当前位置:文档之家› Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage

Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage

Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage
Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage

Postharvest Biology and Technology 32(2004)57–65

Ripening of ‘Hayward’kiwifruit treated with 1-methylcyclopropene after cold storage

Eduardo J.Boquete a ,Gustavo D.Trinchero b ,Adela A.Fraschina b ,

Fernando Vilella c ,Gabriel O.Sozzi a ,?

a

Cátedra de Fruticultura,Facultad de Agronom′?a,Universidad de Buenos Aires,Avda,San Mart′?n 4453,

C1417DSE Buenos Aires,Argentina

b Cátedra de Bioqu′?mica,Facultad de Agronom′?a,Universidad de Buenos Aires,Avda,San Mart′?n 4453,

C1417DSE Buenos Aires,Argentina

c

Cátedra de Producción Vegetal,Facultad de Agronom′?a,Universidad de Buenos Aires,Avda,San Mart′?n 4453,

C1417DSE Buenos Aires,Argentina

Received 4April 2003;accepted 27September 2003

Abstract

‘Hayward’kiwifruit [Actinidia deliciosa (A.Chev.)C.F.Liang et A.R.Ferguson var deliciosa ]were stored for 30days at 0.5?C and then treated with 0.5,1or 5?l l ?11-methylcyclopropene (1-MCP)for 16h at 20?C.Treated and control fruit were subsequently stored at 20±1?C to ripen.Control fruit displayed a typical climacteric pattern of ethylene production.Peak ethylene production was measured at 17th day.Ethylene production by treated fruit remained low and they did not show an ethylene climacteric during 32days of storage at 20?C.Control fruit softened rapidly to 11.8N in 4days but fruit treated with 0.5?l l ?11-MCP did not soften to a similar extent until after 18days.Treated fruit did not soften as much as control fruit but ?rmness of treated fruit after 32days was considered appropriate for their consumption.Core tissue of 1-MCP treated fruit softened more slowly than outer cortical tissue.1-MCP severely retarded changes in lightness and chroma in the outer cortex.Soluble solid concentrations (SSC)remained low in 1-MCP treated fruit for about 14days.Fruit treated with 0.5?l l ?1developed acceptable ?avor and reached SSC similar to those in control fruit (15.3%)by 28days.The increase of SSC in fruit treated with 5?l l ?11-MCP underwent further retardation.Activity of three glycosidases (?-d -galactosidase (?-Gal),?-l -arabinofuranosidase (?-Af),and ?-d -xylosidase (?-Xyl))increased in control fruit during ripening but only to a limited extent,or not at all,in fruit treated with 1?l l ?11-MCP.?2003Elsevier B.V .All rights reserved.

Keywords:Actinidia deliciosa var deliciosa ;1-Methylcyclopropene;Ripening;Softening;Quality;Glycosidase

?

Corresponding author.Tel.:+54-11-4524-8055;fax:+54-11-4514-8739.

E-mail address:gsozzi@agro.uba.ar (G.O.Sozzi).

1.Introduction

Kiwifruit [Actinidia deliciosa (A.Chev.)C.F.Liang et A.R.Ferguson var deliciosa ]is a vine crop that has good storage qualities.It can be stored in air for 3–6months at 0?C and 90–95%RH (Thompson et al.,2000).Controlled atmospheres of 1–2%O 2and

0925-5214/$–see front matter ?2003Elsevier B.V .All rights reserved.doi:10.1016/j.postharvbio.2003.09.013

58 E.J.Boquete et al./Postharvest Biology and Technology32(2004)57–65

3–5%CO2can extend the storability of cold-stored kiwifruit(Kader,1997).Nevertheless,kiwifruit is highly sensitive to ethylene and concentrations of this gas as low as0.005–0.01?l l?1are suf?cient to induce premature ripening and?esh softening,thus limiting long-term cold storage(Crisosto et al.,2000). Moreover,ethylene concentration should be kept below0.02?l l?1when controlled atmospheres are used to avoid the incidence of white core inclusions (Arpaia et al.,1986;Kader,1997).

1-Methylcyclopropene(1-MCP)is a synthetic cyclic ole?n that blocks access of ethylene to its receptor(Sisler and Serek,1997)and,therefore,pre-vents major undesirable effects on ethylene-sensitive plant tissues.Postharvest treatment with1-MCP can be used to control both the rate of fruit ripening and premature softening of a wide range of fruits,its usefulness depending on the physiological charac-teristics of each commodity(Blankenship and Dole, 2003;Watkins and Miller,2003).Kim et al.(2001) determined that application of1-MCP at harvest re-duces ethylene production and softening in kiwifruit subsequently exposed to20?C.When fruit were sub-mitted to a32-day cold storage prior to exposure to10?l l?11-MCP,no signi?cant differences in the softening rate were found between1-MCP-treated and untreated fruit.However,signi?cant differences were observed between fruit treated with10?l l?1 1-MCP and fruit submitted to10?l l?1ethylene for 16h after cold storage.We have recently found that exposure of‘Bartlett’pears to0.4?l l?11-MCP prior to a medium-term(30–60days)commercial cold stor-age(1?C;~90%RH;~0.1?l l?1ethylene in air)has additive effects in their preservation,thus extending pear postharvest life signi?cantly when transferred to room temperature(Trinchero et al.,2004).Never-theless,exposure of rewarmed preclimacteric pears to0.4?l l?11-MCP after a month of cold storage did not affect subsequent ripening at room tempera-ture,as indicated by ethylene production,respiration rate,fruit?rmness,and color changes.Since ripening and ethylene production may be induced by chilling kiwifruit,we were interested in determining the ef-fects of applying relatively low(<5?l l?1)levels of 1-MCP after30days of cold storage,while fruit were preclimacteric in terms of ethylene production. Glycosidases are ubiquitous enzymes capable of catalyzing the hydrolysis of a covalent linkage formed between the hemiacetal hydroxyl group of

a cyclic aldose or ketose and the hydroxyl group

of a compound,with the elimination of a water

molecule.?-d-Galactosidases(EC3.2.1.23;?-Gal),?-l-arabinofuranosidases(EC3.2.1.55;?-Af),and ?-d-xylosidases(EC 3.2.1.37;?-Xyl)are three major glycosidase classes that catalyze the hy-

drolysis of terminal nonreducing?-d-galactosyl,?-l-arabinofuranosyl,and?-d-xylosyl residues.The cell wall is by far the most important galactose-, arabinose-and xylose-containing structure of plants (Carpita and Gibeaut,1993)though many glycosi-dases show different cellular targets other than cell walls and are probably involved in processes such as assimilate movement,hormonal or glycolipid metabolism or storage in vacuoles.Considerable attention has been given to the release of neutral sugars(particularly galactose and arabinose)from kiwifruit cell wall,an important process during ripen-ing(Redgwell et al.,1992a,b,1997).During kiwifruit softening,almost60%of the total cell-wall galactose and50%of the cell-wall arabinose are lost,galactose being the predominant non-cellulosic neutral sugar (Redgwell et al.,1997).A?-Gal has been puri?ed from kiwifruit which has proven to release galactose from a variety of polysaccharides native to the cell wall(Ross et al.,1993).Other kiwifruit glycosidases, such as?-Af and?-Xyl,have not been puri?ed pre-viously and are currently being studied.We were interested in comparing the activity displayed by those three glycosidases in control and1-MCP treated fruit.

The?rst objective of this study was to ascertain

whether1-MCP is able to delay ripening of kiwifruit

previously stored at0.5?C for30days by measur-

ing ethylene production,?rmness of whole fruit,outer

cortex and core,pulp color and soluble solid concen-

tration(SSC).The second objective was to determine

the effect of the inhibition of ethylene action on the

activity of?-Gal,?-Af,and?-X yl.

2.Materials and methods

2.1.Plant material and chemicals

‘Hayward’kiwifruit[mean weight=102g;SSC=

7.5%]were harvested from a commercial orchard in

E.J.Boquete et al./Postharvest Biology and Technology32(2004)57–6559

the province of Buenos Aires,Argentina,and stored at0.5±0.5?C for30days.

A?rst group(360fruits)was randomly divided into three120-fruit lots.Two lots were placed in dif-ferent containers at20?C and treated overnight(16h) with0.5or5?l l?11-MCP.1-MCP was released by adding a buffering agent to calculated amounts of SmartFresh TM powder(a.i.0.14%;Rohm&Hass) according to the manufacturer’s instructions.The buffering agent was injected through a port inserted in the wall of the container and connected to the vials. This system allowed the addition of the buffer without opening the sealed container.A circulating system ensured rapid diffusion of the gas.After45min,the 1-MCP concentration in each chamber was quanti?ed on a gas chromatograph(Hewlett-Packard5890Series II)as previously described(Jiang et al.,2001),using iso-butylene as standard.The control lot was placed in a container with the buffering agent but no1-MCP. The atmosphere in the container was circulated through a CO2trapping system containing pellets of NaOH(400g).CO2accumulation was checked by gas chromatography and did not exceed0.3%.After ventilation,fruit were kept in air at20±1?C with-out the addition of ethylene to simulate the relatively low ethylene concentrations found in a commercial scenario(Wills and Ku,2002).Ethylene production, fruit?rmness,outer cortex color and soluble solid concentration were assessed.

Another240-fruit group was randomly divided into three80-fruit lots,exposed to0,1and5?l l?11-MCP under similar conditions,and used for core and outer cortex?rmness determination.Glycosidase activities were assessed in kiwifruit treated with0and1?l l?1 1-MCP.In all cases,the storage atmosphere was checked before sampling the fruits and trace amounts of ethylene were detected(0.1±0.02?l l?1),as of day6.These levels were similar to those found in retail outlets(Wills et al.,2000).

2.2.Ethylene determination

Fruit were previously placed in a60m3room ventilated with humidi?ed ethylene-free air at a rate equivalent to one-third of the empty room volume per minute.This procedure lasted30min to facilitate diffusion of any absorbed exogenous ethylene(Sozzi et al.,1999).Ethylene production was determined by introducing each fruit into a1.5l glass container which was in turn tightly sealed with a silicon septum. One milliliter of the head-space gas was extracted after1h and ethylene was quanti?ed on a gas chro-matograph(Hewlett-Packard5890Series II)?tted with a FID and a stainless steel Porapak N column (3.2mm×2m;80/100mesh).The injector,oven and detector temperatures were110,90,and250?C,re-spectively.N2was used as the carrier gas at a?ow rate of22ml min?1(linear gas velocity=4.5cm s?1).Six independent replicates per treatment and date were evaluated.

2.3.Evaluation of?rmness,color,and soluble solid concentration

Whole fruit?rmness(?esh rupture force)was de-termined with an Instron Universal Testing Machine (Model4442,Canton,MA).Each fruit was placed on a stationary steel plate.On removal of the skin,two spots located on opposite sides of the fruit were punc-tured to a depth of10mm.Puncture tests involved the use of a7.9mm probe on a drill base with a crosshead setting of50mm min?1.Ten individual fruit(two mea-surements per fruit;n=20)per treatment and date were evaluated.

To evaluate the contribution of two distinct tissues—outer cortex and core—to overall fruit soft-ening and the different impact of1-MCP on each of them,kiwifruit were cut across with a sharp stain-less steel knife to get2–2.5cm thick equatorial discs. The skin was not removed.The tissue rupture force was immediately measured using the Instron Univer-sal Testing Machine.Each disc was placed on the stationary steel plate and punctured twice(once on the outer cortex and once on the core)to a depth of 5mm.Puncture tests involved a4.8mm cylindrical probe with a slightly convex tip on a drill base with a crosshead setting of50mm min?1.Ten individual fruit replicates per treatment and date were evaluated. Lightness(L?)and chroma(C?)values were ob-tained from the outer cortex of sliced fruit with a Minolta chromameter(model CR-300;Osaka,Japan) which has an8mm-diameter measuring area.Illumi-nant C lighting conditions were utilized for the mea-surements.The chromameter was calibrated to a white calibration plate(CR-A43).Ten single fruit replicates per treatment and date were evaluated.

60 E.J.Boquete et al./Postharvest Biology and Technology32(2004)57–65

A longitudinal wedge from stem end to calyx end

was removed from each fruit and pressed through

cheesecloth.The juice was analyzed for SSC by us-

ing a hand-held temperature-compensated refractome-

ter(Model PR-32,Atago Co.,Tokyo)and expressed

as a percentage.Ten replicate juice samples per treat-

ment and date were evaluated.

2.4.Glycosidase activity

Two composite(three fruit)outer cortex samples

(~150g)per treatment and date were homogenized

in a Waring blender(45s)and then in an Omnim-

ixer(45s at20,000rpm)with1vol.of cold200mM

sodium acetate buffer,pH 4.5,containing 1.4M

NaCl.The addition of10mM sodium tetrathionate

or1%(w/v)polyvinylpolypyrrolidone to the buffer

solution,did not yield higher glycosidase activities

when assayed immediately after crude extract prepa-

ration.The subsequent steps were performed at4?C.

The suspension was?ltered through several layers

of Miracloth(Calbiochem Corp.,La Jolla,CA)and

centrifuged at12,000×g for20min.Aliquots of

centrifuged extract were assayed for?-Gal,?-Af,

and?-Xyl activities.Reaction mixtures contained

250?l of0.1M citrate buffer,pH4.5,200?l of0.1%

BSA,50?l of enzyme solution(or an appropriate

dilution,in the case of?-Gal)and200?l of13mM

substrate solution(the corresponding p-nitrophenyl

glycoside;Sigma Chemical Co.,St.Louis,MO),

with incubation at37?C.The generation of free

p-nitrophenol was linear for at least2h.Activities

reported are based on rates determined after1h for ?-A f and?-Xyl,and10min for?-G al,with the re-action stopped by addition of1ml of0.2M sodium

carbonate.Absorbance was measured at400nm.

Free p-nitrophenol was used as standard.One unit

of each glycosidase was de?ned as the amount of

enzyme hydrolyzing1nmol min?1of p-nitrophenyl

glycoside.

2.5.Statistical analysis

For ethylene,?rmness,L?and C?,and SSC,re-

sults were expressed as the mean±S.E.Statistical

signi?cance was determined by one-way ANOV A

using the PC-SAS software package(SAS Institute

Inc.,Cary,NC).The model assumptions of homo-geneity of variance and normality were probed using Levene’s test and Shapiro–Wilk’s test,respectively. When these assumptions were not satis?ed,data were transformed into ranks(Conover and Iman,1981) for further analysis.When a signi?cant F-value was found,treatment means were compared using the Ryan–Einot–Gabriel–Welsch’s test(P<0.05).This test controls the type I experimental error rate and has generally a lower type II error rate than the Tukey’s studentized range test(Westfall et al.,1999).For glycosidase activities,results were expressed as the mean±S.D.

3.Results and discussion

3.1.Ethylene production

In kiwifruit,autocatalytic ethylene production does not take place until fruit is fully mature(Antunes and Sfakiotakis,1997).Thus,kiwifruit behavior contrasts with the performance of most climacteric fruits in which ripening and ethylene peak occur almost con-comitantly.Control fruit followed a typical climac-teric pattern for ethylene biosynthesis,the maximum ethylene production occurring on day17after transfer from cold storage,with an ensuing decline(Fig.1). In contrast,all1-MCP-treated fruits displayed much lower ethylene production throughout the experimen-tal period.The results show that1-MCP effectively inhibited ethylene production by kiwifruit,even when applied at low(0.5?l l?1)concentrations after30days of cold storage.

3.2.Firmness

Flesh?rmness is probably the best predictor of kiwifruit shelf life.Control fruit placed at20?C af-ter cold storage reached their maximum ethylene production after17days(Fig.1)but extensive?esh softening occurred after only7days(Fig.2).Appli-cation of0.5?l l?11-MCP was suf?cient to delay kiwifruit softening(Fig.2).Fruit treated with5?l l?1 1-MCP showed higher?rmness values than fruit treated with0.5?l l?11-MCP between days14and21 (P<0.05)but no signi?cant difference was detected at the end of the experimental period.Kiwifruit are increasingly susceptible to physical damage during

E.J.Boquete et al./Postharvest Biology and Technology 32(2004)57–65

61

01020304050607080901001101200

3

6

91215182124273033

Time (days)

E t h y l e n e P r o d u c t i o n (μg k g -1

h -1)

Fig.1.Ethylene production in kiwifruit untreated (T 0)or treated with 0.5?l l ?1(T 0.5)or 5?l l ?1(T 5)1-MCP and stored at 20?C.Values represent the means ±S .E .of six single fruit replicates.Where bars are not shown,the S.E.does not exceed the size of the symbol.Differences between T 0and 1-MCP-treated fruit (T 0.5and T 5)were signi?cant on days 6–24(P <0.05).Differences between T 0.5and T 5were signi?cant on days 13–20,and 27(P <0.05).Other differences were not signi?cant.Untreated kiwifruit (T 0)were not considered acceptable for consumption after 20days of storage.

packaging when they soften below 17.8N (Crisosto et al.,1997).Three weeks at 20?C were necessary for kiwifruit to reach that ?rmness level when 5?l l ?11-MCP had been applied.Kiwifruit can be considered ‘eating ripe’when ?esh ?rmness measures approx-imately 3.9–7.8N (Stec et al.,1989),depending on each consumer’s perception.Thus,values of ?rmness reaches after 32days can be considered appropriate for 1-MCP-treated kiwifruit consumption.Softening in 1-MCP-treated fruit through the eating ripeness stage occurred at a much lower rate than in control fruit (Fig.2).

To determine the effect of 1-MCP on ?rmness of speci?c kiwifruit tissues,fruit were treated with 1and 5?l l ?11-MCP.Firmness declined sharply both in the outer cortex and in the core of control fruit (Fig.3).1-MCP application delayed softening of both zones,though at different rates (Fig.3).Neither the outer cortex nor the core of control and 1-MCP-treated fruit revealed occurrence of disorders throughout the ex-perimental period.

010

20

30

4050

3

6

91215182124273033

Time (days)

F i r m n e s s (N )

Fig. 2.Firmness of kiwifruit untreated (T 0)or treated with 0.5?l l ?1(T 0.5)or 5?l l ?1(T 5)1-MCP and stored at 20?C.Values represent the means ±S .E .of 10fruits (two measurements per fruit).Where bars are not shown,the S.E.does not exceed the size of the symbol.Differences between T 0and 1-MCP-treated fruit (T 0.5and T 5)were signi?cant on days 4–18(P <0.05).Differences between T 0.5and T 5were signi?cant on days 7and 14–21(P <0.05).Other differences were not signi?cant.Untreated kiwifruit (T 0)were not considered acceptable for con-sumption after 20days of storage.

3.3.Changes in color and soluble solid concentration

In contrast to other fruits,visible changes in ki-wifruit skin color do not occur during development but do occur in the ?esh.A decrease in L ?(Fig.4A )and C ?(Fig.4B )values became apparent in kiwifruit pulp during ripening.Changes in C ?are principally due to the loss of chlorophyll content,mostly chloro-phyll a which decreases during storage (Fuke et al.,1985).1-MCP slowed down these changes when uti-lized after cold storage (Fig.4).L ?and C ?values of 1-MCP-treated fruit after 32days of storage were sim-ilar to those of control fruit stored for 4days.Increas-ing the 1-MCP concentration from 0.5to 5?l l ?1did not further delay (P <0.05)?esh color change.

Consumer preferences for kiwifruit are mainly based on SSC (Matsumoto et al.,1983;MacRae et al.,1990).SSC increases after harvest even when fruit are stored at 0?C.In control fruit,SSC increased from 14.7%(day 4)to 16.2%(day 11)(Fig.5).In fruit treated with 0.5?l l ?11-MCP,SSC remained low for

62

E.J.Boquete et al./Postharvest Biology and Technology 32(2004)57–65

010

20

3040

3

6

9

1215182124273033Time (days)

F i r m n e s s (N )

(A)

0123456780

3

6

9

1215182124273033Time (days)

F i r m n e s s (N )

(B)

Fig.3.Core (A)and outer cortex (B)?rmness in kiwifruit untreated (T 0)or treated with 1?l l ?1(T 1)or 5?l l ?1(T 5)1-MCP and stored at 20?C.Values represent the means ±S .E .of 10single fruit replicates.Where bars are not shown,the S.E.does not exceed the size of the symbol.Differences between T 0and 1-MCP-treated fruit (T 1and T 5)were signi?cant on days 4,11,and 18(P <0.05),both in core and outer cortex ?rmness.Differences in outer cortex ?rmness between T 1and T 5were signi?cant on days 4and 32(P <0.05).Other differences were not signi?cant.Untreated kiwifruit (T 0)were not considered acceptable for consumption after 20days of storage.

about 14days but reached values similar to those of control fruit after 28days (Fig.5).The increase of SSC in fruit treated with 5?l l ?11-MCP underwent further retardation.To assure good ?avor of kiwifruit when ripe,a possible approach may be to apply

35

45

55

65

03691215182124273033

Time (days)

L i g h t n e s s

(A)

20

30

4050

3

6

9

1215182124273033Time (days)

C h r o m a

(B)

Fig.4.Color of the outer cortex in kiwifruit untreated (T 0)or treated with 0.5?l l ?1(T 0.5)or 5?l l ?1(T 5)1-MCP and stored at 20?C.Color is presented as lightness (A)and chroma (B).Values represent the mean ±S .E .of 10single fruit replicates.Differences between T 0and 1-MCP-treated fruit (T 0.5and T 5)were signi?cant on days 4–18(P <0.05).Differences between T 0.5and T 5were not signi?cant (P <0.05).Untreated kiwifruit (T 0)were not considered acceptable for consumption after 20days of storage.

1-MCP when fruit have already reached a minimum of 13%SSC.1-MCP-treated kiwifruit developed an appropriate ?avor for consumption at the end of the experimental period according to preliminary accep-tance tests based on hedonic scaling though a “lack of aroma”was also stated (data not shown).It is well-known that fruit volatile production is severely

E.J.Boquete et al./Postharvest Biology and Technology 32(2004)57–65

63

12

13

14

15

16

17

Time (days)

S S C (%)

Fig.5.Soluble solid concentration in kiwifruit untreated (T 0)or treated with 0.5?l l ?1(T 0.5)or 5?l l ?1(T 5)1-MCP and stored at 20?C.Values represent the means ±S .E .of 10single fruit repli-cates.Differences between T 0and T 0.5were signi?cant on days 7,11and 18(P <0.05).Differences between T 0and T 5were signi?cant on days 11,14and 18(P <0.05).Differences between T 0.5and T 5were signi?cant on day 32(P <0.05).Untreated kiwifruit (T 0)were not considered acceptable for consumption after 20days of storage.

compromised when 1-MCP is utilized (e.g.in apples;Fan and Mattheis,1999).Further studies should be conducted to determine to what extent kiwifruit ?a-vor and overall fruit acceptability are affected when 1-MCP is applied.3.4.Glycosidase activity

In control fruit,activity of all glycosidases increased during ripening,although they showed different tem-poral patterns (Fig.6).1-MCP counteracted those in-creases.Results suggest that ?-Gal,?-Af,and ?-Xyl activity may be associated with kiwifruit ripening.Ogawa et al.(1990)found that the loss of galactose from the cell wall was accompanied by a 4–5-fold in-crease in ?-Gal activity toward the end of kiwifruit maturation on the vine.

The maximum activity of ?-Gal,?-Af,and ?-Xyl in control fruit was evidenced during the major ethylene peak when ?rmness had already dropped (

Fig.6,days 14–18).The last phase of kiwifruit ripening is charac-terized by maximal cell-wall swelling and pectin sol-ubilization (Redgwell et al.,1992a ).Nevertheless,the

Fig.6.?-Galactosidase activity (A)and ?-arabinofuranosidase and ?-xylosidase activity (B)in fruit untreated or treated with 1?l l ?11-MCP.All enzyme activities are expressed as the means ±S .D .of two three-fruit composite samples.

activity of these three glycosidases was also higher in control fruit than in 1-MCP-treated fruit on days 7–11when ethylene production in control fruit was still relatively low (less than 10%of the maximum ethylene emission in control fruit).This fact could indicate that some of these enzymes are responsive to basal levels of ethylene,as happens with ?-Gal II and ?-Af III in tomato fruit (Sozzi et al.,1998,2002).In addition,high sensitivity to ethylene could explain the late and partial increase of ?-Af (days 14and 18)and ?-Xyl (day 18)activity in 1-MCP-treated fruit.

64 E.J.Boquete et al./Postharvest Biology and Technology32(2004)57–65

4.Conclusions

Results point to the bene?cial effects of1-MCP,in combination with cooling technologies,on kiwifruit and its possible involvement in future storage pro-tocols.Utilization of1-MCP can extend kiwifruit postharvest life,providing more?exibility to different commercial operations(grading,packaging,transport and expenditure)that require fruit that are resistant to physical damage.1-MCP application in kiwifruit has proven to be effective even after30days of cold storage.The time that kiwifruit can be stored at low temperature and still elicit a clear response to1-MCP is a subject that deserves further investigation.Data reported in this paper suggest that1-MCP may be bene?cial if it is applied while the fruits are precli-macteric in terms of ethylene production.However, the magnitude of the extension in kiwifruit posthar-vest storage,the most adequate ripening stage for 1-MCP treatment,the level of consumer acceptance, and possible differences between fruit sizes,cultivars and growing districts are still open questions that need to be researched.

Acknowledgements

The authors are grateful to Walter S.P.Pereira of Rohm and Hass for the donation of SmartFresh TM. This work was supported by grants from the Uni-versidad de Buenos Aires(UBACyT Program),and the Agencia Nacional de Promoción Cient′??ca y Tec-nológica,Argentina.

References

Antunes,M.D.C.,Sfakiotakis, E.M.,1997.Biochemical bases of thermoregulation of ethylene production and ripening of ‘Hayward’kiwifruit.Acta Hort.444,541–546.

Arpaia,M.L.,Mitchell, F.G.,Kader, A.A.,Mayer,G.,1986.

Ethylene and temperature effects on softening and white core inclusions of kiwifruit stored in air or controlled atmospheres.

J.Am.Soc.Hort.Sci.111,149–153.

Blankenship,S.M.,Dole,J.M.,2003.1-Methylcyclopropene:a review.Postharvest Biol.Technol.28,1–25.

Carpita,N.C.,Gibeaut,D.M.,1993.Structural models of primary cell walls in?owering plants:consistency of molecular structure with the physical properties of the walls during growth.Plant J.3,1–30.Conover,W.J.,Iman,R.L.,1981.Rank transformation as a bridge between parametric and nonparametric statistics.Am.Stat.35, 124–128.

Crisosto,C.H.,Garner,D.,Saenz,K.,1997.Relationship between kiwifruit size and the rate of softening under controlled atmosphere conditions.In:Kader, A.A.(Ed.),Seventh International Controlled Atmosphere Research Conference, CA’97Proceedings vol.3:Fruits Other than Apples and Pears.Postharvest Horticulture Series No.17,University of California,Davis,CA,pp.165–169.

Crisosto, C.H.,Mitcham, E.J.,Kader, A.A.,2000.Kiwifruit: Recommendations for Maintaining Postharvest.http://www.

https://www.doczj.com/doc/a912739275.html,/technical/uc304.htm.

Fan,X.,Mattheis,J.P.,1999.Impact of1-methylcyclopropene and methyl jasmonate on apple volatile production.J.Agric.Food Chem.47,2847–2853.

Fuke,Y.,Sasago,K.,Matsuoka,H.,1985.Determination of chlorophylls in kiwifruit and their changes during ripening.J.

Food Sci.50,1220–1223.

Jiang,Y.,Joyce,D.C.,Terry,L.A.,2001.1-Methylcyclopropene treatment affects strawberry fruit decay.Postharvest Biol.

Technol.23,227–232.

Kader,A.A.,1997.A summary of CA requirements and reco-mmendations for fruits other than apples and pears.In:Kader,

A.A.(Ed.),Seventh International Controlled Atmosphere

Research Conference,CA’97Proceedings vol.3:Fruits Other than Apples and Pears.Postharvest Horticulture Series No.17, University of California,Davis,CA,pp.1–34.

Kim,H.O.,Hewett,E.W.,Lallu,N.,2001.Softening and ethylene production of kiwifruit reduced with1-methylcyclopropene.

Acta Hort.553,167–170.

MacRae,E.,Stec,M.G.H.,Triggs,C.,1990.Effects of postharvest treatment on the sensory qualities of kiwifruit harvested at different maturities.J.Sci.Food Agric.50,533–546. Matsumoto,S.,Obara,T.,Luh,B.S.,1983.Changes in chemical constituents of kiwifruit during postharvest ripening.J.Food Sci.48,607–611.

Ogawa,H.,Fukumoto,H.,Yano,T.,Yamamoto,K.,Tochikura,T., 1990.Puri?cation and characterisation of?-galactosidase from kiwifruit.Nippon Shokuhin Kogyo Gakkaishi37,298–305. Redgwell,R.J.,Melton,L.D.,Brasch, D.J.,1992a.Cell wall dissolution in ripening kiwifruit(Actinidia deliciosa).

Solubilisation of the pectic polymers.Plant Physiol.98,71–81. Redgwell,R.J.,Melton,L.D.,Brasch, D.J.,Coddington,J.M., 1992b.Structures of the pectic polysaccharides from the cell walls of kiwifruit.Carbohydr.Res.226,287–302. Redgwell,R.J.,Fischer,M.,Kendal, E.,MacRae, E.A.,1997.

Galactose loss and fruit ripening:high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls.Planta203,174–181.

Ross,G.S.,Redgwell,R.J.,MacRae, E.A.,1993.Kiwifruit ?-galactosidase:isolation and activity against speci?c fruit cell-wall polysaccharides.Planta189,499–506.

Sisler, E.C.,Serek,M.,1997.Inhibitors of ethylene responses in plants at the receptor level:recent developments.Physiol.

Plant.100,577–582.

E.J.Boquete et al./Postharvest Biology and Technology32(2004)57–6565

Sozzi,G.O.,Camperi,S.A.,Cascone,O.,Fraschina, A.A., 1998.Galactosidases in tomato fruit ontogeny:decreased galactosidase activities in antisense ACC synthase fruit during ripening and reversal with exogenous ethylene.Aust.J.Plant Physiol.25,237–244.

Sozzi,G.O.,Trinchero,G.D.,Fraschina,A.A.,1999.Controlled-atmosphere storage of tomato fruit:low oxygen or elevated carbon dioxide levels alter galactosidase activity and inhibit exogenous ethylene action.J.Sci.Food Agric.79,1065–1070. Sozzi,G.O.,Greve,L.C.,Prody,G.A.,Labavitch,J.M.,2002.

Gibberellic acid,synthetic auxins,and ethylene differentially modulate?-l-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic synthase tomato pericarp discs.Plant Physiol.129,1330–1340.

Stec,M.G.H.,Hodgson,J.A.,MacRae,E.A.,Triggs,C.M.,1989.

Role of fruit?rmness in the sensory evaluation of kiwifruit (Actinidia deliciosa cv Hayward).J.Sci.Food Agric.47,417–433.

Thompson,J.F.,Brecht,P.E.,Hinsch,T.,Kader,A.A.,2000.Marine Container Transport of Chilled Perishable Produce.Agriculture

and Natural Resources,Publication21595,University of California,Oakland,CA,32pp.

Trinchero,G.D.,Sozzi,G.O.,Covatta,F.,Fraschina,A.A.,2004.

Inhibition of ethylene action by1-methylcyclopropene extends postharvest life of‘Bartlett’pears.Postharvest Biol.Technol., in press.

Watkins,C.B.,Miller,W.B.,2003.A summary of physiological processes or disorders in fruits,vegetables and ornamental products that are delayed or decreased,increased,or unaffected by application of1-methylcyclopropene(1-MCP).http://www.

https://www.doczj.com/doc/a912739275.html,/department/faculty/watkins/ethylene/index.htm. Westfall,P.H.,Tobias,R.D.,Rom,D.,Wol?nger,R.D.,Hochberg, Y.,1999.Multiple Comparisons and Multiple Tests,SAS Institute,pp.147–155.

Wills,R.B.H.,Ku,V.V.V.,https://www.doczj.com/doc/a912739275.html,e of1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes.Postharvest Biol.Technol.26,85–90.

Wills,R.B.H.,Warton,M.A.,Ku,V.V.V.,2000.Ethylene levels associated with fruit and vegetables during marketing.Aust.J.

Exp.Agric.40,465–470.

植物生长调节剂乙烯利在各种作物上的用法与用量详解

植物生长调节剂乙烯利在各种作物上的用法与 用量详解 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

植物生长调节剂:乙烯利在各种作物上的用法与用量详解 1.中文通用名称:乙烯利 2.英文通用名称:2-Chloroethyl-phosphonic;Ethephon;CEPA;Bromefor;Cephal;Ethrel;Florel 3.化学名称:2-氯乙基膦酸 4.商品名称:乙烯磷;乙烯灵;一试灵 5.化学结构式 6.理化性质 纯品为白色针状结晶,熔点74~75℃,工业品为淡黄色黏稠状液体,易溶于水,也易溶于乙醇,难溶于苯和二氯乙烷。在酸性介质中稳定,在碱性介质中分解,放出乙烯。 7.毒性:低毒 8.类别:植物生长促进剂 9.主要剂型:85%原药,40%水剂,40%醇剂 10.功能特点 乙烯利易被植物吸收,在植株体内逐渐释放出乙烯,增强植株的过氧化酶活性,从而减少顶端优势,增加有效分蘖,使植株转化健壮,防止倒伏;也可使植物雄性不育,提早结果,促进果实早熟、齐熟;还具有使棉花落叶、茶树脱蕾作用;也可以作为果实催熟剂使用。本品可用于水稻、小麦、高粱、棉花、烟草、番茄、黄瓜、苹果、柑橘,梨、山楂等作物催熟;也可用于水稻控制秧苗徒长,增加分蘖。 11.使用技术 (l)调节生长、提高品质、增加产量 水稻用250~500mg/L的乙烯利药液在4、6叶期各喷1次,可降低秧苗高度10%左右,能有效地防止栽后败苗,促使发根早,返青快,分蘖早而多,防止植株后期倒伏,增产效果显着,即调节生长、增产。 玉米用6~7.5g/667m2的乙烯利药液喷洒植株,可促进根系发育,起到矮秆壮秆,增强田间通风透光,促早熟,提高产量,即调节生长、增产。 橡胶树用2000~3000mg/L的乙烯利药液喷洒植株,可使其提前落叶,避开白粉病;用4%~8%乙烯利药液涂布,可降低乳胶黏性,防止乳管堵塞,加快出胶速度,实现增产。 高梁用250mg/L的乙烯利药液喷洒叶面,可使节间缩短,株高降低20cm左右,增强抗倒性,即抗倒、增产。 大豆用300~500mg/L的乙烯利药液在9~12片叶时喷雾,可使植株矮壮,促进果实成熟,提高产量,即控旺、抗倒、增产。 漆树用1%~6%的乙烯利药液涂布,可促进产漆能力。 安息香用10%的乙烯利药液涂布,可增产。 (2)催熟、齐熟 番茄用400~500mg/L的乙烯利药液涂果、浸果或喷雾,可使果实提早成熟,且不影响品质。

香蕉催熟技术详解

香蕉催熟技术详解 一催熟原理 香蕉的催熟原理,是利用外加乙烯激素使香蕉后熟。后熟后的果实,淀粉含量由20%左右锐减为1%~3%,而可溶性糖则突增至18%~20%。果皮由绿转黄,肉质由硬转软,出现香味物质和一定的有机酸,果皮易与果肉分离,果实可食。香蕉催熟的代谢过程主要是呼吸作用,催熟时香蕉果实出现呼吸高峰,呼吸强度很大,达100~150毫克二氧化碳/千克·小时,故影响果实呼吸作用的因素也影响香蕉的催熟。 二催熟条件 (一)温度14~38℃均可使香蕉催熟,但温度太低时后熟缓慢,太高时后熟快,以致使果皮不转黄色。最适宜的温度是18~20℃,后熟后果皮金黄色,果肉结实。催熟温度以果肉温度为准,惆蕉房的温度往往与果实温度有一定的差异,尤其是长期低温贮藏或外界温度太低时,须让果肉温度上升到一定的温度(16~18℃)再行催熟。适当低温催熟,可提高果实的货架期,但温度低,催熟时间长,火局蕉房的利用率不高。我国目前常用的温度为18~20℃,6天催熟。 (二)湿度湿度太低香蕉难催熟。催熟的前中期(前4天刚转色),需要较高的湿度,以90%~95%的相对湿度为宜,高湿环境下果皮色泽鲜艳诱人。但后期(后2天转色后)湿度宜较低,以80%~85%为宜,这样有利于延长货架期。(三)乙烯利的浓度乙烯利5~4000ppm溶液均可把香蕉催熟,通常用800~1000ppm乙烯利浓度。据华南农业大学试验,浓度降低500ppm,成熟时间相应推迟1天。浓度低,催熟时间长;浓度高,后熟快,但果肉易软化,果皮易断,货架期较短。乙烯利浓度对催熟时间的效应不如温度大。 (四)氧气和二氧化碳的浓度香蕉催熟过程中呼吸强度很大,尤其是呼吸高峰期,需要大量的氧气,并放出大量二氧化碳。氧气不足或二氧化碳浓度过高,会

催熟剂

催熟剂 催熟剂的主要成分是:乙烯。充分发育的果实,能合成乙烯,促进本身的成熟与着色,如香蕉、苹果、柑桔、梨等,均有此现象。不过其它的器官也会放出乙烯,乙烯是健康细胞的代谢产物,任何生活部分都能产生乙烯。 早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加,加速呼吸作用。 因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。合成部位:植物体各个部位。主要作用:促进果实成熟,促进器官脱落和衰老。而过多的食用这些经过催熟的水果会对人体造成很大的伤害。 水果在自然成熟过程中,自然会释放出少量乙稀使香蕉、柿子、苹果等成熟。为便于水果储藏、运输,将接近成熟期的果品提前采摘,上市销售前用乙烯催熟是常用的方法。此方法催熟所使用的乙烯是微量的,一般不会对人体造成危害,如果为了使水果提前上市卖好价钱,将成熟期较远的青果催熟,则需要大量乙烯,这样的水果吃了后对人体有害。比如市面上部分外观黄亮,吃起来有生味的香蕉就是采用大量的乙烯或其他化学物质催熟的。所以尽量少购买那些形状、颜色异常鲜艳的水果,或者尽量食用一些应季的蔬菜水果。 目前,一些商贩销售的西红柿上长出一个个长长的尖,有的呈现出花瓣状;个头较大的草莓、西瓜等水果切开后中间有空腔;原想颜色呈黑红色的樱桃、李子味道一定酸甜可口,然而尝了后才发现上当。这类果蔬大部分非正常生长成熟,而是采用了膨大剂、增红剂和催熟剂等化学激素。 膨大剂的化学名称叫细胞集动素,属于激素类化学物质。有些菜农在黄瓜、西葫芦等蔬菜上使用,以此方法使果蔬细胞非正常膨大,个头比正常长大的果蔬大1-2倍,形状变得比较奇特,如西红柿长尖、草莓呈梨状,黄瓜尖部肥大与蒂部形成鲜明对比等。使用膨大剂后的果蔬味道变淡,吃起来口感不好,消费者买过一次后,一般不会再次购买;其次,这类果蔬不便于长时间储藏,也更不利于人体健康。 正规的催熟水果有三大危害:一些添加剂特别是化学添加剂对人体健康有一定的副作用。首先,用硫磺熏蒸水果或进行染色,掩盖了水果本身的状态,把生的水果催熟,看似光鲜实际上是一种欺诈行为;其次,用硫磺熏蒸水果还会使水果中的维生素及微量元素在熏蒸过程中遭到破坏,降低了水果的营养价值;同时,食用熏蒸水果和非食用色素会对人体健康造成危害。二氧化硫用于食品防腐保鲜处理一般是可以的,但过量使用时容易发生化学反应生成亚硫酸盐,此物残留在水果中会诱发哮喘等病症。

植物生长调节剂:乙烯利在各种作物上的用法与用量详解

植物生长调节剂:乙烯利在各种作物上的用法与用量详解 1.中文通用名称:乙烯利 2.英文通用名称:2-Chloroethyl-phosphonic;Ethephon;CEPA;Bromefor;Cephal;Ethrel;Florel 3.化学名称:2-氯乙基膦酸 4.商品名称:乙烯磷;乙烯灵;一试灵 5.化学结构式 6.理化性质 纯品为白色针状结晶,熔点74~75℃,工业品为淡黄色黏稠状液体,易溶于水,也易溶于乙醇,难溶于苯和二氯乙烷。在酸性介质中稳定,在碱性介质中分解,放出乙烯。 7.毒性:低毒 8.类别:植物生长促进剂 9.主要剂型:85%原药,40%水剂,40%醇剂 10.功能特点 乙烯利易被植物吸收,在植株体内逐渐释放出乙烯,增强植株的过氧化酶活性,从而减少顶端优势,增加有效分蘖,使植株转化健壮,防止倒伏;也可使植物雄性不育,提早结果,促进果实早熟、齐熟;还具有使棉花落叶、茶树脱蕾作用;也可以作为果实催熟剂使用。本品可用于水稻、小麦、高粱、棉花、烟草、番茄、黄瓜、苹果、柑橘,梨、山楂等作物催熟;也可用于水稻控制秧苗徒长,增加分蘖。 11.使用技术 (l)调节生长、提高品质、增加产量 水稻用250~500mg/L的乙烯利药液在4、6叶期各喷1次,可降低秧苗高度10%左右,能有效地防止栽后败苗,促使发根早,返青快,分蘖早而多,防止植株后期倒伏,增产效果显著,即调节生长、增产。 玉米用6~7.5g/667m2的乙烯利药液喷洒植株,可促进根系发育,起到矮秆壮秆,增强田间通风透光,促早熟,提高产量,即调节生长、增产。 橡胶树用2000~3000mg/L的乙烯利药液喷洒植株,可使其提前落叶,避开白粉病;用4%~8%乙烯利药液涂布,可降低乳胶黏性,防止乳管堵塞,加快出胶速度,实现增产。 高梁用250mg/L的乙烯利药液喷洒叶面,可使节间缩短,株高降低20cm左右,增强抗倒性,即抗倒、增产。 大豆用300~500 mg/L的乙烯利药液在9~12片叶时喷雾,可使植株矮壮,促进果实成熟,提高产量,即控旺、抗倒、增产。 漆树用1%~6%的乙烯利药液涂布,可促进产漆能力。 安息香用10%的乙烯利药液涂布,可增产。 (2)催熟、齐熟 番茄用400~500mg/L的乙烯利药液涂果、浸果或喷雾,可使果实提早成熟,且不影响品质。 棉花用800~1200mg/L的乙烯利药液喷洒植株,可催熟且不影响品质,用1600~4000mg/L的乙烯利药液喷洒全株,可使棉花脱叶,提早收获。 香蕉用800~1000mg/L的乙烯利药液浸果,可使果实提早成熟,且不影响品质。 柿子用300~800mg/L的乙烯利药液喷雾或浸果,可脱涩催熟,且不影响品质。

香蕉的催熟原理及技术(精选.)

香蕉的催熟原理及技术 摘要:香蕉果实在植株上自然成熟,风味远远比不上经过催熟的优良,更难远途运输。所以为获得鲜艳黄色的商品香蕉,一定要掌握一定的催熟技术,掌握好催熟剂的使用浓度及催熟时的温、湿度条件,方可获得满意的催熟效果。 关键词:催熟、采收、温度、湿度、乙烯 一、前言 香蕉虽然属于热带果树,但在亚热带地区也可经济栽培。香蕉的栽培比较粗放,但产量较高。香蕉可周年结果,在国内外市场上是常年供应的鲜果,是人们最喜爱的热带果品之一。香蕉生产在我国水果生产中占有重要地位。 香蕉与别的水果有个较大的不同点,香蕉的成熟一般都是人工催熟,当然蕉果留在蕉株上,也可完全可以成熟。但风味远不如经过人工催熟的好,且不能远运,又易受鸟虫侵害。香蕉采收后,放置一定时间,也可完成后熟,但需时较长,成热不整齐。且果柄果轴易腐烂。故香蕉采后都要进行人工催熟,这不但可缩短香蕉采后上市的生产周期,且有利提高果实品质,增加香味。 二、催熟原理 香蕉的催熟原理,是利用外加乙烯激素使香蕉后熟。后熟后的果实,淀粉含量由20%左右锐减为1%~3%,而可溶性糖则突增至18%~20%。果皮由绿转黄,肉质由硬转软,出现香味物质和一定的有机酸,果皮易与果肉分离,果实可食。 香蕉催熟的代谢过程主要是呼吸作用,催熟时香蕉果实出现呼吸高峰,呼吸强度很大,达100~150毫克二氧化碳/千克·小时,故影响果实呼吸作用的因素也影响香蕉的催熟。 (一)温度14~38℃均可使香蕉催熟,但温度太低时后熟缓慢,太高时后熟快,以致使果皮不转黄色。最适宜的温度是18~20℃,后熟后果皮金黄色,果肉结实。催熟温度以果肉温度为准,惆蕉房的温度往往与果实温度有一定的差异,尤其是长期低温贮藏或外界温度太低时,须让果肉温

香蕉催熟技术

为获得鲜艳黄色的商品香蕉,一定要掌握一定的催熟技术掌握好催熟剂的使用浓度及催熟时的温、湿度条件,方可获得满意的催熟效果。 一、采收的成熟度用于本地催熟销售的果实,饱满度以上为好;若远途运销,则以80-85%的饱满度为宜,若长期保鲜,饱满度可低一些,但不应小于70%,否则果实风味不佳。 二、催熟的温、湿度条件 1、催熟的温度条件香蕉果皮能变黄色的最低催熟临界温度为15゜C,最高临界温度为27゜C,28-32゜C虽能正常催熟,但果皮青色,一般称“青皮熟”。当温度高达34゜C时,果肉褐变、发软,失去食用价值。20-25゜C是最佳的催熟温度,一般而言,果实成熟度高的,温度稍低,成熟度低的,温度宜较高。 2、催熟的湿度在果皮退绿前,必须保证催熟库内的相对湿度达90%-95%,否则果皮不退绿或退色不均匀,且足够高的湿度,可抑制香蕉炭疽病的发生。湿度低,还会引起果皮皱缩,果皮色泽发暗。高湿度可通过向蕉房内洒水或用加湿器(较科学)来达到。但在果皮从微黄开始,就要降低催熟库中的湿度至70-75%,否则,果实香气减少,易断果指,果肉偏软,影响搬运和销售。总结一下,即高湿度催熟,低湿度转色。 三、催熟方法 1、乙烯催熟法:乙烯刺激性强,故香蕉能较快地成熟,催熟后果皮着色均匀,果指较硬,商品性好。我公司提供的ZD-1型催熟剂,使用时将其蘸少许清水后放入包装中即可。如以硬纸箱+塑料袋包装香蕉,切记不可在抽真空状态下进行催熟,放催熟剂时应解开袋口,放入适量空气,然后再将ZD-1型催熟剂放入中间位置袋口稍折即可(不要用绳扎住袋口),放药48小时后完全打开袋子,让香蕉在低湿度环境中转色。 2、乙烯利催熟法:乙烯利催熟的优点是不要求催熟室的气密性,但需将香蕉逐串浸泡,劳动强度大。最佳的催熟浓度为350-550%ppm,催后4-5天可上货架。 四、香蕉催熟不良的原因和对策 1、成熟度不均匀:可能原因有①香蕉果实本身饱满度不均匀;②催熟室内的温度不均匀;③保鲜剂使用不当。对策:①采收成熟度力求一致;②加强空气循环;③控制好保鲜剂的浓度和时间。 2、成熟太慢:可能原因有①果实采收时饱满度不够,②催熟室内温度太低;③催熟剂浓度不够;④催熟室湿度太低尤其是前期;⑤催熟前期,香蕉过分失水;⑥果实遭受寒害。对策:①选70%以上饱满度的果实;②催熟室温度要高于15゜C,低于27゜C;③提高催熟剂浓度,乙烯催熟要有至少24小时的密封时间;④催熟前期,相对湿度不应低于90%,⑤合理包装,减少失水;⑥温度应避免低于11゜C。 3、果皮颜色不良:可能原因有①催熟温度过高或过低;②催熟剂浓度过高;③香蕉在果园或贮运中受寒害。对策:①温度不应超过28C゜或低于15゜C;②浓度不宜超过1000ppm;防寒,避免11゜C以下低温。 4、果指发软:可能原因有①贮运前温度过高;②温度调节不当,通风不良,果温高;③包装过分密封造成软烂。对策:①温度不应超过35゜C;②避免温度变化太大,注意通风;③缩短密封包装时间,透气包装。 5、果柄断裂:可能原因有①氮肥施用过多;②催熟后期湿度过高,乙烯过浓。对策:①合理施N、P、K肥,增施K肥;②后期相对湿度不应超过85%;③温度不宜超过28゜C,乙烯浓度不超过1000ppm。

乙烯利使用注意事项

中文通用名称:乙烯利 英文通用名称:Ethephon 化学名称:2-氯乙基膦酸 其他名称:乙烯磷、乙烯灵、CEPA、乙烯膦、(2-氯乙基)膦酸、2-氯(代)乙基膦酸。 CAS编号:16672-87-0 EINECS号:240-718-3 理化性质:纯品为灰白色腊状固体,熔点为74-75℃。工业品为浅黄色粘稠液体,相对密度1.258。溶解性:水、乙醇、丙二醇中约1kg/L,微溶于芳烃类溶剂。在PH≤3时稳定,PH>3时分解放出乙烯,不能与碱、金属盐、金属(铝、铜或铁)共存。 毒性:乙烯利是低毒植物生长调节剂,小白鼠急性经口LD50为5110mg/kg,乙烯利商品制剂小白鼠急性经口LD50为6810mg/kg,无明显蓄积毒性,鲤鱼LC50(96小时)>140mg/L。 类别:植物生长促进剂 主要剂型: 90%原药 65%水剂、60%水剂、40%水剂 功能特点:乙烯利是可促进成熟的植物生长调节剂。经由植物的叶片、树皮、果实或种子进入植物体内,然后传导到起作用的部位。可促进不定根形成,使茎杆粗壮、植株矮化、解除休眠、诱导开花、控制花器官性别分化、催熟果实、促进衰老和脱落。

注意事项: 1、乙烯利原液稳定,但经稀释后的溶液稳定性变差。生产上使用时应随配随用,放置过久后会降低使用效果。 2、乙烯利呈酸性,遇碱会分解。禁忌与碱性农药混用,也不能用碱性较强的水稀释。 3、乙烯利应在20℃以上时使用,温度过低,乙烯利分解缓慢,使用效果降低。 4、使用后6小时内下雨,应适当补喷。 5、乙烯利低毒,但对人的皮肤、眼睛有刺激作用,应尽量避免与皮肤接触,特别注意不要将药液溅入眼内,应迅速用水和肥皂冲洗,必要时送医院治疗。

香蕉有催熟剂

香蕉有催熟剂 大多数的香蕉都生长在南方,所以北方人想要吃香蕉就需要买从南方运回来的,但是香蕉自己能够分泌一些乙烯,所以香蕉在运输过程中会释放大量乙烯,这样会导致香蕉催熟,运到北方的时候就会变得腐烂。因此有很多商家在香蕉没有成熟的时候就将香蕉摘下来,但是有些没熟的香蕉被打上催熟剂应该怎么分辨? 香蕉用的“催熟剂”对人体有害。其有害成分为过量的乙烯利。 香蕉的催熟剂乙烯利是一种植物生长调节剂,可以在规定标准内使用,如果使用大量高浓度催熟剂容易造成香蕉外熟内生,表皮光亮好看,但是却会很快变黑腐烂。食用了过量喷洒乙烯利的水果,可能会引起恶心呕吐等症状,甚至可能对肝脏和脑部造成损害。 乙烯利,有机化合物,纯品为白色针状结晶,工业品为淡棕色液体,易溶于水、甲醇、丙酮、乙二醇、丙二醇,微溶于甲苯,不溶于石油醚。用作农用植物生长刺激剂。 乙烯利是优质高效植物生长调节剂,具有促进果实成熟,刺激伤流,调节性别转化等效应。 扩展资料: 辨别催熟香蕉方法:

1、外观辨别催熟香蕉 首先可以看香蕉的表面,如果香蕉表面有麻点存在,就说明它们是自己成熟的香蕉;如果香蕉表面没有麻点存在,则说明这些香蕉是人工催熟的香蕉,因为人工催熟时,多使用化学药物,它是不能让香蕉表面出现麻点的。 2、看香蕉肉质辨别催熟香蕉 香蕉是不是催熟的,看香蕉的肉质也能分清,自然成熟的香蕉肉质多会比较软,而且甜味也比较重,而人工催熟的香蕉只是表面为黄色,里面的肉质去很硬,吃起来有种发生发硬的感觉,而且甜味也很淡。 3、闻气味辨别催熟香蕉 此外也可以把香蕉放在鼻子下方闻一下,如果香蕉有自然的香气存在,就说明它是自然成熟的香蕉,但是香蕉表面要是有化学味道或者硫磺的味道存在,就是建议购买了,因为它们很可能就是用乙烯或者硫碘催熟的生香蕉。 水果本身成熟时释放的香气中就含有一定浓度的乙烯利,用乙烯利催熟香蕉是国际通用做法,进口或国外超市香蕉大都是用乙烯利催熟的,不用催熟剂催熟的香蕉没有熟得不均匀,皮暗,卖相差,乙烯利在一定的用量下是对人体无害的。用乙烯利催熟香蕉是不可能用太高浓度的,否则上架不久就会脱把或果皮变黑,所以用乙烯利催熟香蕉也是比较安全的。

实验生长素赤霉素和乙烯利的作用及应用

实验20 生长素、赤霉素和乙烯利的作用及应用 一、目的 了解植物生长物质在农业中的作用及应用。 二、材料用具及仪器药品 绿豆幼苗、植物枝条、水稻幼苗、香蕉、烧杯、刀片、剪刀、镊子、温箱、培养皿、砂盆、凡士林、琼脂(1.5%)、吲哚丁酸(或萘乙酸):先配成100ppm(mg/L)母液再稀释成20ppm(mg/L)50ppm(mg/L)。 吲哚乙酸50ppm(mg/L)。 乙烯利:用水稀释为100 ppm(mg/L)、500ppm(mg/L)和1000ppm(mg/L)浓度。用前再稀释。 赤霉酸:20 ppm(mg/L) 三、原理 植物激素类物质可分为五大类。即生长素、赤霉素类、细胞分裂素类,脱落酸和乙烯,它们是植物生长发育中的重要调节物,而一些由人工合成的具有植物激素活性的物质,即植物生长调节剂如吲哚丁酸、萘乙酸,乙烯利等也具有同样的生理效应。 四、方法步骤 (一)吲哚丁酸(或萘乙酸)促进插枝生根反应 1.选取8株绿豆幼苗(要求苗高约12cm,且幼苗的两片初生叶全张开)。从子叶节下

3cm处切去根系。 2.去根幼苗4株放在20mg/L吲哚丁酸(或萘乙酸)溶液中(浸下胚轴高度约2cm)。另四株放在蒸馏水中(浸下胚轴)。12小时后取出幼苗,分别插在洗干净的沙中(深约2cm)培养,6天后取出该两组幼苗,观察它们的发根情况,记录并比较结果。 3.取月季花(或其它植物)的枝条10条,每条长约5—6寸,基部剪成斜面,分为两组。一组浸在50 mg/L吲哚乙酸(或萘乙酸)溶液中(浸基部约2cm高),另一组浸在水中,经常保持湿润、温暖和通气,观察发根情况,并记录根数和根长度(此实验在春季树木发芽前进行)。 (二)赤霉素对水稻幼苗茎杆伸长的反应 萌发水稻种子,实验前将水稻幼苗照光2天,实验时选取芽长一致(约0.5~1.0cm)的幼苗10株,分为两组。每组5株,其中一组加入5 mg/L GA3溶液约6ml。另一组加入纯水约6ml作对照,移到太阳光下照光3~4天,然后观察并记录两组不同处理的结果(注意:幼苗培养期间,每天要补充一些水)。 (三)乙烯利对果实的催熟作用 取未成熟的香蕉若干条,分成两份。其中一份各涂上500mg/L(或1000 mg/L)乙烯利溶液。另一份涂上蒸馏水作对照。分别放在纸箱内,3~4天后观察香蕉的成熟程度。注意温度的改变对催熟的影响。 (四)乙烯利促使雌花的形成 培育黄瓜幼苗,当出现两片真叶时,选择生长一致的幼苗4株,将之分为两个组,每组2株,于晴天下午分别作如下处理:第一组用100PP m(mg/L)乙烯利溶液滴在生长点处;第二组用蒸馏水滴在生长点处。第二天下午再重复一次处理(注意乙烯利溶液或水必须保留在生长点上,使其慢慢吸收),以后观察并记录两组处理黄瓜苗开花后雌花的比例。

乙烯利催熟香蕉是安全科学的

乙烯利催熟香蕉是安全科学的 *导读:不知你在吃香蕉时会不会怀疑,香蕉都是乙烯利催 熟的,对人体到底有没有害呢?是不是食品安全问题,记者就此 采访了有关农业和卫生…… 不知你在吃香蕉时会不会怀疑,香蕉都是乙烯利催熟的,对人体到底有没有害呢?是不是食品安全问题,记者就此采访了有 关农业和卫生权威专家。 国家香蕉产业技术体系首席科学家、海南省香蕉协会秘书长,海南省农科院果树所所长,海南省农科院院长等权威专家都认为,乙烯利是一种无毒有机化合物,可以释放乙烯,是植物生长调节剂,可促进果实成熟。使用乙烯利催熟是香蕉生产过程中不可缺少的一个环节,全世界都使用这种方法。因为香蕉要长途运输,必须采摘青果,而从树上砍下来的成串香蕉很难自熟,如果不使用乙烯利,大部分香蕉就会腐烂。香蕉、芒果、木瓜等热带水果在成熟的过程中都会产生大量乙烯,它有加速果实成熟的作用。 使用乙烯利只是利用其溶水后散发的乙烯气体催熟,并诱导香蕉本身产生大量的内源乙烯,使香蕉自身快速产生乙烯气体,加速自熟。乙烯的催熟过程是一种复杂的植物生理生化反应过程,不是化学作用过程,不产生任何对人体有毒害的物质。并且量极为轻微,过量香蕉不能正常成熟,商品价值下降,甚至引起果实腐烂。用乙烯或乙烯利催熟是安全和科学合理的,在全世界已经

有100多年的历史。 海南省疾控中心的专家认为,乙烯利是一种长期以来应用于农作物的一种植物生长调节剂。到目前为止,尚未发现使用乙烯利催熟的香蕉造成人体健康危害的报道。 据记者了解,今年受长时间低温阴雨天气影响,海南香蕉上市期有所后延,预计上市高峰将集中在56月。据统计,今年以来海南香蕉累计收获量约80万吨左右,出岛量约75万吨,本周日均出岛约8000吨-1万吨,5月份起将进入收获上市高峰期。

乙烯利催熟香蕉

问:你好!请问:1)我用乙烯利催熟香蕉,温度20摄氏度。但颜色不金黄、没亮泽。请问是什么原因?有相关的图书介绍吗?2)30PPM的药液,怎么配的?是稀释机倍?谢谢 答:咨询使用乙烯利催熟香蕉出现颜色不金黄,没有亮泽原因的朋友,你好。用乙烯利稀释液浸果或喷果方法进行对香蕉催熟,是目前普遍使用的方法。使用40%乙烯利催熟香蕉的浓度一般是400-800倍。即40%乙烯利100毫升兑水40公斤为400倍,如此类推。乙烯利的施用浓度是因温度不同。而浓度不同浸果时期温度低,浓度相对高些。催熟库房温度与湿度是影响香蕉催熟时间及外观的关键,一般的库温在15-20℃为宜,如果库温超过25℃,香蕉容易发生青熟,即果皮尚青,果肉已软化。如果温度太低,不但会令香蕉催熟时间延长,而且会令果皮灰黄缺乏光泽,着色不匀。库房湿度在香蕉的摧残初期宜保持湿度在90-95%,待香蕉开始转色,可降低库内湿度,以80-85%为合适,如果湿度太低,就会令香蕉果皮着色不良,没有光泽,外观欠佳了。请你根据上述的参数,对照你的操作条件行进调整。ppm浓度的含意是百万分之一浓度,例如:乙烯利商品含量为40%,相对密度为1.258,要配制200公斤30ppm浓度,200公斤的乙烯稀释液,其计算方法如下: 40%×(所求的乙烯利量单位为毫升)×1.258÷1000×200=0.00003 则:所求的乙烯利量=0.00003×1000×200÷0.4×1.258=11.9(毫升) 即:用11.9毫升的40%乙烯利加入200公斤水用,均匀混和成30ppm浓度乙烯利溶液

乙烯利催熟香蕉有何好处?及其方法? 时间:2006-12-20 16:33:48 问:香蕉为什么要用乙烯利催熟? 答:香蕉一般在七、八成熟时采收,采收后需要经过一个时期的后熟,才能达到完熟可食。在过去习惯上把这种香蕉,放在密封烘房内用香熏法促使成熟,这种古老方法,烘房条件要求密封性好,劳动强度高,加工周期长,质量又不够稳定,因此使用上受到一定的限制。特别当旺季香蕉大量上市时,由于房屋和设备等条件的限制,更影响到香蕉的成熟上市。现在采用乙烯利催熟香蕉,方法简便,效果很好,它具有不需要密封条件,不受房屋设备限制;加工技术简便,容易掌握;减少加工劳动强度;降低损耗;香蕉质量比较稳定,色、香、味和香熏法基本相同等优点。 问:香蕉如何使用乙烯利催熟? 答:(1)乙烯利溶液浸或喷催熟香蕉 处理方法:将配制好的乙烯利溶液,浸渍或喷洒在生香蕉(七、八成熟)的表面上,就能起到催熟的效果。采用这种方法,一般经4~5天香蕉便能黄熟。但蕉皮色泽是否鲜黄美观,果肉是否香甜可口,还取决于催熟时的温度,乙烯利催熟香蕉的温度以20~25℃为宜,若低于或高于这个温度范围,则要辅以加温或降温措施,以利于提高香蕉质量。 使用浓度:在20~25℃时,乙烯利溶液浓度以1000ppm为宜,温度低药液浓度高些;温度高药液浓度低些。(2)乙烯利加碱释放乙烯催熟香蕉 乙烯气体携带不方便,在使用上受到限制,利用乙烯利加碱分解释放的乙烯来催熟香蕉,较直接用乙烯更为方便。方法是:先在密封的房内堆好香蕉,室内放一个盆子,盆内放工业用的固体氢氧化钠,然后倒入乙烯利溶液,之后迅速闭上密封门。氢氧化钠和乙烯利的用量视房间大小而定,如60平方米的房间,需要氢氧化钠200克,乙烯利500毫升。封闭后40~60小时开房,让香蕉在空气中自然后熟1~2天,香蕉就能转黄成熟。 问:香蕉经乙烯利催熟后,品质发生哪些变化? 答:一般地说,用乙烯利处理香蕉后二天,果实开始软化转色,4~5天后黄色果皮上开始出现“芝麻点”,果肉进一步松软,甜味增加,并散发出香味,而未经处理的香蕉成熟转色缓慢,品质较差。 经中国科学院上海植物生理研究所测定,乙烯利处理香蕉后,呼吸高峰比对照提前4天,且峰值也高。果皮中叶绿素含量迅速减少,而胡萝卜素含量变化不大。果肉中可溶性糖的含量急剧增加,淀粉含量迅速下降,如在处理前,糖的含量占鲜重的0.72%,淀粉含量占鲜重的28.3%,经乙烯利处理后4天,糖的含量增加到28.7%,淀粉含量下降到0.9%,而此时对照糖的含量只有1.32%,淀粉含量为27.1%,直到第10天,对照糖的含量才达到25%,淀粉含量下降到2.2%。

乙烯利香蕉催熟实验方案

香蕉催熟原理和方法探寻 09农学2班李舒畅、金家凯、孔德腾、鲜孟筑(执笔)一、实验目的 ⑴理解香蕉催熟的原理; ⑵熟悉香蕉催熟的处理流程; ⑶认知香蕉催熟过程的观察方法与记录方式; ⑷探索各种条件下催熟香蕉的方法及对香蕉品质的影响; ⑸掌握香蕉商业化催熟的方法与技巧; 二、实验背景与假设 香蕉是一种亚热带水果,其生产栽培具有一定地域局限性,每年都有大批量的香蕉得从南方运到全国各地销售。长期贮藏及远途运输的香蕉一般在七八成熟时就采收,待到出售前再进行人工催熟。香蕉的采后催熟方法多种多样,催熟效果也有一定的差别,目前国内外通行的做法是利用乙烯利试剂对其进行催熟。 本实验假设认为在用乙烯利对香蕉进行催熟的操作中,香蕉的催熟效果与乙烯利浓度和催熟方式有关。 三、理论依据 香蕉是典型的呼吸跃变型水果,乙烯是与呼吸高峰的出现密切相关的植物激素。果实组织代谢释放的乙烯,对果实成熟具有剌激和反馈调节自身合成的作用。一旦内源乙烯的浓度达到其生理作用的阈值,就会引起连锁后熟反应。乙烯利是一种人工合成的植物生长调节剂,其化学成分为2一氯乙基膦酸,微酸性,在微碱的情况下能起释放乙烯。适量增加外源乙烯可刺激内源乙烯的产生,对水果的成熟有明显的促进作用。 四、实验材料用具及仪器 7~8成熟香蕉果指、乙烯利(浓度40%)、施保克或特克多、蒸馏水、洗瓶、烧杯(500ml)、容量瓶(100ml)、移液管(0.1,0.2,0.5ml)、洗耳球、胶头滴管、小型喷雾器、盛水大容器、水果刀、小砧板、保鲜袋、橡皮筋、标签、棉花、恒温恒湿培养箱等

五、实验步骤 1、对果实进行剔选。选择果皮完好,成熟度几乎一致的香蕉果指。随机分 为A、B两组,A、B两组内又分为A1、A2、A3、A4、B1、B2、B3、B4,备用。 2、配置乙烯利溶液。先按比例加入0.05%的洗衣粉,待溶解后再按比例加 入乙烯利,配制成相应浓度的乙烯利溶液。分别配置○1500mg/l,○2 1000mg/l,○32000mg/l○40mg/l四个浓度的乙烯利溶液备用。 3、将A组蕉果分小组分别在四种浓度的乙烯利溶液中浸泡一分钟,沥去药 液,装入保鲜袋里密封后,贴好标签放入20℃的恒温恒湿培养箱。 4、将剩余的各浓度乙烯利溶液装入小型喷雾器中,分别均匀地喷洒在B组 的各小组蕉果上,套上保鲜袋,密封后,贴好标签放入20℃的恒温恒湿 培养箱。 5、定期定时观察蕉果的变化情况,记录如如下表格: 果皮颜色是用于判断果实成熟级数的一个指标。香蕉成熟度分级标准如下:1 级,果表颜色为绿色,果实硬;2 级,果表绿色开始转黄, 果实较硬;3 级,果表黄色面积占全果表面积<10%,果实开始变软;4 级,果表黄色面积占全果表面积10%~50%,果实较软;5 级,果表黄 色面积占全果表面积>50%,果实完全软化;6级为全黄色,7级时出现 斑点,开始褐化[9]。 级数第一天第二天第三天第四天第五天第六天第七天A1 A2 A3 A4 B1 B2 B3 B4 七、实验效果及其分析

催熟剂的主要成份是乙烯利

催熟剂的主要成份是乙烯利,使用浓度为200-300ppm,喷施时间为果实开始转色时。作用为提早成熟、提高着色。 膨大素含:80%NAA1.0g、GA0.4g、高浓度(4PPm)细胞分裂素(异戊烯腺嘌呤)10g,N1.84g,P2.00g,K2.72g,Ca0.32g,Mg0.12g,Zn1.16g,Fe0.08g,B0.08g。每包对水15公斤。在果实开花做果期使用提高做果率、促进果实迅速膨大。 催红素包括了催熟剂,但还有“胭脂红”等染色剂。 成分是乙稀,目前,一些商贩销售的西红柿上长出一个个长长的尖,有的呈现出花瓣状;个头较大的草莓、西瓜等水果切开后中间有空腔;原想颜色呈黑红色的樱桃、李子味道一定酸甜可口,然而尝了后才发现上当。据有关专家称,这类果蔬大部分非正常生长成熟,而是采用了膨大剂、增红剂和催熟剂等化学激素。 专家介绍,膨大剂的化学名称叫细胞集动素,属于激素类化学物质。有些菜农在黄瓜、西葫芦等蔬菜上使用,以此方法使果蔬细胞非正常膨大,个头比正常长大的果蔬大1-2倍,形状变得比较奇特,如西红柿长尖、草莓呈梨状,黄瓜尖部肥大与蒂部形成鲜明对比等。使用膨大剂后的果蔬味道变淡,吃起来口感不好,消费者买过一次后,一般不会再次购买;其次,这类果蔬不便于长时间储藏,也更不利于人体健康。 专家介绍水果在自然成熟过程中,自然会释放出少量乙稀使香蕉、柿子、苹果等成熟。为便于水果储藏、运输,将接近成熟期的果品提

前采摘,上市销售前用乙烯催熟是常用的方法。但专家指出,此方法催熟所使用的乙烯是微量的,一般不会对人体造成危害,如果为了使水果提前上市卖好价钱,将成熟期较远的青果催熟,则需要大量乙烯,这样的水果吃了后对人体有害。比如市面上部分外观黄亮,吃起来有生味的香蕉就是采用大量的乙烯或其他化学物质催熟的。所以建议大家尽量少购买那些形状、颜色异常鲜艳的水果,或者尽量食用一些应季的蔬菜水果。

怎么分辨催熟香蕉

怎么分辨催熟香蕉 香蕉有助于消化,而且价格也比较的低廉,一年四季都有的,常吃有助于美容养颜缓解便秘的,但是现在市面上有一些不法商家用药对香蕉进行催熟,这对我们的身体是非常不利的,下面本文将为大家详细的介绍。 怎么分辨催熟香蕉 香蕉如果是自然熟的话,会在香蕉表皮形成一种标志性的物质,梅花点,也就是香蕉表面黑色的小点,这类物质是香蕉熟透的标志,然而如果是催熟的就不会出现梅花点了。因此挑选香蕉的时候可以选择有梅花点的,是相对安全的香蕉。其次就是闻闻味道,用化学药剂特别是二氧化硫等硫化物催熟的香蕉是带有化学药剂味道的。 催熟香蕉的危害 香蕉的催熟剂乙烯利是一种植物生长调节剂,可以在规定标准内使用,如果使用大量高浓度催熟剂容易造成香蕉外熟内生,表皮光亮好看,但是却会很快变黑腐烂。食用了过量喷洒乙烯利的水果,可能会引起恶心呕吐等症状,甚至可能对肝脏和脑部造成损害。 家庭香蕉催熟方法 在家中购买了香蕉想要催熟时,最好的方法就是把香蕉购买回来以后放在塑料袋子中,再放入两个苹果或者梨,然后把口扎紧放在靠近暖气的地方,过两三天,香蕉就能自然熟透,可以取出食用了。 香蕉的功效与作用 便秘

缓解这一不可为外人所道的痛苦,可能是香蕉最为人所知的效用。付金如解释说,这是因为香蕉所含的食物纤维很多,可以帮助刺激肠蠕动,特别对老人来说更是大有裨益。 高血压和中风 香蕉含大量的钾,但盐分比较低,而且有抑制血管紧张的作用,是最理想的降压和预防中风的食物之一。 免疫力低下 付金如说,由于含有丰富的维生素,香蕉的抗氧化能力很强,这就增强了“香蕉族”自身的免疫力,特别是在容易感冒的冬季,每天吃点香蕉,肯定能为你的身体保驾护航。 抑郁症等心理疾病 香蕉素来有“快乐水果”之称,荷兰科学家研究认为:最符合营养标准又能为人脸上增添笑容的水果是香蕉。它所含有的泛酸等成分,是人体的“开心激素”,能减轻心理压力、排解紧张、提高注意力、解除忧郁,令人快乐开心。而且,睡前吃香蕉,还有镇静的作用。 贫血 应对这一女性朋友的常见病,香蕉也能大显身手。付金如认为,香蕉的含铁量很高,且富含胡萝卜素,因此能刺激血液内血红蛋白的产生,有助于减轻贫血症状。 胃灼热 香蕉能保护人的胃黏膜,减少胃酸的分泌,因此胃不好的病人偶尔吃一两根颇有好处。但香蕉属于寒性食品,因此切忌过量。

香蕉的催熟原理及技术

香蕉的催熟原理及技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

香蕉的催熟原理及技术 摘要:香蕉果实在植株上自然成熟,风味远远比不上经过催熟的优良,更难远途运输。所以为获得鲜艳黄色的商品香蕉,一定要掌握一定的催熟技术,掌握好催熟剂的使用浓度及催熟时的温、湿度条件,方可获得满意的催熟效果。 关键词:催熟、采收、温度、湿度、乙烯 一、前言 香蕉虽然属于热带果树,但在亚热带地区也可经济栽培。香蕉的栽培比较粗放,但产量较高。香蕉可周年结果,在国内外市场上是常年供应的鲜果,是人们最喜爱的热带果品之一。香蕉生产在我国水果生产中占有重要地位。 香蕉与别的水果有个较大的不同点,香蕉的成熟一般都是人工催熟,当然蕉果留在蕉株上,也可完全可以成熟。但风味远不如经过人工催熟的好,且不能远运,又易受鸟虫侵害。香蕉采收后,放置一定时间,也可完成后熟,但需时较长,成热不整齐。且果柄果轴易腐烂。故香蕉采后都要进行人工催熟,这不但可缩短香蕉采后上市的生产周期,且有利提高果实品质,增加香味。 二、催熟原理 香蕉的催熟原理,是利用外加乙烯激素使香蕉后熟。后熟后的果实,淀粉含量由20%左右锐减为1%~3%,而可溶性糖则突增至18%~20%。果皮由绿转黄,肉质由硬转软,出现香味物质和一定的有机酸,果皮易与果肉分离,果实可食。 香蕉催熟的代谢过程主要是呼吸作用,催熟时香蕉果实出现呼吸高峰,呼吸强度很大,达100~150毫克二氧化碳/千克·小时,故影响果实呼吸作用的因素也影响香蕉的催熟。 (一)温度14~38℃均可使香蕉催熟,但温度太低时后熟缓慢,太高时后熟快,以致使果皮不转黄色。最适宜的温度是18~20℃,后熟后果皮金黄色,果肉结实。催熟温度以果肉温度为准,惆蕉房的温度往往与果

香蕉催熟技术详解

香蕉催熟技术详解 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

香蕉催熟技术详解 香蕉的催熟原理,是利用外加乙烯激素使香蕉后熟。后熟后的果实,淀粉含量由20%左右锐减为1%~3%,而可溶性糖则突增至18%~20%。果皮由绿转黄,肉质由硬转软,出现香味物质和一定的有机酸,果皮易与果肉分离,果实可食。 香蕉催熟的代谢过程主要是呼吸作用,催熟时香蕉果实出现呼吸高峰,呼吸强度很大,达100~150毫克二氧化碳/千克·小时,故影响果实呼吸作用的因素也影响香蕉的催熟。 二催熟条件 (一)温度14~38℃均可使香蕉催熟,但温度太低时后熟缓慢,太高时后熟快,以致使果皮不转黄色。最适宜的温度是18~20℃,后熟后果皮金黄色,果肉结实。催熟温度以果肉温度为准,惆蕉房的温度往往与果实温度有一定的差异,尤其是长期低温贮藏或外界温度太低时,须让果肉温度上升到一定的温度(16~18℃)再行催熟。适当低温催熟,可提高果实的货架期,但温度低,催熟时间长,火局蕉房的利用率不高。我国目前常用的温度为18~20℃,6天催熟。 (二)湿度湿度太低香蕉难催熟。催熟的前中期(前4天刚转色),需要较高的湿度,以90%~95%的相对湿度为宜,高湿环境下果皮色泽鲜艳诱人。但后期(后2天转色后)湿度宜较低,以80%~85%为宜,这样有利于延长货架期。

三、催熟方法 (一)乙烯催熟 乙烯是一种无色、有微甜气味的气体,它是植物五大激素之一,在植物体内具有多种生理作用,主要是促进果蔬的成熟和衰老。在密闭的塑料帐或房间里,把香蕉堆码好,按容积%~%的乙烯气浓度充气。密闭1~2天后取出香蕉,2~3天左右香蕉逐渐黄熟。此法缺点是要求密闭严格,充气浓度不易掌握,数量也有限。在国外,有采用专门的乙烯气瓶经过减压阀,通入催熟房。根据催熟果蔬的不同,控制进入的乙烯量,在催熟房内,利用小风扇来使房内的乙烯混合均匀。 华南农业大学研制成功的“芳托”催熟剂,使用非常方便,只要把2瓶药混合,所释放的气体就能代替乙烯把香蕉催熟。凡是利用气体作催熟剂的,一般可免去重新打开包装的繁琐,但是对放有乙烯吸收剂的包装,则要先取出吸收剂。

香蕉的催熟

香蕉的催熟 一催熟原理 香蕉的催熟原理,是利用外加乙烯激素使香蕉后熟。后熟后的果实,淀粉含量由20%左右锐减为1%~3%,而可溶性糖则突增至18%~20%。果皮由绿转黄,肉质由硬转软,出现香味物质和一定的有机酸,果皮易与果肉分离,果实可食。 香蕉催熟的代谢过程主要是呼吸作用,催熟时香蕉果实出现呼吸高峰,呼吸强度很大,达100~150毫克二氧化碳/千克·小时,故影响果实呼吸作用的因素也影响香蕉的催熟。 二催熟条件 (一)温度14~38℃均可使香蕉催熟,但温度太低时后熟缓慢,太高时后熟快,以致使果皮不转黄色。最适宜的温度是18~20℃,后熟后果皮金黄色,果肉结实。催熟温度以果肉温度为准,惆蕉房的温度往往与果实温度有一定的差异,尤其是长期低温贮藏或外界温度太低时,须让果肉温度上升到一定的温度(16~18℃)再行催熟。适当低温催熟,可提高果实的货架期,但温度低,催熟时间长,火局蕉房的利用率不高。我国目前常用的温度为18~20℃,6天催熟。 (二)湿度湿度太低香蕉难催熟。催熟的前中期(前4天刚转色),需要较高的湿度,以90%~95%的相对湿度为宜,高湿环境下果皮色泽鲜艳诱人。但后期(后2天转色后)湿度宜较低,以80%~85%为宜,这样有利于延长货架期。 (三)乙烯利的浓度乙烯利5~4000ppm溶液均可把香蕉催熟,通常用800~1000ppm乙烯利浓度。据华南农业大学试验,浓度降低500ppm,成熟时间相应推迟1天。浓度低,催熟时间长;浓度高,后熟快,但果肉易软化,果皮易断,货架期较短。乙烯利浓度对催熟时间的效应不如温度大。 (四)氧气和二氧化碳的浓度香蕉催熟过程中呼吸强度很大,尤其

相关主题
文本预览
相关文档 最新文档