当前位置:文档之家› 14-温度分层对相变蓄热装置蓄放热特性影响规律的实验研究

14-温度分层对相变蓄热装置蓄放热特性影响规律的实验研究

14-温度分层对相变蓄热装置蓄放热特性影响规律的实验研究
14-温度分层对相变蓄热装置蓄放热特性影响规律的实验研究

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN ORG 0020H MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0:

SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0 MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断 LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE LCALL READ MOV TEMP4,A ;读出温度的低字节存在TEMP4 LCALL READ MOV TEMP5,A ;读出温度的高字节存在TEMP5 SETB EA RET CHULI : MOV A,TEMP5 ;将温度的高字节取出 JNB ACC.7,ZHENG ;判断最高位是否为0,为0则表示温度为正,则转到ZHENG MOV A,TEMP4 ;否则温度为负,将温度的低字节取出

肖特基二极管特性详解(经典资料)分析

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

二极管的特性与应用

二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si 管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称

太阳能蓄热水箱中水的温度分层研究

太阳能蓄热水箱中水的温度分层研究 摘要太阳能蓄热水箱中的水形成一定程度上的温度分层有助于提高集热效率,降低传热损失。本文建立了水箱中水温分层的理论分析模型,并利用CFD软件模拟了水箱中谁的流动、换热、温度分层过程,分析了多个因素对谁的温度分层效果的影响,并与试验结果进行了分析和比较,两者吻合较好。本文研究方法和结果为进一步优化设计太阳能蓄热水箱提供了依据。 关键词太阳能蓄热水箱温度分层CFD 1 前言 太阳能热水采暖系统中通常采用蓄热水箱来存储热能,经集热器加热后的热水进入水箱顶部,水箱中较低温的水从底部进入集热器加热。 随着水箱内水的整体温度上升,水温自上而下呈现出由高到低的分层现象,这是因为水温越高其密度越小,热水在浮升力作用下往上流,冷水向下沉。在平均温度相同的条件下,相比较于温度均匀分布的水箱,具有温度分层功能的水箱对集热器回水温度更低,有利于降低集热器中的热损失,提高集热效率。另外,温度分层为太阳能热水采暖系统的多用途应用提供了良好条件,不同温区的热水用于不同

的加热对象,例如按照温度由低到高可分别用于热泵蒸发器热源[1]、加热生活用水、直接供暖热水、加热洗澡水等。 水的温度分层受水箱进口热水流速、温度、高度以及水箱高径比等因素影响。Darci Luiz Savicki和Horácio A Vielmo [2]研究了不同流速对卧式水箱温度分层的影响,他们发现流速在0.5~2L/min范围内不会对分层造成明显破坏,需要指出的是,以上结论是在进出口均位于3/4底面直径高度处的情况下得出的。王登甲、刘艳峰[3]对一高2m、底面半径1m的正圆柱体蓄热水箱进行了CFD仿真研究,水箱热水进口位于水箱2/3高度处,他们发现流速在0.01~0.05m/s范围内对分层的形成最有利,而降低流速至0.01m/s以下时则对分层效果的进一步提升作用不大。 目前,对水箱中睡得温度分层研究的理论分析模型主要有两种:插栓模型(plug flow)[4],多节点模型(multinode)[5]。 插栓模型沿高度方向将水箱划分成若干段,每段都有各自相应的体积和温度,各段之间不发生混合。类似于堆栈,当只集热时,顶部被压入集热器出口热水,水箱中的各段依次下移,从初始时的底段溢出;当只取热时,底部被压入热负载出口的低温回水,水箱各段依次上移,从初始时的顶段溢出。 由此可见,插栓模型是将位置不断变化的各段视为研究对象,

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

蓄热水箱布水器介绍

1、蓄热水箱的介绍 水箱是电热锅炉系统中重要的组成部分之 一。蓄热水箱设计是否合理,直接影响到整个 系统运行能否达到实际要求。同时,由于水箱 体积较大,造价占整个工程成本的三分之一左 右,因此,蓄热水箱必须进行精心合理的分析、 设计。目前,大型的热水蓄能工程还没有形成 标准,尚无这方面的资料。我公司较早地进入 了这一方面的研究,通过多年来的实践、总结、 分析、对比、参考同类标准资料,编制了企业 的内部标准《钢制蓄热水箱》作为蓄热水箱设 计、制造、验收的依据。 蓄热水箱用于蓄能热水的容器,最高工作 温度90℃,使用压力为常压。根据系统的要求 容积、用户提供的安装面积、空间高度,现场施 工环境确定水箱形式。包括矩形容器、立式圆筒 式储罐、圆筒形容器,相比之下,矩形容器安装 面积、空间利用大,施工相对简单,但钢材利用 率低,容重比小,易产生温区死角;立式圆筒式 储罐,钢材利用率高,容重比大,不易产生温区 死角,但相对安装面积利用较小,现场施工相对 复杂。 2、蓄热水箱内部结构的介绍 1)、蓄热水箱布水器的介绍: 解决水温分层(垂直温度梯度)死角(水 平温度梯度)的方法。 大型水箱水温均匀度是水箱蓄能能力能 否达到设计要求的最重要因素,解决水温分层、

死角问题是非常重要的,我们采用锅炉加热水导水进入均布管(一次进水),进水均布管设置在水箱底部,且均匀出水,出水经集水均布管导出(一次出水)进入锅炉连续加热。集水均布管设在水箱上部,中心线距最低水位线(45℃时水位)下100mm且均匀集水,利用热水自然对流保证水箱内水温均匀,不产生分层、死角,水箱供热过程(二次回路)的进出口与蓄热进出口相同,采用同一组均布管,系统在供热循环过程中,使水箱的热水形成温度分层,提高供热水温。 为保证出水、集水均布,均布管均采用对称布置,矩形水箱采用“王”字型布置,立式圆筒储罐采用“田”字型布置,进出口设在中心,由水箱进出口引入均布管中心竖直连接,保证均布管对称布置。 为保证水流整体均匀,对引入管、配水母管、配水支管的管径,出水、集水孔孔径、数量及位置分布,都有详细的计算要求,以获取各处需要的最佳水速,保证水流均匀。 结构上对所有管件连接采用安放式连接,以减少阻力。并对所有预制件在厂内预制,减少现场工作量,均布管与水箱连接结构为一体化,保证稳定可靠。 2)、蓄热水箱其他装置及附件的介绍: 设置溢流装置采用溢流堰形式,以保证溢流水位准确,溢流均匀。最高水位线、最低水位线根据蓄热温差及各温度下不同体积膨胀系数计算后确定,以充分利用水箱容积。 配置温度远程传感装置,由设备控制柜远程控制,达到调整蓄水起停、蓄水温度的功能。 配置液位远程传感装置,由设备控制柜远程控制,达到调整水箱水位控制、自动起停补水的功能。 3)、蓄热水箱设备的维护和保养概述 蓄热水箱的各接口连接的仪表及阀门严格按图纸执行。在使用过程中要定期排污,定期检测各仪表及阀门是否完好。 蓄热水箱设备和附件的维护和保养可在蓄热水箱运行期间进行一级维护和保养,即进行局部的、预防性的检修。主要保养部位:水位计,检查水位计旋塞,消除泄漏现象,检查照明设备,若有损坏及时修复;管路及阀件,检修管路、阀件的漏水现象等。二级维护和保养是在非运行期间进行的,即对设备进行全面的、

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

蓄能用混凝土水箱内保温施工工法

水蓄冷钢筋混凝土水箱内保温施工工法 1 前言 水蓄冷技术在空调领域内的应用,在世界上一些国家起步较早。比如在日本,1938年东日会即设置了水蓄冷槽,标志着蓄冷技术应用的开始。经过半个多世纪的理论研究和工程应用经验积累,形成了一套较为成熟的水蓄冷设计及运行控制技术。水蓄冷是空调蓄冷方式中最简单、经济的一种。水蓄冷中的蓄冷水池是整个系统中重要组成部分,对于钢筋混凝土蓄冷水槽,其保温防水的好坏直接关系到项目的成败。但是,国内的钢筋混土内保温施工还保留着比较传统的做法,和国际先进水平有较大的距离。在实际施工中,我们采用聚氨脂发泡内保温及PVC卷材双层热熔焊接防水技术,总结出一套施工效率高、施工质量好的施工方法。 2 特点 2.1选用水泥基渗透结晶型防水涂料作为水池内壁防水材料 水泥基渗透结晶型防水涂料是高新技术产品,以特殊配方研制生产的高科技渗透结晶型防水材料。主要有普通硅酸盐水泥,精细石英砂和多种进口特殊的活性化学物质混配而成的浅灰色或白色粉末状防水涂料。它具有以下的防水特点:长久的自我修复性能、具有长久性的防水作用、具有对混凝土结构的补强作用、具有极强的耐水压能力、施工简单,省工省时,综合成本低、具有防腐、耐酸碱、保护钢筋的作用。 2.2 采用内保温的方式 保温方式是指采用储槽内壁保温还是采用储槽外壁保温的问题。本工程为钢筋混凝土储槽,应采用内保温方式。水蓄冷用钢筋混凝土水池有其特殊性,一方面要满足保冷的需要,另一方面要考虑避免水温周期性变化给保温防水带来的破坏。采用内保温的方式,可以尽可能减少或避免槽体内因结构梁、柱形成的冷桥;防止温度变化产生的应力而使储槽破坏并减少由于储槽内壁传导行成的冷温水间传热,造成内部冷损失。

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

二极管正反特性及应用

二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(S i管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯

电锅炉储热蓄能采暖方式的选择比较

电锅炉储热蓄能采暖方式的选择比较 摘要:电锅炉储能蓄热采暖是以电锅炉为热源,利用供电峰、谷时段电价差在谷电时段开启电锅炉以水为热媒进行循环加热,并将额定温度的热水储存在蓄热水箱中,在电力高峰时段关闭电锅炉,将储存在蓄热水箱中热水经循环泵向系统供热。相应地,减少电锅炉和水泵等的装机容量和功率。可充分提高设备利用率。减少一次电力设备的初投资费用。 关键词:常压水箱蓄热高温承压蓄热 前言 随着我国国民经济的不断发展和社会进步,能源需求加大的同时能源的科学使用对缓解供需矛盾显得尤为重要。城市区域对电力资源的科学合理使用的重要举措是转移电力高峰用电量,平衡电网峰谷差,因此可以减少新建电厂投资,提高现有发电设备和输变电设备的使用率,同时,可以减少能源使用(特别是对于火力发电)引起的环境污染,充分利用有限的不可再生资源,有利于生态平衡。 近年来随着城市化进程的不断发展,城市建筑能耗呈现加速增长的趋势。据统计,国内部分大城市的高峰用电量中空调用电就占了30%以上,这样使得电力系统峰谷差急剧增加,电网负荷率明显下降,这极大影响了发电的成本和电网的安全运行。 电锅炉储能蓄热采暖是以电锅炉为热源利用供电峰、谷时段电价差在谷电时段开启电锅炉以水为热媒进行循环加热,并将额定温度的热水储存在蓄热水箱中,在电力高峰时段关闭电锅炉,将储存在蓄热水箱中热水经循环泵向系统供热。相应地,减少电锅炉和水泵等的装机容量和功率。而不必像常规空调系统那样按高峰负荷配备设备。相应地,设备满负荷运行比例增大,可充分提高设备利用率。减少一次电力设备的初投资费用。由于蓄能系统设备装机功率下降,电增容、变压器和高低压配电柜等费用均可减少。 目前市场普遍采用的电锅炉蓄热采暖系统通常分为常压蓄热系统和高温承压蓄热系统两类,而高温承压蓄热又细分为一体式和分体式。 电锅炉储热蓄能采暖方式的选择比较分析如下: 1.常压蓄热系统由电热锅炉、蓄热罐、{蓄热罐与大气联通保持常压状态},循环水泵、板式热交换器及控制系统组成的蓄热系统。常压蓄热系统在夜间低谷电时段,依靠电锅炉将蓄热循环水加热至90℃,(常压)并以热能形式储存在蓄热水箱内供白天峰电时段使用,(放热至55℃),以达到完全避峰或减少高峰时段用电量,起到削峰填谷,减少运行费用目的。 1.1.系统组成:由电热水锅炉,常压蓄热水箱,电热锅炉热水循环泵,放热

DS1621温度传感器实验

/*************** writer:shopping.w ******************/ #include #include #define uint unsigned int #define uchar unsigned char bit I2C_Busy, NO_Ack,Bus_Fault,point; uchar bdata a; sbit LSB = a^0; sbit MSB = a^7; sbit SDA = P3^3; sbit SCL = P3^2; uchar Array[] = {'0','1','2','3','4','5','6','7','8','9'}; uchar command_data[]= { 0xac,0x00,0xee,0xa1,0x00,0x00,0xa2,0x00,0x00,0xaa }; uchar Prompt[]="Waiting for a while...\r"; uchar i; void DelayMS(uint ms) { uchar i; while(ms--) { for(i=0;i<120;i++); } } void SendStop() { SDA = 0; SCL = 1; _nop_(); SDA = 1; I2C_Busy = 0; } void SendByte(uchar wd) { uchar i; a = wd; for(i=0;i<8;i++) { SCL = 0; _nop_(); _nop_(); SDA = MSB;

太阳能热水采暖蓄热水箱温度分层分析_王登甲

太阳能热水采暖蓄热水箱温度分层分析 王登甲刘艳峰 西安建筑科技大学环境与市政工程学院 摘要:文中通过对太阳能采暖蓄热水箱多节点模型分析研究,建立蓄热水箱模型,利用CFD 软件对蓄热水箱内 温度分层情况分各种工况进行模拟分析,分析结果表明:蓄热水箱进出水管流速越小,水箱内温度分层越明显,给出推荐最佳流速应在0.01~0.05m/s 范围内,且可通过在进水管端处设置渐扩装置来保证流速取到最佳流速;蓄热水箱采暖供水管的位置建议至少应在2/3水箱高度以上,具体位置应根据采暖用户供水温度的要求而将管段设置在要求的温度范围对应的水箱高度处。关键词:太阳能采暖蓄热水箱CFD 温度分层 Tem perat ure St rat ific at ion St udying of Heat St orage Tank WANG Deng-jia,LIU Yan-feng School of Environmental and Municipal Engineering,Xi'an University of Architecture and Technology Abst r act :Based on the analysis of the nodal model of heat storage tank for solar heating system,a nodal model of heat storage tank was simulated in different conditions with the help of CFD.It is found that the lower the water velocity at the inlet of the pipe is,the more obviously the layers are,and the recommended velocity is between 0.01and 0.05m/s,which can be obtained with a increasing coupling at the entrance of the pipe.The water supply pipe should be installed no lower than 2/3times high of the tank,and in practical project,the location should be decided according to the supply water temperature. Keywor ds:solar heating,heat storage tank,Computational Fluid Dynamics (CFD),temperature stratification 收稿日期:2009-6-27作者简介:王登甲(1984~),男,博士研究生;西安市雁塔路13号西安建筑科技大学环境学院(710055);E-mail:wangdengjia1020@https://www.doczj.com/doc/a912334961.html, 基金项目:国家自然科学基金项目(No.50778144) 0引言 我国大多数采暖地区太阳能资源丰富,而利用太 阳能采暖是一项符合可持续发展战略的技术。要利用太阳能采暖,必须克服太阳能周期性和随机性的缺点,而利用蓄热水箱对热量进行蓄调是解决此问题的有效途径,由于水箱内竖向温度有差异,导致高温水密度小上升到水箱上部,低温水层在水箱底部,形成温度分层。蓄热水箱内温度分层与水箱的结构、进出口水温度、 采暖供回水温度以及进出水管流速等因素有关。充分利用蓄热水箱温度分层能降低集热器进口温度,提高集热器效率;又能增加可被利用的热水量,减少辅助加热量,从而提高太阳能采暖保证率,提高 系统效率。 1988年彭飞[1]给出了蓄热水箱温度分层的数学模型,2004年张鹤飞[2]给出了蓄热水箱热损失传热方程式,为蓄热水箱温度分层分析研究提供了理论依据。 本文拟通过对蓄热水箱多节点模型进行理论分析,且利用CFD [3]软件对蓄热水箱内温度分层在各种工况下进行模拟分析,从而得到蓄热水箱进出水管最佳流速,以及蓄热水箱采暖供水管最佳位置。 1理论分析 1.1蓄热水箱温度分层 采用集总参数分析法一般认为水箱内水温T s 在 第29卷第1期2010年2月 建筑热能通风空调 Building Energy &Environment Vol.29No.1Feb.2010.16~19 文章编号:1003-0344(2010)01-016-4

相关主题
文本预览
相关文档 最新文档