当前位置:文档之家› 腐蚀膨胀算法详细解释

腐蚀膨胀算法详细解释

腐蚀膨胀算法详细解释
腐蚀膨胀算法详细解释

形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言)

6.1 腐蚀

腐蚀是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。

腐蚀的算法:

用3x3的结构元素,扫描图像的每一个像素

用结构元素与其覆盖的二值图像做“与”操作

如果都为1,结果图像的该像素为1。否则为0。

结果:使二值图像减小一圈

把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的

a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba X}=X B,如图6.8所示。

图6.8 腐蚀的示意图

图6.8中X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。

值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。

图6.9 结构元素非对称时,腐蚀的结果不同

图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。

在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。

图6.10 腐蚀运算

图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。

图6.11 原图

图6.12 腐蚀后的结果图

下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。参数中有一个BOOL变量,

为真时,表示在水平方向进行腐蚀运算,即结构元素B为;否则在垂直方向上

进行腐蚀运算,即结构元素B为。

6.2 膨胀

膨胀是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。

可以用来填补物体中的空洞。

膨胀的算法:

用3x3的结构元素,扫描图像的每一个像素

用结构元素与其覆盖的二值图像做“或”操作

如果都为0,结果图像的该像素为0。否则为1

结果:使二值图像扩大一圈

膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的

结果。用公式表示为:D(X)={a | Ba↑X}=X B,如图6.13所示。图6.13中X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点a,Ba击中X,所以X被B 膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。

同样,如果B不是对称的,X被B膨胀的结果和X被Bv膨胀的结果不同。

让我们来看看实际上是怎样进行膨胀运算的。在图6.14中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。

图6.13 膨胀的示意图

图6.14 膨胀运算

图6.15为图6.11膨胀后的结果图,能够很明显的看出膨胀的效果。

图6.15 图6.11膨胀后的结果图

下面的这段程序,实现了上述的膨胀运算,针对的都是黑色点。参数中有一个BOOL变

量,为真时,表示在水平方向进行膨胀运算,即结构元素B为;否则在垂直方

向上进行膨胀运算,即结构元素B为。

6.3 开运算

先腐蚀后膨胀的过程称为开运算。

用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。先腐蚀后膨胀称为开(open),即OPEN(X)=D(E(X))。

让我们来看一个开运算的例子(见图6.16):

图6.16开运算

在图16上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是腐蚀后的结果;右边是在此基础上膨胀的结果。可以看到,原图经过开运算后,一些孤立的小点被去掉了。一般来说,开运算能够去除孤立的小点,毛刺和小桥(即连通两块区域的小点),而总的位置和形状不变。这就是开运算的作用。要注意的是,如果B是非对称的,进行开运算时要用B的对称集Bv膨胀,否则,开运算的结果和原图相比要发生平移。图6.17和图6.18能够说明这个问题。

图6.17 用B膨胀后,结果向左平移了

图6.18 用Bv膨胀后位置不变

图6.17是用B膨胀的,可以看到,OPEN(X)向左平移了。图18是用Bv膨胀的,可以看到,总的位置和形状不变。

图6.19为图6.11经过开运算后的结果。

图6.19 图6.11经过开运算后的结果

开运算的源程序可以很容易的根据上面的腐蚀,膨胀程序得到,这里就不给出了。

6.4 闭运算

先膨胀后腐蚀称为闭(close),即CLOSE(X)=E(D(X))。

让我们来看一个闭运算的例子(见图6.20):

图6.20 闭运算

在图6.20上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是膨胀后的结果,右边是在此基础上腐蚀的结果可以看到,原图经过闭运算后,断裂的地方被弥合了。一般来说,闭运算能够填平小湖(即小孔),弥合小裂缝,而总的位置和形状不变。这就是闭运算的作用。同样要注意的是,如果B是非对称的,进行闭运算时要用B的对称集Bv膨胀,否则,闭运算的结果和原图相比要发生平移。

图6.21 图.611经过闭运算后的结果

闭运算的源程序可以很容易的根据上面的膨胀,腐蚀程序得到,这里就不给出了。

你大概已经猜到了,开和闭也是对偶运算,的确如此。用公式表示为(OPEN(X))c=CLOSE((Xc)),或者(CLOSE(X))c =OPEN((Xc))。即X 开运算的补集等于X的补集的闭运算,或者X 闭运算的补集等于X的补集的开运算。这句话可以这样来理解:在两个小岛之间有一座小桥,我们把岛和桥看做是处理对象X,则X的补集为大海。如果涨潮时将小桥和岛的外围淹没(相当于用尺寸比桥宽大的结构元素对X进行开运算),那么两个岛的分隔,相当于小桥两边海域的连通(对Xc做闭运算)。

6.5 细化运算

细化(thinning)算法有很多,我们在这里介绍的是一种简单而且效果很好的算法,用它就能够实现从文本抽取骨架的功能。我们的对象是白纸黑字的文本,但在程序中为了处理的方便,还是采用256级灰度图,不过只用到了调色板中0和255两项。

所谓细化,就是从原来的图中去掉一些点,但仍要保持原来的形状。实际上,是保持原图的骨架。所谓骨架,可以理解为图象的中轴,例如一个长方形的骨架是它的长方向上的中轴线;

正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。文本的骨架嘛,前言中的例子显示的很明白。那么怎样判断一个点是否能去掉呢?显然,要根据它的八个相邻点的情况来判断,我们给几个例子(如图6.22所示)。

图6.22 根据某点的八个相邻点的情况来判断该点是否能删除图6.23经过细化后,我们预期的结果是一条水平直线,且位于该黑色矩形的中心。实际的结果确实是一条水平直线,但不是位于黑色矩形的中心,而是最下面的一条边。为什么会这样,我们来分析一下:在从上到下,从左到右的扫描过程中,我们遇到的第一个黑点就是黑色矩形的左上角点,经查表,该点可以删。下一个点是它右边的点,经查表,该点也可以删,如此下去,整个一行被删了。每一行都是同样的情况,所以都被删除了。到了最后一行时,黑色矩形已经变成了一条直线,最左边的黑点不能删,因为它是直线的端点,它右边的点也不能删,因为如果删除,直线就断了,如此下去,直到最右边的点,也不能删,因为它是直线的右端点。所以最下面的一条边保住了,但这并不是我们希望的结果。解决的办法是,在每一行水平扫描的过程中,先判断每一点的左右邻居,如果都是黑点,则该点不做处理。另外,如果某个黑点被删除了,那么跳过它的右邻居,处理下一个点。这样就避免了上述的问题。

各类材料失效分析方法

各类材料失效分析方法 Via 常州精密钢管博客 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 失效分析流程 图1 失效分析流程 各种材料失效分析检测方法 1 PCB/PCBA失效分析 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。

图2 PCB/PCBA 失效模爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段· 无损检测: 外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 显微红外分析(FTIR) 俄歇电子能谱分析(AES) X射线光电子能谱分析(X PS) 二次离子质谱分析(TOF-SIMS)· 热分析:· 差示扫描量热法(DSC) 热机械分析(TMA) 热重分析(TGA) 动态热机械分析(DMA) 导热系数(稳态热流法、激光散射法) 电性能测试: · 击穿电压、耐电压、介电常数、电迁移· 破坏性能测试: 染色及渗透检测

2 电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式 开路,短路,漏电,功能失效,电参数漂移,非稳定失效等 常用手段· 电测:连接性测试电参数测试功能测试 无损检测: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 制样技术: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 显微形貌分析: 光学显微分析技术 扫描电子显微镜二次电子像技术 表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 俄歇电子能谱分析(AES)

MATLAB膨胀腐蚀(开,闭运算)源代码

clear,clc; h=imread('ceshi2.bmp'); i=im2bw(h); i1i=187; i1j=192; for ai=181:193 for aj=186:198 if(sqrt(double(ai-i1i)^2+double(aj-i1j)^2)<=5) i(ai,aj)=1;%定义圆形结构元素 end end end figure,imshow(i); i1=i; for i1i=6:205%用B腐蚀A for i1j=6:205 flag=0; if(i1i>=181&&i1i<=193&&i1j>=186&&i1j<=198) continue; else if(i(i1i,i1j)==1) for ai=i1i-5:i1i+5 for aj=i1j-5:i1j+5 if(i1(ai,aj)==0&&sqrt(double((ai-i1i)^2+(aj-i1j)^2))<=5) i(i1i,i1j)=0; flag=1; break; end end if(flag==1) break; end end end end end end figure,imshow(i); %在上面C的图像上用B进行膨胀 i2=i; for i1i=6:205%用B膨胀C for i1j=6:205 flag=0; if(i1i>=175&&i1i<=199&&i1j>=180&&i1j<=204)

continue; else for ai=i1i-5:i1i+5 for aj=i1j-5:i1j+5 if(i2(ai,aj)==1&&sqrt(double((ai-i1i)^2+(aj-i1j)^2))<=5) i(i1i,i1j)=1; flag=1; break; end end if(flag==1) break; end end end end end figure,imshow(i); %在上面D的图像上用B进行膨胀 i2=i; for i1i=6:205%用B膨胀D for i1j=6:205 flag=0; if(i1i>=175&&i1i<=199&&i1j>=180&&i1j<=204) continue; else for ai=i1i-5:i1i+5 for aj=i1j-5:i1j+5 if(i2(ai,aj)==1&&sqrt(double((ai-i1i)^2+(aj-i1j)^2))<=5) i(i1i,i1j)=1; flag=1; break; end end if(flag==1) break; end end end end end figure,imshow(i); %在上面E的图像上用B进行腐蚀 i1=i;

金属腐蚀理论及腐蚀控制答案

《金属腐蚀理论及腐蚀控制》 (跟着剑哥走,有肉吃。) 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st = mh 又有d=m/v=20×40×=cm2h Vp=ˉ/d=×=y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st = =㎡h

d=m铝/v=30×40×5×=cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO 3( 25℃)有: 表面积S=2π×2 .0+2π××= m2 015 Vˉ=△Wˉ/st= g/ m2h 试样体积为:V=π××= cm3 d=W/V== g/cm3 Vp=ˉ/d=×=y 对铝有:表面积S=2π×2 .0+2π××= m2 02 Vˉ=△Wˉ/st= g/ m2h 试样体积为:V=π×2 2×= cm3 d=W/V== g/cm3 Vp=ˉ/d=×=y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st = g/ m2h Vp=ˉ/d=×=y 对铝:Vˉ=△Wˉ/st= m2h Vp=ˉ/d=×=y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

3.镁在L NaCl 溶液中浸泡100小时,共放出氢气330cm3。试验温度25C,压力760mmHg;试样尺寸为2020 (mm)的薄板。计算镁试样的失重腐蚀速度V p。(在25C时水的饱和蒸汽压为) 解:由题意得:该试样的表面积为: S=2×(20×20+20×+20××6 10-m2 10-=840×6 压力P= mmHg = mmHg= 根据PV=nRT 则有放出的氢气的物质的量为: n=PV/RT=×330×6 10-/×(25+= 又根据Mg +2+ H H—>+2 Mg+ 2 Mg腐蚀的量为n(Mg)= 所以:Vˉ=nM(Mg)/St=×840×6 10-×100= g/ m2h 查表得:d Mg= g/cm3 有:Vp=ˉ/d=×=y 4.表面积4cm2的铁试样,浸泡在5%盐酸溶液中,测出腐蚀电流为Icor = 。计算铁试样的腐蚀速度V-和V p。 解:由题意得: 根据Vˉ=A/nF=i cor可知 Vˉ=(A/nF)I cor/s =××2××4×= m2h 查表得d(Fe)= cm3 Vp=ˉ/d=×=y 即铁试样的腐蚀速度Vˉ= g/㎡*h Vp=y 第二章

图像的腐蚀和膨胀

图像的腐蚀和膨胀 研究背景和意义 依据数学形态学集合论方法发展起来的图像处理方法,在数字图像处理和机器视觉领域中得到了广泛的应用,形成了一种独特的数字图像分析和理论。数学形态学是图像处理和模式识别领域的新方法,其基本的思想是:用具有一定形态的结构元素去度量和提取图像中的对应形状,已达到图像分析和识别的目的。 优势有一下几点:有效滤除噪声,保留图像中原有信息,算法很容易用并行处理方法有效实现,基于数学形态学的边缘信息提取处理优于基于微分运算的边缘提取算法,提取的边缘比较平滑,提取的图像骨架也比较连续,断点很少。 二.原理 特殊领域运算形式——结构元素,在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结果是输出图像的相应像素。运算效果取决于结构元素大小、内容以及逻辑运算性质。 结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要比待处理的图像小的多。二维平面结构元素由一个数值为0或1的矩阵组成。结构元素的原点(锚点)指定了图像中需要处理的像素范围,结构元素中数值为1的点决定结构元素的领域像素在进行膨胀或腐蚀操作时是否需要参与计算。 常见的形态学运算有腐蚀和膨胀两种: 腐蚀:删除对象边缘某些像素。

膨胀:给图像中的对象边缘添加像素。 三.算法及效果图 膨胀算法:用3X3的结构元素扫描图像的每一个像素,用结构元素与其覆盖的二值图像做“与”操作,如果都为0,结果图像的该像素点为0,否则为1。膨胀算法的效果是使二值图像扩大一圈。 腐蚀的算法:用3X3的结构元素,扫描图像的每一个像素点,用结构元素与其覆盖的二值图像做“与”操作,如果结果都为1,结果图像的该像素点为1,否则为0。 膨胀算法的结果:是二值图像减少一圈。 四.组合使用效果 先腐蚀后膨胀的过程:利用它可以消除小物体,在纤细点处分离物体,平滑较大物体边界,但同时并不会明显改变原来物体的面积。 先膨胀后腐蚀的过程:利用它可以填充物体内细小空洞,连接临近物体、平滑其边界,但同时并不会明显改变原来物体的面积。 通常由于噪声的影响,图像在阈值化后所得到的边界通常都很不平滑,物体区域具有一些噪声孔,而背景区域上散布着一些小的噪声物体,连续的开和闭运算可以有效的改善这种情况。而有时,我们需要经过多次腐蚀,然后再加上相同次数的膨胀,才能产生比较好的处理效果。可见图像的腐蚀与膨胀相结合有时可以使图像有较理想的处理效果。 图像处理分为多种,对于不同的图像腐蚀和膨胀的定义不同。 1. 形态学图像处理是在图像中移动一个结构元素,然后将结构元素

助焊剂腐蚀失效案例分析

助焊剂腐蚀失效案例分析 中国赛宝实验室可靠性研究分析中心 邱宝军邹雅冰 1 前 言 随着国内外环保要求的不断提高,电子产品正全速向低毒、低碳方向前进,由此也引发产品制造业向无铅、无卤方向快速发展。由于无铅焊料的焊接温度范围受到PCB和元器件耐温要求的限制,特别是无铅焊料本身的润湿性较锡铅焊料差,无铅焊接工艺的难度大大得提高,由此导致大量的焊接工艺缺陷。为了客服无铅工艺焊接能力较差的问题,人们纷纷开发了更加适合无铅焊接的焊接辅助材料,其中新型无铅助焊剂在提高无铅焊接能力上起到了很大的作用。但是,助焊剂要起到助焊作用,必然要添加很多化学材料以除去焊料和焊接材料的氧化物,同时降低焊料的表面张力。在利用无铅助焊剂的强去除氧化物,提高焊接质量的同时,必须注意其带来的副作用,如对铜的腐蚀、焊接残留物的腐蚀迁移等。本文以案例的形式,介绍了无铅助焊剂使用不但导致PCB腐蚀的案例,给广大的读者以参考。 2 案例背景 某电视整机制造单位反映其PCBA过完一次回流后,人工在PCB焊接面刷了一层助焊剂,而且这批板子中有些板子还放置了2-3天的时间,然后进行波峰焊接的,焊接后发现大量的铜出现腐蚀现象,严重腐蚀处焊盘铜全部腐蚀,腐蚀比例搞到80%以上。 3 分析过程 显然,从失效样品描述的信息看,样品失效比例很高,且失效位置均位于PCB刷助焊剂一面,由此导致PCB腐蚀的原因可能与预涂助焊剂有关,为了进一步确认失效的原因,必须对失效样品的失效位置,失效特征等进行详细分析。 3.1 外观检查 对失效品进行外观检查,仅发现在裸露的孔环、表贴焊盘及板面上的导线均有缺失现象,铜层缺失位置还残留有锡珠,基板未见明显变色,无爆板分层,代表照详见图1。 裸铜缺失 裸铜缺失 图1 PCB焊盘腐蚀外观形貌 3.2 金相切片分析 对出现裸铜脱落的表贴和插装元器件焊点作金相切片分析,发现裸铜脱落位置的基材上零星还残留一些铜在基材中,在铜层尚还有保留的位置也可明显观察到铜层明显逐渐变薄的痕迹,详见图2;对外观

失效分析思路_张峥

理化检验-物理分册PTCA(PART:A PH YS.T EST.)2005年第41卷3专题讲座 失效分析思路 FAILURE ANA LYSIS M ETH ODOLOGY 张峥 (北京航空航天大学材料学院,北京100083) 中图分类号:T B303文献标识码:E文章编号:1001-4012(2005)03-0158-04 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。导致零部件或系统失效的因素往往很多,加之零部件相互间的受力情况很复杂,如果再考虑外界条件的影响,这就使失效分析的任务更加繁重。此外,大多数失效分析的关键性试样十分有限,只容许一次取样、一次观察和测量。在分析程序上走错一步,可能导致整个分析的失败。由此可见,如果分析之前没有一条正确的分析思路,要能如期得出正确的结论几乎是不可能的。 有了正确的分析思路,才能制定正确的分析程序。大的事故需要很多分析人员按照分工同时进行,做到有条不紊,不走弯路,不浪费测试费用。所以从经济角度也要求有正确的分析思路。 1失效分析思路的内涵 世界上任何事物都是可以被认识的,没有不可以认识的东西,只存在尚未能够认识的东西,机械失效也不例外。实际上失效总有一个或长或短的变化发展过程,机械的失效过程实质上是材料的累积损伤过程,即材料发生物理的和化学的变化。而整个过程的演变是有条件的、有规律的,也就是说有原因的。因此,机械失效的客观规律性是整个失效分析的理论基础,也是失效分析思路的理论依据。 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环 收稿日期:2005-02-07 作者简介:张峥(1965-),男,教授,博士生导师。境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如/顺藤摸瓜0,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果;/顺藤找根0,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因;/顺瓜摸藤0,即从过程中的终点结果出发,不断由过程的结果推断其原因;/顺根摸藤0,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如/顺瓜摸藤+顺藤找根0 /顺根摸藤+顺藤摸瓜0/顺藤摸瓜+顺藤找根0等。 # 158 #

腐蚀膨胀算法详细解释

形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言) 6.1 腐蚀 腐蚀是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。 腐蚀的算法: 用3x3的结构元素,扫描图像的每一个像素 用结构元素与其覆盖的二值图像做“与”操作 如果都为1,结果图像的该像素为1。否则为0。 结果:使二值图像减小一圈 把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的 a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba X}=X B,如图6.8所示。 图6.8 腐蚀的示意图 图6.8中X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。 值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。

图6.9 结构元素非对称时,腐蚀的结果不同 图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。 在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。 图6.10 腐蚀运算 图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。 图6.11 原图

材料失效分析课程思考题

材料失效分析课程 思考题 第一章材料失效分析概论 1. 概述失效分析学科有哪些特点。 2. 失效是什么?它与事故、事件、故障有什么区别? 3. 失效分析的作用和意义是什么? 4. 简述失效模式、失效机理、失效缺陷和失效起因的的物理含义;举例说明它 们之间的相互关系。 5. 简要说明材料失效分析涉及的“六品”、“五件”和“四化”的物理含义。 6. 一个结构件的失效分析,一般需考虑哪几个主要因素? 7. 简述失效分析过程中的主要步骤及其任务。 8. 一辆自行车是由许多零部件组装而成,你认为哪些最容易发生失效,它们的 失效模式是什么? 9. 设想一下有没有永远不会失效的材料。如有,请举例并从失效模式和失效机 理出发叙述其理由。 第二章材料的断裂失效形式与机理 1. 工程结构件的强度设计,一般选取σs或σb二者中的最小值,许用应力的安 全系数是如何选取的? 2. 材料的强度设计准则、刚度设计准则和变形设计准则有什么区别?试用生活' 中的实例来说明它们各自的重要意义。 3. 韧性断裂和脆性断裂有什么区别?它们的断口形貌有什么不同? 4. 概述强度设计和断裂设计的区别,并谈谈如何防止脆性断裂。 5. 什么叫断裂力学? KI和KIC两者有什么关系? 6. 疲劳断口有什么特征?如何确定疲劳裂纹的起裂点? 7. 材料的抗断裂设计,有哪几个断裂参量可以选用? 8. 哪些参数可以用来表征材料的韧性? 9. 硬度测定有哪些方法?金属、陶瓷和聚合物的硬度测定方法为什么大多数不 能互用? 10.简述金属材料在不同失效模式下有哪些不同的失效机理。 第三章材料的腐蚀失效形式与机理 1. 什么叫腐蚀?化学腐蚀和电化学腐蚀有什么不同?请各举一例说明。 2. 在电化学腐蚀中,金属的损失伴随的是还原反应还是氧化反应?腐蚀发生在

失效分析常见思路

失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。导致零部件或系统失效的因素往往很多,加之零部件相互间的受力情况很复杂,如果再考虑外界条件的影响,这就使失效分析的任务更加繁重。此外,大多数失效分析的关键性试样十分有限,只容许一次取样、一次观察和测量。在分析程序上走错一步,可能导致整个分析的失败。由此可见,如果分析之前没有一条正确的分析思路,要能如期得出正确的结论几乎是不可能的。 有了正确的分析思路,才能制定正确的分析程序。大的事故需要很多分析人员按照分工同时进行,做到有条不紊,不走弯路,不浪费测试费用。所以从经济角度也要求有正确的分析思路。 1 失效分析思路的内涵 世界上任何事物都是可以被认识的,没有不可以认识的东西,只存在尚未能够认识的东西,机械失效也不例外。实际上失效总有一个或长或短的变化发展过程,机械的失效过程实质上是材料的累积损伤过程,即材料发生物理的和化学的变化。而整个过程的演变是有条件的、有规律的,也就是说有原因的。因此,机械失效的客观规律性是整个失效分析的理论基础,也是失效分析思路的理论依据。 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表 象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如“顺藤摸瓜”,即以失

第6章 腐蚀,膨胀,细化算法

第6章腐蚀,膨胀,细化算法 这一章的内容我认为是最有趣的。还记得前言中那个抽取骨架的例子吗?现在我们就来看看它是如何实现的。 今天所讲的内容属于一门新兴的学科:数学形态学(Mathematical Morphology)。说起来很有意思,它是法国和德国的科学家在研究岩石结构时建立的一门学科。形态学的用途主要是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。 限于篇幅,我们只介绍二值图象的形态学运算,对于灰度图象的形态学运算,有兴趣的读者可以阅读有关的参考书。在程序中,为了处理的方便,还是采用256级灰度图,不过只用到了调色板中的0和255两项。 先来定义一些基本符号和关系。 1.元素 设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。 2.B包含于X 设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B X,如图6.2所示。 3.B击中X 设有两幅图象B,X。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。 4.B不击中X 设有两幅图象B,X。若不存在任何一个点,它即是B的元素,又是X的元素,即B和X的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。 图6.1 元素 图6.2 包含

腐蚀、膨胀、开运算、闭运算(特制材料)

1、实验目的 学习常见的数学形态学运算基本方法,了解腐蚀、膨胀、开运算、闭运算取得的效果,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。 2、实验要求 利用MatLab工具箱中关于数学形态学运算的函数,计算本指导书中指定二值图像进行处理。 3、实验设备与软件 1.LC-PC计算机系统 2.MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) 3.实验所需要的图片 4. 4、实验内容与步骤 1.调入并显示图像Plane 2.jpg; 2.选取合适的阈值,得到二值化图像Plane2-2.jpg; 3.设置结构元素; 4.对得到的二值图像Plane2-2.jpg进行腐蚀运算; 5.对得到的二值图像Plane2-2.jpg进行膨胀运算; 6.对得到的二值图像Plane2-2.jpg进行开运算; 7.对得到的二值图像Plane2-2.jpg进行闭运算; 8.将两种处理方法的结果作比较; 5、实验过程及结果 程序代码: I=imread('1.jpg');%读入图像 level = graythresh(I); %得到合适的阈值 bw = im2bw(I,level); %二值化 SE = strel('square',3); %设置膨胀结构元素 BW1 = imdilate(bw,SE); %膨胀

SE1 = strel('arbitrary',eye(5)); %设置腐蚀结构元素BW2 = imerode(bw,SE1); %腐蚀 BW3 = bwmorph(bw, 'open'); %开运算BW4 = bwmorph(bw, 'close'); %闭运算imshow(I) figure,imshow(bw);title('原图'); figure,imshow(BW1);title('膨胀'); figure,imshow(BW2);title('腐蚀'); figure,imshow(BW3);title('开运算'); figure,imshow(BW4);title('闭运算');

试用一个典型案例说明材料失效分析与基础学科及应用学科之间的关系

中原油田全油田有100多口井套管腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm/年。 对现场取出损坏的套管进行解剖分析。 1.套管腐蚀形貌:套管内壁分布腐蚀坑,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。 2.腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X射线衍射分析。套管内壁腐蚀产物中主要有FeCO3和CaCO3,夹杂有NaCl和硫酸亚铁。腐蚀产物的主要成分为碳酸物,显示出套管、油管腐蚀与CO2腐蚀有关。 3.油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和 元素面分析。 分析发现,大量细小球形暗灰色颗粒为Al2O3,短条状为ZnS,材质中夹杂物以二者为主。同时经电子探针元素定量分析表明,随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在增大。说明生成的腐蚀产物有氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。 4.腐蚀试验 (一)用油田水样对套管钢和油管钢进行了动态和静态腐蚀试验,温度50o C密闭除氧试验时间7天。结果表明:动态腐蚀速度远远大于静态腐蚀速度。(二)在此基础上又进行了不同流速对腐蚀影响的试验,说明介质流动能较大的

增加体系的腐蚀。 (三)不同CO2分压下,Q235钢在3℅NaCl熔液中的腐蚀速度。表明CO2压力越大,腐蚀越严重。 结论: (1).复杂断块油田套管腐蚀失效主要是油井高矿化度产出水中CO2腐蚀作用的结果。 (2).套管的局部腐蚀破裂形态与钢材中夹杂物的局部分布、流体冲刷有密切关系。 (3).综合对腐蚀形态特征的观察判断,腐蚀产物的分析,材质金相非金属夹杂分析,可以找到套管腐蚀失效的主要原因。 由上面该案例的分析可以看出,材料失效分析与基础学科及应用学科之间有密不可分的关系。在进行分析的过程中会用到物理、化学、数学等基础学科。用到化学中的电镜对腐蚀形貌进行分析;会用到数学中的数学分析,对腐蚀速度等进行分析;会涉及到物理学中的结构方面的知识;还会用到地理学进行环境分析等等。在进行失效分析过程中还会用到应用学科,如计算机类,会用到计算机进行一系列的数值分析,图像分析;还会用到应用化学中的环境检测,质量检测等技术。总之,在进行腐蚀材料失效分析时,会综合运用到基础学科的知识和应用学科的技术。 2、试用两个实际的失案例说明材料实效分析的重要性。(既有文字说明,又有图片说明,不少于800字) 案例一:一起来自水管腐蚀失效的案例:广东某钢管公司铺设的自来水管使用六年后发生穿孔泄露。 1.本起穿孔失效发生的地点和环境无规律性,对穿孔管道进行仔细观察,典型的宏观外貌是穿孔部位有一直径为10mm的锈瘤,呈黄褐色,用硬器易刮除,刮除后露出的水管外壁基本平整,可见水从管内渗出。 在锈瘤的外围是一圈黄色锈迹,锈迹外是镀锌层,其上可见分散的白色粉末。现场观察到的形貌还有一个特点,就是同一根管若出现几处结瘤,这些结瘤点的连线与水管轴向平行。 2.水样检测及钢管材质检测 取该镇两个不同地点的水样,进行PH检测以及腐蚀性检测,并与实验室水进行比较。 项目取水点1 取水点2 实验室用水 PH 6.15 6.23 6.41

第八章 分析化学中常用的分离和富集方法答案.

习题1 1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何?(参考答案)答: 在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。(参考答案) 答: 在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基四胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 D.ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某试样含Fe,A1,Ca,Mg,Ti元素,经碱熔融后,用水浸取,盐酸酸化,加氨水中和至出现红棕色沉淀(pH约为3左右),再加六亚甲基四胺加热过滤,分出沉淀和滤液。试问。为什么溶液中刚出现红棕色沉淀时人们看到红棕色沉淀时,表示pH为3左右?过滤后得到的沉淀是什么?滤液又是什么?试样中若含Zn2+和Mn2+,它们是在沉淀中还是在滤液中?(参考答案)

失效分析步骤

高铁及轨道交通轴承失效分析方法 洛阳轴研科技股份有限公司 概述 高速铁路作为现代社会的一种新的运输方式,在安全、快捷、经济、环保等方面都具有比较明显的优势。进入新世纪以来,中国铁路决定将高铁及轨道交通等客运高速作为实现现代化的一个主要方向。依照自主创新,中国高铁从无到有,经过十多年的高速铁路建设,我国高速铁路运营总里程将突破1.3万公里,同时我国轨道交通技术装备逐步提高并实现了国产化,但作为基础精密件的轴承,我国目前主要依靠进口。高速铁路客车轴承的高可靠性性及长寿命要求,一致制约着我国高铁轴承的研发。近年来,出于对研发、运行安全以及经济等多方面的考虑做了大量的高铁及轨道交通轴承的失效分析。通过失效分析,找出故障产生的原因,并采取有效措施进行预防和控制,防止突发性事故的出现,把故障造成的损失降低到最低,从而提高产品使用的安全可靠性,充分发挥其价值,这是一项十分重要的工作。 1.失效分析的概念 轴承在运转一定时间后,由于制造、安装、使用、维护等方面的原因使其丧失(或局部丧失)规定功能,从而导致故障或不能正常工作的现象称为失效。 失效有以下几种形式: (1)完全不能工作。如零件材料的疲劳、断裂等; (2)仍然可以继续工作,但已不能得到预期令人满意的性能。如轴承运转时的工作温度上升、振动和噪声增加等; (3)已经不能保证可靠或安全的继续使用,必须拆卸进行修理。 按照一定的方法分析失效的性质和发生原因、研究失效的处理方法和预防措施的技术及管理活动被人们称之为失效分析。 “失效”与“废品”具有不同的含义,“废品”是不符合技术规范、标准和图纸要求的而又不能返修利用的产品。“失效”的产品不一定是“废品”,而“废品”也谈不上失效。轴承的失效按其寿命可分为正常失效和早期失效两种。分析工作主要是针对早期失效的轴承,找出其失效的原因,提出改进措施,以提高轴承运转的寿命和可靠性。

数学形态学的腐蚀和膨胀运算

数学形态学的腐蚀和膨胀运算 "形态学"是描述动植物形态和结构的一门生物学分支,这里借用来指一种图像处理的方法.图像处理的形态学方法是一种"数学形态学"方法,用来提取图像成分,并据此来对图像区域的形状进行表示和描述.它的数学语言是集合理论,其中的集合代表图像中物体的形状.图像处理中常用的数学形态学方法包括腐蚀,膨胀,开,闭,边缘提取和图像细化.我依次给出Visual C++源代码: /************************************************************************* * * ErosionDIB() * * Parameters: * * HDIB hDib - objective DIB handle * BOOL bHori - erosion direction * * Return Value: * * BOOL - True is success, else False * * Description: * * This function do erosion with the specified direction * ************************************************************************/ BOOL ErosionDIB(HDIB hDib, BOOL bHori) { // start wait cursor WaitCursorBegin(); // Old DIB buffer if (hDib == NULL) { WaitCursorEnd(); return FALSE; } // only support 256 color image WORD wBitCount = DIBBitCount(hDib); if (wBitCount != 8) { WaitCursorEnd(); return FALSE; }

材料失效分析方法

材料失效分析方法 材料的断裂和腐蚀是材料失效中最常见的两种形式。这两种失效在工程实际中经常会造成极大的破坏和损失。分析和判断出材料失效的原因,同时找出有效的预防措施,防止类似的失效重复发生,是工程实际中经常遇到的难题。 材料失效分析需要应用机械、力学、物理、化学、数学、电子技术等多方面知识,需要借助现代分析测试技术,从宏观到微观,从定性到定量,从单项到综合的系统性分析。 材料失效的类型多种多样,所以,进行失效分析的思路和方法也不一样。以金属件为例,国际上比较公认的分析步骤和顺序是美国的Brooks失效分析程序和ASM失效分析程序。这两套分析程序实质上是相同的,可以相互替代。Brooks失效分析程序说明如下: (一)失效情况的描述以技术文件的形式记述失效的历史情况。如失效的特征过程、失效件的原设计要求以及失效件的使用情况和环境。特别是有关的照片资料和多媒体资料。 (二)裸眼观察失效件失效后的总体形貌应记入上述文件,而且必须进行断口表面或其他重要的失效特征的保护,不得造成损害。 (三)机械设计分析(应力分析)当失效件是重要的承重构件时,应进行强度分析(应力分析),正确评估其承载能力或其他力学性能。这有助于确定失效件是否具有足够的尺寸和合适的形状,以满足设计要求,从而可能找出失效的原因。(四)化学成分设计分析据此可考察材料的力学性能、工艺性能和抗腐蚀性能。(五)制造过程及其各工艺环节分析错误的加工工艺过程往往是导致失效的主要原因,如不合格的原材料、各种热加工工艺的错误和机加工、磨削的错误等等。(六)宏观断口形貌检查在裸眼和低倍放大下检查断口表面时,往往可以发现明显的形貌特征,可按照断裂特征和载荷性质之间的关系来推断断裂的模式。(七)微观断口分析包括断口显微形貌(断口组织)试验和局部化学成分试验,以此确定断裂机理。通常都是采用电子显微镜分析。

失效分析的程序和步骤

失效分析概要失效分析培训班用 2007年11月

前言 江苏省机械研究所于2007年12月举办一个三天半的失效分析培训班,本教材即为该培训班而准备的,本教材由东南大学材料科学与工程学院孔宪中编写,部分文字内容参考金属所的金属断裂失效分析一书。 我们知道,进行失效分析,是 1,找出事故原因,分清责任所属,依法进行索赔,挽回经济损失。 2,找出经验教训,避免同类事故,改进制造水平,定立新的工艺。 3,提供有关资料,促进法治建设,减少资金浪费,加快建设速度。 4,产生新型学科,提升科技水平,增强国家实力,节约资源成本这四方面所必需的,这次失效分析培训班主要介绍如何进行失效分析,大致内容有1.失效分析的几种分析思路: 按:根据失效分类的分析思路 根据设备或部件工作状况的分析思路 根据制造工艺和部件类别的分析思路 2.失效分析的分析程序 1),现场调查 2),观察,检测和检验 3),分析及验证,作分析结论, 4),提出报告,建议,及回访 3.失效分析程序的实施 1)设计分析程序和实施步骤 2)失效部件的直观检验过程 3)断裂源的确定 4)断裂机制的确定, 5)取样及编号 6)检测和检验 7)信息的纵综合,归纳,分析,得出初步结论 8)结论的验证,写出报告,提出建议, 4,常用的失效分析技术 1)金属的显微断口分析 2)金属及部件的疲劳失效分析 3)腐蚀疲劳失效分析及应力腐蚀失效分析 4)氢脆失效分析 5)高温失效分析 6)焊接失效分析 5.常见部件的失效分析案例 1)轮类用齿轮,叶轮,螺杆,轮箍各选一例 2)轴类用曲轴,摇杆轴,前轴,连杆各选一例 3)管道类用管道,导管方面选二例 4)基础件类用轴承,弹簧,模具方面选三例 通过培训班学习,使参加者获得一定的失效分析素养,能具备一定的失效分析能力,有一定程度的失效分析技术,接触一定数量的失效分析案例,便于开展失效分析工作。

腐蚀,膨胀,细化算法

第6章腐蚀,膨胀,细化算法 今天所讲的内容属于一门新兴的学科:数学形态学(Mathematical Morphology)。说起来很有意思,它是法国和德国的科学家在研究岩石结构时建立的一门学科。形态学的用途主要是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。 限于篇幅,我们只介绍二值图象的形态学运算,对于灰度图象的形态学运算,有兴趣的读者可以阅读有关的参考书。在程序中,为了处理的方便,还是采用256级灰度图,不过只用到了调色板中的0和255两项。 先来定义一些基本符号和关系。 1.元素 设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。 2.B包含于X 设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B X,如图6.2所示。 3.B击中X 设有两幅图象B,X。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。 4.B不击中X 设有两幅图象B,X。若不存在任何一个点,它即是B的元素,又是X的元素,即B和X 的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。 图6.1 元素 图6.2 包含

图6.3 击中 图6.4 不击中 5.补集 设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作X c,如图6.5所示。显然,如果B∩X=Ф,则B在X的补集内,即B X c。 图6.5 补集的示意图 6.结构元素 设有两幅图象B,X。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。 7.对称集 设有一幅图象B,将B中所有元素的坐标取反,即令(x,y)变成(-x,-y),所有这些点构成的新的集合称为B的对称集,记作B v,如图6.6所示。 8.平移 设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(x,y)变成(x+x0,y+y0),所有这些点构成的新的集合称为B的平移,记作B a,如图6.7所示。

可靠性失效分析常见方法

可靠性失效分析常见思路 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。 1 失效分析思路的内涵 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如“顺藤摸瓜”,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果“;顺藤找根”,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因“;顺瓜摸藤”,即从过程中的终点结果出发,不断由过程的结果推断其原因“顺;根摸藤”,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如“顺瓜摸藤+顺藤找根”、“顺根摸藤+顺藤摸瓜”、“顺藤摸瓜+顺藤找根”等。 2 失效分析的主要思路 常用的失效分析思路很多,笔者介绍几种主要思路。 “撒大网”逐个因素排除的思路 一桩失效事件不论是属于大事故还是小故障,其原因总是包括操作人员、机械设备系统、材料、制造工艺、环境和管理6个方面。根据失效现场的调查和对背景资料(规划、设计、制造说明书和蓝图)

相关主题
文本预览
相关文档 最新文档