染等。海洋遥感是利用电磁波与大气和海洋的相互作用原理观测和研究海洋的,其内容涉及到物理学、海洋学和信息科学等多种学科,并与空间技术、光电子技术、微波技术、计算机技术、通讯技术密切相关,是20世纪后期海洋科学取得重大进展的关键学科之一,形成了从海洋波谱分析到海洋现象自动识别等一套完整的理论与方法。海洋遥感与常规的海洋调查手段相比具有许多独特的优点:首先,它不受地表、海面、天气和人为条件的限制,可以探测地理位置偏远、环境条件恶劣等不能直接进入的海区;其次,它的宏观特性使它能进行大范围海洋资源普查、海洋制图以及海冰、海洋污染监测;第三,能周期性地监测大洋环流、海面温度场的变化、鱼群的迁移、污染物的运移等;第四,多波段、高光谱海洋遥感可以提供海量海洋遥感信息,开拓人们的视野;第五,能达到同步观测风、流、污染、海气相互作用,并获取能量收支信息。 1 发展回顾 海洋遥感的发展过程,大致经历了4个阶段: 第1阶段(1957~1970年)是起步阶段。 自从1957年前苏联发射了第一颗人造地球卫星以后,人类就步入了太空时代,空间海洋观测是人类空间计划中最早的项目之一。1960年4月1日,美国宇航局(NASA)发射了第一颗气象卫星TIROS-Ⅰ(泰罗斯),其热红外图像能够显示无云海区丰富的海面温度信息,卫星数据由此成为海洋学研究的新的信息源。随后发射的TIROS-Ⅱ卫星,开始涉及海温观测。1961年美国执行水星计划,宇航员有机会在高空亲眼观察海洋。其后,Gemini与Apollo宇宙飞船获得大量的彩色图像以及多光谱图像。尽管这些航天计划主要试验目的是空间技术,但它已展现了从空间观测和研究海洋的潜力。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

相关主题
文本预览
相关文档 最新文档