当前位置:文档之家› 第一轮高考复习 定积分微积分

第一轮高考复习 定积分微积分

第一轮高考复习  定积分微积分
第一轮高考复习  定积分微积分

定积分的概念、微积分基本定理及简单应用

一、 课前小测

2.等比数列{a n }中,a 3=6,前三项和S 3=

30

?

4x d x ,则公

比q 的值为( )

3.若π

20

?

(sin x -a cos x )d x =2,则实数a 等于( )

A .-1

B .1

C .- 3 D. 3

4.若1a

-?-1(2x +1)d x =2,则a =_____.

5.汽车以v =3t +2(单位:m/s)作变速直线运动时,在第 1 s

至第2 s 间的1 s 内经过的路程是_____m.

二、知识点梳理 1.定积分的定义

如果函数f(x)在区间[a ,b]上图象是连续曲线,用分点a =x 0

____成n 个

小区间.在每个小区间 上任取一点ξi (i =1,2,…,n)作和式_______

_________,

当n→∞时,上述和式无限趋近某个常数,这个常数叫做函数f(x)在区间[a ,b]上的__定积分 _.记作:f(x)d x.即:

[]

i i x x ?1-

5.利用牛顿——莱布尼兹公式求定积分的关键是求被积函数的原函数,可将基本初等函数的导数公式逆向使用.

b a ?).

()(|)(d )(a F b F x F x x f b

a -==

三、经典例题

四、练习

5.物体A 以速度v=3t2+1 在一直线上运动,在此直线上与物体A 出发的同时,物体 B 在物体A 的正前方 5 m 处以v =10t 的速度与 A 同向运动,问两物体何时相遇?相遇时物体A的走过的路程是多少(时间单位为:s,速度单位为:m/s)?

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

定积分与微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学~定积分和微积分基本原理

高中数学~~定积分和微积分基本原理 1、求曲线、直线、坐标轴围成的图形面积 ? [ 高三数学] ? 题型:单选题 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A. 310 B. 4 C. 3 16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析 考查知识点: ? 定积分在几何中的应用 ? 用微积分基本定理求定积分值 难度:难 解析过程: 联立方程组,2 ???-==x y x y 得到两曲线的交点坐标为(4,2), 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为: 3 16)]2([4 = --? dx x x . 答案:C 规律方法: 首先求出曲线y=和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关 系求解. 利用定积分知识求解该区域面积是解题的关键. 高二数学问题 ? [ 高一数学] ? 题型:简答题 曲线y=sinx (0≤x ≤π)与直线y=?围成的封闭图形面积是? 问题症结:找不到突破口,请老师帮我理一下思路 考查知识点: ? 用定义求定积分值 难度:中 解析过程:

规律方法: 利用定积分的知识求解。 知识点:定积分和微积分基本原理 概述 所属知识点: [导数及其应用] 包含次级知识点: 定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用 知识点总结 本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。只有理解了定积分的概念,才能理解定积分的几何意义。

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

2020年全国高考数学·第15讲 定积分和微积分基本定理

2020年全国高考数学 第15讲 定积分和微积分基本定理 考纲解读 1.了解定积分的实际背景、基本思想及概念. 2.了解微积分基本定理的含义. 命题趋势探究 定积分的考查以计算为主,其应用主要是求一个曲边梯形的面积,题型主要为选择题和填空题. 知识点精讲 基本概念 1.定积分的极念 一般地,设函效()f x 在区间[a ,b]上连续.用分点0121i i a x x x x x -=<<<<

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

定积分和微积分基本定理

第三节定积分和微积分基本定理 考纲解读 1?了解定积分的实际背景、基本思想及概念 ? 2?了解微积分基本定理的含义 . 命题趋势探究 定积分的考查以计算为主, 其应用主要是求一个曲边梯形的面积, 题型主要为选择题和填空 题? 知识点精讲 一、基本概念 1.定积分的极念 一般地,设函效 f (x )在区间[a , b ]上连续.用分点a = x 0 < x 2< L < x — < x b - a < L < X n 二b 将区间[a,b ]等分成n 个小区间,每个小区间长度为 D x ( D x = ), n n 在每个小区间[X i -^X i ]上任取一点\ i =1,2J||,n ,作和式:S^v f(i)C x =: i 二 n b _a f ( i ),当D x 无限接近于0 (亦即n —; ? ?)时,上述和式S n 无限趋近于常数 S , i i n b 那么称该常数S 为函数f (x)在区间[a,b ]上的定积分?记为: S 二 f (x)dx , f (x)为 * a 被积函数,X 为积分变量, 需要注意以下几点: [a, b ]为积分区间,b 为积分上限,a 为积分下限. b (1) 定积分 f(x)dx 是一个常数,即S n 无限趋近的常数S (n 时),称为 a b f (x)dx ,而不是 S n . a (2) 用定义求定积分的一般方法 . b n ? b -^a a f(x)dx 二[imj f i -" a - i n b t 2 b (3)曲边图形面积:S = f x dx ;变速运动路程s 二 v(t)dt ;变力做功S = F(x) dx 2 ?定积分的几何意义 b 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f(x)_0,那么定积分a f x dx 表 示由直线 X =a,x =b(a =b), y =0和曲线y = f (x )所围成的曲边梯形(如图3-13中的阴影 ①分割:n 等分区间[a ,b ];②近似代替:取点 n b — a i ?〔x 」,X i 丨;③求和:、? 口 f(i ); ◎ n ④取极限:

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=????? K ,fx ≤K ,fx ,fx >K , 则当函数f (x )=1x ,K =1时,定积分??214f K (x)d x 的值为________. (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t (00),

(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解()

高中数学高考总复习定积分与微积分基本定理习题及详解 一、选择题 1.(2010·山东日照模考)a =??0 2x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是 ( ) A .a 2,c =? ?0 2sin x d x =-cos x |02=1 -cos2∈(1,2), ∴c

微积分定积分练习题(有答案)

1利用定积分的几何意义计算」''1 - x2dx. 2. 计算定积分"2(x+ 1)dx. J i 3. 定积分"bf(x)dx的大小() ?a A .与f(x)和积分区间[a, b]有关,与E的取法无关 B.与f(x)有关,与区间[a,b]以及&的取法无关 C .与f(x)以及8的取法有关,与区间[a, b]无关 D .与f(x)、区间[a,b]和8的取法都有关 4. 在求由x= a,x= b(a

8. 10 利用定积分的几何意义求 —9 — x — 3 2dx. (1)| 2(x 2+ 2x + 1)dx ; 广n (2) 1 (sinx — cosx)dx ; (3)| J* 2 / 、 1 x — X 2 +_ 1 丿。 1 < X 丿 (4) 0-?cosx + e x )dx. ⑹p (2x + 1)dx ; ⑺ 丿0 1 2x + 一 dx x 广1 ⑺f; x (8) 1x 3dx ; ■ 0 (9) 1e x dx. 11 求 y = — x 2与 y = x — 2围成图形的面积S. 15 A.— 4 17 B.— 4 1 C.—|n 2 2 D . 2ln2 已知"2 f(x)dx = 3,贝U 2 [f(x) + 6]d 1 1 12 .由直线x =2,x =2,曲线y =严x 轴所围图形的面积为 13.已知 f 1— 1(x 3 + ax + 3a — b)dx= 2a + 6 且 f(t) = f (x 3 + ax + 3a — b)dx 为偶函数, 求下列定积分: dx ; 2 1 x 2dx

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

定积分与微积分基本定理

定积分与微积分基本定 理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

课题:定积分与微积分定理使用时间:2011-10-11 【使用说明及学法指导】 1.先仔细阅读教材选修2-2:,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树; 2.限时30分钟独立、规范完成探究部分,并总结规律方法. 【学习目标】 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义。 2.直观了解微积分基本定理的含义,并能用定理计算简单的定积分。 3.应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值.? 学习重点:正确计算定积分,利用定积分求面积。 学习难点:定积分的概念,将实际问题化归为定积分问题。 学习策略: ①运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念。 ②求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ③求导运算与求原函数运算互为逆运算. 【课前预习】 一、基础知识梳理: 知识点一:定积分的概念

如果函数在区间上连续,用分点 将区间分为n个小区间,在每个小区间上任取一点 (i=1,2,3…,n),作和式,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即=,这里,与分别叫做积分与积分,区间 叫做,函数叫做,叫做,叫做 . 说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 知识点二:定积分的几何意义: 设函数在区间上连续. 在上,当时,定积分在几何上表示由曲线以及直线与轴围成的; 在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积 的;

定积分与微积分练习题及答案

定积分与微积分练习题及答案 一、选择题: 1如图,阴影部分面积等于( ) A .2 3 B .2- 3 C.323 D.35 3 [答案] C [解析] 图中阴影部分面积为 S =??-31 (3-x2-2x)dx =(3x -13x3-x2)|1-3=32 3. 2.??0 24-x2dx =( ) A .4π B .2π C .π D.π2 [答案] C [解析] 令y =4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =1 4 ×π×22=π. 3.(2012·山东日照模拟)向平面区域Ω={(x ,y)|-π4≤x≤π 4,0≤y≤1}内随机投掷一点,该 点落在曲线y =cos2x 下方的概率是( ) A.π 4 B.12 C.π 2 -1 D.2π [答案] D[解析] 平面区域Ω是矩形区域,其面积是 π 2 ,在这个区 4.设f(x)=? ??? ? x2, x ∈[0,1],2-x ,x ∈[1,2],则 2 ? f(x)dx 等于 ( ) A.34 B.45 C.5 6 D .不存在 解析:数形结合, 2 ? f(x)dx= 1 ? x2dx+ 2 1 ? (2-x)dx

= 321211(2)3021x x x +-=3115(422)326x +--+= .答案:C 5.如图,函数y =-x2+2x +1与y =1相交形成一个闭合 图形(图中的阴影部分),则该闭合图形的面积是 ( ) A .1 B.4 3 C. 3 D .2 解析:函数y =-x2+2x +1与y =1的两个交点为(0,1)和(2,1),所以闭合图形的面积等于 2 ? (-x2+2x +1-1)dx = 2 ? (-x2+2x)dx =4 3 .答案:B 6.(2010·烟台模拟)若y = x ? (sint +costsint)dt ,则y 的最大值是 ( ) A .1 B .2 C .-7 2 D .0 解析:y = x ? (sint +costsint)dt = x ? (sint +1 2 sin2t)dt =(-cost -14cos2t)0x =-cosx -14cos2x +54=-cosx -14(2cos2x -1)+54=-12cos2x -cosx +32=-1 2 (cosx +1)2+2≤2. 答案:B 7.(2010·惠州模拟)??0 2(2-|1-x|)dx =________.[答案] 3 [解析] ∵y =? ???? 1+x 0≤x≤1 3-x 1

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学山永峰 考 什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =??0 1(x 2-x )d x B .S =??0 1(x -x 2)d x C .S =??0 1(y 2-y )d y D .S =??0 1(y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =??0 1(x -x 2)d x . 2.如图,阴影部分面积等于( ) — A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??-3 1 (3-x 2-2x )d x =(3x -13x 3-x 2)|1-3 =32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, / ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后 的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的

定积分、不定积分、微积分的区别

定积分,不定积分…微积分的区别 不定积分 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。 记作∫f(x)dx。 其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 由定义可知: 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。 也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数. 定积分 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分

的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 而相对于不定积分,就是定积分。 所谓定积分,其形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢? 定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F'(x)=f(x) 那么∫f(x) dx (上限a下限b)=F(a)-F(b) 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。

相关主题
文本预览
相关文档 最新文档