当前位置:文档之家› 氮掺杂石墨烯的制备及其电催化氧气还原性能_马贵香

氮掺杂石墨烯的制备及其电催化氧气还原性能_马贵香

氮掺杂石墨烯的制备及其电催化氧气还原性能_马贵香
氮掺杂石墨烯的制备及其电催化氧气还原性能_马贵香

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

铂_石墨烯氧还原电催化剂的共还原法制备及表征

[Article] https://www.doczj.com/doc/ac12119165.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.?Chim.Sin .2012,28(12),2879-2884 December Received:July 5,2012;Revised:September 13,2012;Published on Web:September 25,2012.? Corresponding author.Email:zfma@https://www.doczj.com/doc/ac12119165.html,;Tel:+86-21-54742894. The project was supported by the National Natural Science Foundation of China (21073120,21176155)and Science and Technology Foundation of Shanghai Municipality,China (10JC1406900). 国家自然科学基金(21073120,21176155)及上海市自然科学基金(10JC1406900)资助项目 ?Editorial office of Acta Physico ?Chimica Sinica doi:10.3866/PKU.WHXB 201209252 铂/石墨烯氧还原电催化剂的共还原法制备及表征 王万丽 马紫峰* (上海交通大学化学工程系,上海200240) 摘要: 使用硼氢化钠共还原法制备40%(w )铂/石墨烯电催化剂用于氧还原反应.通过循环伏安测试发现,这 种方法制备所得铂/石墨烯催化剂对氧还原反应活性较铂/碳催化剂差,但稳定性有所提高.在稳定性测试中,铂/石墨烯电催化性能衰减为50%,较铂/碳(79%)好.X 射线衍射(XRD)和透射电子显微镜(TEM)表征发现在铂/石墨烯催化剂中两者存在明显交互作用,这可能是阻止石墨烯再堆垛和防止铂颗粒团聚的主要原因.通过对单电池性能测试也发现铂/石墨烯催化剂更有利于电池长期稳定.关键词: 石墨烯;共还原法;电催化剂;氧还原反应;质子交换膜燃料电池 中图分类号: O646 Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions WANG Wan-Li MA Zi-Feng * (Department of Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,P .R.China ) Abstract:40%(w )Pt/graphene composites were prepared by sodium borohydride chemical co-reduction,and were subsequently used as an electrocatalyst for oxygen reduction reactions.The electrocatalytic activity and stability was evaluated by cyclic voltammetry.The results indicated that the initial activity of Pt/graphene was lower than that of Pt/C due to the oxygen diffusion inhibition;however,the Pt/graphene showed superior durability characteristics.Degradation tests showed a 50%degradation of Pt/graphene,which was substantially less than that of Pt/C (79%).X-ray diffraction and transmission electron microscope results showed that the composite formed strong interactions between the platinum nanoparticles and the graphene supports.The graphene supports may also prevent the graphene sheets from folding or re-stacking,which would hinder platinum nanoparticles ?aggregation.The performance of a single cell was also tested,confirming an improvement in durability.Key Words:Graphene; Co-reduction method; Electrocatalyst; Oxygen reduction reaction; Proton exchange membrane fuel cell 1Introduction Gaphene has attracted great attention from researchers in both theoretical and applied chemistry in recent years.Its use has also been studied in capacitors,1,2lithium batteries,3-6and fuel cells 7-9because of its interesting properties,such as ultra-high surface area (there is a theoretical surface area of 2620 m 2·g -1for an isolated graphene sheet),special quantum proper-ties 10-13and so on. Proton exchange membrane (PEM)fuel cells have been de-veloped as a promising energy technology because of their in-herent advantages,such as simplicity,viability,and quick start-up,which give them of great potential in almost any con- 2879

氮掺杂石墨烯的制备及其氧还原电催化性能

第43卷 第2期2015年3月 河南师范大学学报(自然科学版) Journal of Henan Normal University(Natural Science Edition)  Vol.43 No.2  Mar.2015 文章编号:1000-2367(2015)02-0074-06 DOI:10.16366/j.cnki.1000-2367.2015.02.014氮掺杂石墨烯的制备及其氧还原电催化性能 石 敏,张 庆,牛 璐,晁淑军,黄茹梦,白正宇 (河南师范大学化学化工学院;绿色化学介质与反应教育部重点实验室,河南新乡453007) 摘 要:以三聚氰胺和氧化石墨烯(GO)为原料,经物理研磨和高温热解得到氮掺杂石墨烯(三聚氰胺-NG).扫描电子显微镜(SEM)测量显示,所制备的三聚氰胺-NG厚度和表面褶皱较掺杂前略有增加.X射线光电子能谱(XPS)表明,在三聚氰胺-NG中氮元素以吡咯N、吡啶N和石墨N 3种形式掺杂在石墨烯中,它们的比例分别是14.5%、24.5%和61.0%.同时运用循环伏安法(CV)和旋转圆盘电极技术(RDE)测试了三聚氰胺-NG在碱性介质中的氧还原电催化活性.结果表明,与商业石墨烯和由聚吡咯为氮源制备的氮掺杂石墨烯(ppy-NG)相比,三聚氰胺-NG具有较高的电催化活性和较正的氧还原起始电位(-0.09V),并且电催化还原氧气时主要为4电子反应.由于其较高的氧还原性能和较低的成本,三聚氰胺-NG在碱性燃料电池阴极电催化剂中有良好的应用前景.关键词:氮掺杂石墨烯;三聚氰胺;氧还原;燃料电池 中图分类号:O614文献标志码:A 燃料电池是一种将燃料的化学能按电化学方式等温地转化为电能的发电装置,其中氧还原反应缓慢的动力学过程是影响燃料电池能量转换效率的重要因素之一.到目前为止,最有效的阴极催化剂是贵金属及其合金催化剂[1-2].然而,贵金属价格昂贵,在催化剂成本中占有很大的比重,其催化活性和稳定性也需要进一步提高,极大地影响了低温燃料电池产业化进程[3],因此开发成本低廉的新型非贵金属催化剂,成为燃料电池研究人员近年来努力的重要方向之一[4]. 石墨烯是由sp2杂化碳原子相互连接构成的仅一个原子厚度的二维平面材料,其碳原子构成六角环形蜂窝状,该特殊晶格结构赋予石墨烯优异的物理和化学性质[5-6].目前,石墨烯已成为许多领域的研究热点,如催化剂载体[7]、电池[8]、传感器[9]以及储氢材料[10]等.理论计算和相关实验结果均表明,在石墨烯sp2杂化的碳原子中引入氮原子可以有效提高其电化学活性,这是由于掺杂的氮原子会影响石墨烯中碳原子的自旋密度和电荷分布,使氮原子周围的碳原子带有更多的正电荷,导致石墨烯表面产生“活性位点”,这些“活性位点”可以直接参与氧还原催化反应(ORR)[11].综合文献报道,与商品Pt/C催化剂相比,氮掺杂石墨烯(NG)作为不含金属元素的氧还原催化剂具有较高的催化活性和电化学稳定性,Zhang等[12]利用密度泛函理论对氮掺杂石墨烯上氧还原反应的机理进行理论模拟,所得结果与实验观察一致,即在NG上ORR是一个直接的4电子途径.因此,NG被广泛认为是贵金属催化剂的理想替代材料之一[13]. 本文采用常见且廉价的三聚氰胺为氮源,在不影响石墨烯片层结构的基础上,经过物理研磨后高温煅烧合成出氮掺杂石墨烯(三聚氰胺-NG),对比研究了不同N掺杂形式及不同N含量石墨烯的氧还原反应催化性能,结果表明,吡啶-N和石墨-N含量较高的三聚氰胺-NG催化剂对氧还原反应表现出较高的电催化性能. 1 实验部分 1.1 仪器和试剂 三聚氰胺(分析纯,沈阳化学试剂厂);吡咯(分析纯,国药集团化学试剂有限公司);商业石墨烯(合肥微 收稿日期:2014-11-10;修回日期:2015-03-11. 基金项目:国家自然科学基金(21301051);河南省基础与前沿研究项目(132300410016);河南师范大学青年基金项目.作者简介:白正宇(1979-),女,河南濮阳人,河南师范大学副教授,博士,主要从事燃料电池催化剂的研究. 通信作者:白正宇,河南师范大学化学化工学院,E-mail:baizhengyu2000@163.com.

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

氧化锆基催化剂的制备及其氧还原催化性能 研究进展

Advances in Material Chemistry 材料化学前沿, 2015, 3(4), 61-67 Published Online October 2015 in Hans. https://www.doczj.com/doc/ac12119165.html,/journal/amc https://www.doczj.com/doc/ac12119165.html,/10.12677/amc.2015.34007 文章引用: 汪广进, 刘海, 龚春丽, 程凡, 文胜, 郑根稳. 氧化锆基催化剂的制备及其氧还原催化性能研究进展[J]. 材 Study Progress on the Preparation and Catalytic Performance of Zirconia for Oxygen Reduction Reaction Guangjin Wang, Hai Liu, Chunli Gong, Fan Cheng, Sheng Wen *, Genwen Zheng College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan Hubei Received: Nov. 12th , 2015; accepted: Dec. 26th , 2015; published: Dec. 29th , 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/ac12119165.html,/licenses/by/4.0/ Abstract Development of non-platinum catalysts for the renewable energy is urgent. Due to the excellent chemicaland electrochemical, zirconia is attracting abroad attention in the investigation of novel non-platinum catalysts. Therefore, this paper reviews the status of the preparation methods such as magnetron sputtering and dip-coating for zirconia, and summarizes the study progress of the non-stoichiometry zirconia, transition metal/non-transition metal doped zirconia, partially oxi-dized zirconium carbonitrides and pyrolyzed zirconium base chelates. At last, this paper also looks ahead at the development of zirconia based non-pltinum catalysts. Keywords Non-Platinum Metal Catalysts, Zirconia, Preparation Methods, Oxygen Reduction Reaction 氧化锆基催化剂的制备及其氧还原催化性能 研究进展 汪广进,刘 海,龚春丽,程 凡,文 胜*,郑根稳 湖北工程学院化学与材料科学学院,湖北 孝感 *通讯作者。

【CN109941989A】一种水热法制备氮掺杂石墨烯量子点的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910347538.2 (22)申请日 2019.04.28 (71)申请人 中国药科大学 地址 211198 江苏省南京市江宁区龙眠大 道639号 (72)发明人 陈金龙 肖璐 王炳熙  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 柏尚春 (51)Int.Cl. C01B 32/184(2017.01) C09K 11/65(2006.01) B82Y 20/00(2011.01) (54)发明名称 一种水热法制备氮掺杂石墨烯量子点的方 法 (57)摘要 本发明公开了一种水热法制备氮掺杂石墨 烯量子点的方法,该方法加入丁二胺和过氧化 氢,采用水热切割氧化石墨烯,制备了一种新型 氮掺杂石墨烯量子点。本发明公开的制备方法具 有操作简便,反应温度较低等优点。制得的氮掺 杂石墨烯量子点分散性良好,颗粒均匀,荧光性 能较为稳定,在较宽的pH范围、较高的离子强度 与粘度、以及较长的光照时间下发光强度均不受 明显影响。权利要求书1页 说明书3页 附图3页CN 109941989 A 2019.06.28 C N 109941989 A

权 利 要 求 书1/1页CN 109941989 A 1.一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于包括以下步骤: (1)向经超声剥离后的氧化石墨烯溶液中加去离子水搅拌,使其分散均匀; (2)向分散均匀的氧化石墨烯溶液中加入丁二胺; (3)向(2)中得到的混合物溶液中逐滴缓慢加入20-40%过氧化氢,最后加入去离子水,持续搅拌至无明显气泡; (4)向(3)中得到的混合物溶液转移至水热反应釜中进行反应; (5)将(4)中得到的产物冷却至室温后,通过微孔滤膜过滤除去未反应完全的氧化石墨烯,得到含有氮掺杂氧化石墨烯量子点的混合溶液; (6)将(5)得到的含有氮掺杂石墨烯量子点的混合溶液在透析袋中透析得到氮掺杂石墨烯量子点水溶液; (7)将(6)得到的氮掺杂石墨烯量子点水溶液进行冷冻干燥得到氮掺杂石墨烯量子点。 2.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中所用的氧化石墨烯为改良Hummers法制得的氧化石墨烯。 3.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中的超声剥离时间为0.5-1.5h。 4.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中的搅拌时间为0.5-1.5min。 5.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(4)中所用的水热反应釜为20-40ml聚四氟乙烯高压反应釜,加热温度为150-170℃,加热时间为4-8h。 6.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(6)中的透析次数为2-5次,每次20-40min。 2

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

Fe-NC氧还原电催化剂的设计制备及性能研究

Fe-N/C氧还原电催化剂的设计制备及性能研究电化学氧还原反应在燃料电池和金属-空气电池等可再生能源储存和转换系统中扮演着重要作用。缓慢的氧还原反应动力学需要催化剂。到目前为止,铂贵金属是活性最高的氧还原催化剂。 然而,昂贵的价格,对甲醇和CO敏感和稳定性差阻碍其大规模广泛应用。为突破这个瓶颈,很多研究工作致力于探索具有高活性和稳定性的非贵金属催化剂。在已发现的不含贵金属的催化剂中,过渡金属和氮掺杂的碳材料(M-N/C)被认为 是特别有前途的氧还原催化剂,因为它们的元素丰度高、低成本、低环境影响和较高的活性。 本论文主要主要是针对铁和氮共掺杂碳材料的设计、合成和性能进行了深入研究。本论文具体内容如下:选择两端含吡啶氮的有机分子btcpb作为配体与铁(Ⅱ)配位,形成类似配位聚合物的配合物,在不需要外加碳载体的情况下,煅烧得到自支撑Fe-N/C催化剂。结果表明,700℃煅烧的催化剂(Fe-N/C-700)活性最好。 碱性条件下,半波电势840 mV,高于商业铂-碳催化剂;酸性条件下,起始电位和半波电位均可比与商业Pt/C催化剂。同时,该催化剂在碱性和酸性溶液中都显示了优异的循环稳定性和良好的甲醇耐受性能。除此之外,该材料充当锌-空电池的空气阴极,在5 mA cm-2电流密度时,电池的容量达到727 mA hg-1。 持续放电110 h,也没有明显电压损失,表明该材料具有很强的应用前景。报道了 Fe3C纳米颗粒修饰,金属铁和氮掺杂碳的复合物的简单高效大规模制备, 以铁-邻菲罗琳配合物和二氰二胺为前驱物,高温煅烧。800 ℃条件下得到的催化剂显示出极好的氧还原活性,碱性溶液中的起始电位和半波电位高达0.99和 0.86 V,远高于商业铂-碳。

铁氰化铈-还原石墨烯纳米材料的制备及其对水合肼的电化学检测

中国测试CHINA MEASUREMENT &TEST Vol.42No.12December ,2016 第42卷第12期2016年12月铁氰化铈/还原石墨烯纳米材料的制备 及其对水合肼的电化学检测 刘超 (内蒙古化工职业学院, 内蒙古呼和浩特010070)摘要:通过电沉积的方法,在玻碳电极表面上沉积铁氰化铈/石墨烯(CeHCF/RGO )纳米复合材料。用扫描电子显微镜(SEM )对其形貌进行表征,发现其粒径大小均一。用循环伏安法(CV )研究水合肼在不同电极的电化学行为。结果表 明,与RGO 修饰电极(RGO/GCE )和铁氰化铈修饰电极(CeHCF/GCE )相比, 铁氰化铈/石墨烯复合物修饰电极对水合肼具有更好的电催化氧化性能。在一定条件下,它对水合肼响应的线性范围为2.87?10-7~8.56?10-4mol/L ,检出限为8.5?10-8mol/L 。可用于水合肼的电化学传感检测。关键词:铁氰化铈; 还原石墨烯;水合肼;电催化文献标志码:A 文章编号:1674-5124(2016)12-0049-04 Preparation of CeHCF/RGO composite and its application in electrochemical determination of hydrazine LIU Chao (Inner Mongolia Vocational College of Chemical Engineering ,Hohhot 010070,China ) Abstract:The CeHCF/RGO composite have been modified on the glassy carbon electrode surface by the method of electrodeposition.The morphology of the CeHCF/RGO composite have been characterized by scanning electron microscope (SEM ).The particle size was uniform.The electrochemical behavior of hydrazine on different electrode was studied by cyclic voltammetry (CV ).The results showed that the electrocatalytic activity of CeHCF/RGO/GCE to hydrazine was better than CeHCF/GCE.The resulted electrochemic sensor exhibited good current response to hydrazine with a wide linear range extended from 2.87?10-7to 8.56?10-4mol/L ,and the detection limit was 8.5?10-8mol/L (S/N =3),which can be applied for determination of hydrazine.Keywords:cerium hexacyanoferrate ;reducted graphene ;hydrazine ;electrocatalysis 收稿日期:2016-05-27;收到修改稿日期:2016-07-03 作者简介:刘超(1982-),女,内蒙古呼和浩特市人,讲师, 硕士,研究方向为工业分析技术﹑环境监测三0引言水合肼(N 2H 4?H 2O),也叫水合联氨三是一种还原性非常强的化工原料三在药物生产方面,如治疗肺 结核的异烟碱,抗心率失调的盐酸阿齐利特,下呼吸 道感染的他唑巴坦酸等的制备都需要以水合肼为原料[1]三在农药方面,它广泛用于杀虫剂﹑除草剂和生长调节剂等方面[2]三然而,水合肼也是一种神经毒素,对人体的肝﹑血液和肾脏等器官具有毒副作用,严重时甚至会损害中枢神级系统,导致失明[3]三因此,建立一种快速﹑高灵敏的检测生产过程中水合肼残留量就显得尤为重要三 doi : 10.11857/j.issn.1674-5124.2016.12.011 万方数据

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

N.S共掺杂的石墨烯量子点

Cite this:New J.Chem.,2014,38,4615 Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots ? Ben-Xing Zhang,a Hui Gao*a and Xiao-Long Li b Strong blue luminescence and water-soluble nitrogen (N)and sulfur (S)co-doped graphene quantum dots (NS-GQDs)were fabricated via a one-step hydrothermal method using oxidized graphene.Ammonia and powdered S were selected as the source of N and S,respectively.The results indicated that both N and S atoms were successfully incorporated into the sp 2-hybridized carbon framework of graphene.Under the excitation of 365nm,the maximum emission intensity could be obtained with a 1:1.2atomic ratio of N/S.The as-prepared NS-GQDs exhibited brighter luminescence compared with N-doped graphene quantum dots (N-GQDs).S-doping plays an important role in enhancing the emission intensity of NS-GQDs.In addition,the luminescence was exceptionally resistant to high salt concentration.Because of these virtues,there are extensive potential applications for NS-GQDs in bio-imaging,solar cells,and ion detection. 1Introduction Graphene quantum dots (GQDs),as the latest member of the carbon (C)family,are drawing tremendous research interest due to their unique properties,including abundant availability,excellent water solubility,robust chemical inertness,low cytotoxicity,excellent biocompatibility,and resistance to photobleaching.GQDs have been exploited in a wide range of applications:ion detection,1,2photovoltaic devices,3bio-sensing,4,5bio-imaging,6and deoxyribo-nucleic acid (DNA)cleavage,7to name a few.However,when contrasted with semiconductor quantum dots,GQDs possess insu?cient luminescence.8Loh and co-workers 9demonstrated that isolated clusters with numbered atoms were closely related to the absorption of photons,and structural defects are crucial to the creation of these clusters.Therefore,when there are relatively low defects (active sites)of undoped GQDs,deficient optical properties will result.Doping heteroatoms including boron,10nitrogen (N),10,11fluorine,12and sulfur (S)13is among the most practical strategies to introduce more defects,modify the electron density,and tailor the photic properties of GQDs.It will be highly interesting to explore what will happen when a doped element (N,S)has a similar radius (radius of C:0.77?,N:0.75?)or electronegativity (electronegativity of C:2.55,S:2.58)to C. To date,various strategies have been proposed for the synthesis and doping of GQDs and mainly include the top-down and the bottom-up methods.The top-down approach refers to cutting high dimensional carbon materials into zero dimensional GQDs via hydrothermal methods,14electrochemi-cal strategies,15oxygen (O)plasma treatment,16and stripping of oxidized debris.17The microwave-assisted hydrothermal method,18thermal pyrolysis 19and cage opening of fullerenes 20are classified as bottom-up routes,in which designated organic precursors are carbonized.So far,research attention has mainly been given to N-doped graphene quantum dots (N-GQDs),while little attention has been paid to NS-GQDs.Recently,Qu et al.13synthesized N and S co-doped graphene quantum dots (NS-GQDs)using the bottom-up approach,obtaining a high quan-tum yield (71%)of NS-GQDs that were outstanding visible light photocatalysts.Nevertheless,compared with the top-down approaches,the bottom-up methods usually su?er from severe synthetic conditions and requirements for special precursors.To our knowledge,the top-down method for preparing NS-GQDs has rarely been researched.Herein,we present a feasible process to synthesize NS-GQDs in an autoclave using oxidized graphene (GO),ammonia (as a N source and passivation agent 21),and powdered S (as a S source).The results show that S can successfully be introduced into the framework.NS-GQDs with di?erent photoluminescence (PL)intensity were prepared by varying the mass ratios of GO,the powdered S,and the ammonia solution.The as-prepared N-GQDs and NS-GQDs show excited wavelength-dependent PL behavior.It is implied that N-GQDs and NS-GQDs may have the same PL origin according to the functional relationship between the excitation and emission wavelength of both GQDs. a School of Physical Science and Technology,Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University, Lanzhou 730000,P.R.China.E-mail:hope@https://www.doczj.com/doc/ac12119165.html,;Fax:+819318913554;Tel:+819318912772b Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,P.R.China ?Electronic supplementary information (ESI)available.See DOI:10.1039/c4nj00965g Received (in Montpellier,France)11th June 2014, Accepted 3rd July 2014DOI:10.1039/c4nj00965g https://www.doczj.com/doc/ac12119165.html,/njc NJC P u b l i s h e d o n 03 J u l y 2014. D o w n l o a d e d b y D a l i a n P o l y t e c h n i c U n i v e r s i t y o n 15/10/2014 15:14:48.

相关主题
文本预览
相关文档 最新文档