当前位置:文档之家› 光电子电离质谱在线监测SF_6气体分解物_唐彬

光电子电离质谱在线监测SF_6气体分解物_唐彬

光电子电离质谱在线监测SF_6气体分解物_唐彬
光电子电离质谱在线监测SF_6气体分解物_唐彬

(完整word版)APCI和ESI电离源的区别

APCI源和ESI源 APCI 和ESI 都是API源中两种离子化方法: ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测。 APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测。 1)原理上:APCI利用电晕放电离子化,气相离子化。ESI利用离子蒸发,液相离子化。 2)适用范围:APCI 使用于中等极性,小分子化合物,且具有一定的挥发性。而ESI 使用于极性化合物和生物大分子。 3)多电荷:APCI不能生成一系列多电荷离子,所以不适合分析大分子。ESI 能生成一系列多电荷离子,特别适用于蛋白,多肽类等生物分子。 ESI主要用于极性、大分子有机物,APCI一般用于弱极性、小分子有机物。ESI易形成多电荷离子,因而可测大分子。APCI主要产生单电荷离子,限于四极杆的质量分析范围,一般测定分子量低于1000的有机物。ESI 除与四极杆、离子阱匹配外,也可配合TOF、FTICR用于生物大分子的研究。APCI应用范围较窄,常见如某些环境污染物检测、甘油三酯检测等,一定程度上互补了ESI的应用。 ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题。 电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。 大气压化学电离源主要用来分析中等极性的化合物。有些分析物由于结构和极性方面的原因,用ESI不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。APCI 主要产生的是单电荷离子,所以分析的化合物分子量一般小于1000Da。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子。 APCI与ESI源都能分析许多样品,而且灵敏度相似,很难说出哪一种更合适。同时至今没有一个确切的准则判断何时使用某一种电离方式更好。但是通常认为电喷雾有利于分析生物大分子及其它分子量大的化合物,而APCI更适合于分析极性较小的化合物。 APCI源不能生成一系列多电荷离子,所以不适合分析生物大分子。而ESI源由于它能产生一系列的多电荷离子,特别适合于蛋白质,多肽类的生物分子。 ESI和APCI共同点: 1、使用高电压元件和雾化气喷雾法产生离子 2、通常产生(M+H)+或(M-H)-等准分子离子 3、产生极少的碎片,但可以控制产生结构碎片 4、非常灵敏的电离技术。 不同点: 1、生成离子的方式不同,ESI:液相离子化;APCI:气相离子化 2、样品兼容性

QTOF质谱材料培训

仪器原理介绍 电喷雾电离源(ESI) 套管的清洗、维护(如果需要可以演示操作) 电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。(对于非极性、挥发性的待测化合物,则不使用。) 电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。(因此由ESI电离源电离的质谱仪在测量的分子量范围上,理论无上限,只需要调节条件,让其带上更多的电荷即可。) 电离源几个参数的意义 1、毛细管电压(3KV~8KV) 控制合适的电压,以便对于待测化合物有更好的电离度并且在这个条件下不会发生电化学反应,从而降低待测物质的信号。在负离子模式下,由于电压过高,电离源尖端会出现紫色的尖端放电现象,做样品测试的时候要尽量避免,防止由于尖端放电,电压过高使样品发生裂解,从而不能得到较高丰度的分子离子峰。同时也会由于电流的产生,损毁离子源内的元件。 2、去溶剂温度(溶剂的最低的气化温度到最高的气化温度之间) 电离源温度是溶剂气化的重要参数。软件添加附件之后可以将该参数设置到350℃。对于水比较多流动相而言,我们需要调高电离源的去溶剂温度以便水能最大程度液化,因为有时候未气化的水会进入到质谱仪器内部,对一些阀门造成损坏。(当然,对于水而言,由于表面张力比较高,很难形成电喷雾,所以可以在不影响液相分离的情况下,尽量减少水的含量,避免信号的损失。) 3、锥孔电压(根据灵敏度和分辨率进行数值优化) 锥孔也可以叫采样孔,调节合适的锥孔电压可以增强仪器的灵敏度,但是锥孔电压过高会造成待测化合物的源内裂解。造成非二级质谱造成的碎片峰的产生,不利于谱图的解析。 4、去溶剂气 去溶剂气流量的选择:经验法选择去溶剂气,一般流动相的流速为0.1mL/min时候,选择100L/h 的去溶剂气流量,0.2 mL/min时选择200L/h的去溶剂气流量,依次类推。去溶剂气的流量必须稳定,需将液氮分压表的分压控制在0.6左右,否则做出实验的待测化合物的离子计数重现性很差。另外,当去溶剂气流量升到1000L/h的时候,会发现去溶剂温度的反馈值保持在300℃(如果预设为350℃),属于正常现象。 总而言之,电离源的最佳使用效果是要保证从电离源外观看来,一定要产生锥形电喷雾。从图谱上看,如果样品量能保证在mg/mL,质谱的响应值能达到103或者104数量级。如果未达到,分析思路:1、离子模式选择是否正确。2、离子源、锥孔是否清洁。3、所设的离子源数值是不是没有得到相应的反馈值。4、待测样品是否适合用这种电离源进行电离。5、仪器的灵敏度是不是不够(在重新进行软件的附件安装之前,应该保存ms tune 方法参数,以防由于参数设置问题造成灵敏度下降)。 四级杆检测器 两种工作方式:1.全扫描scan:指定的两个质核比间扫描每个离子的丰度。 2.仅检测被选择的一个或多个离子的丰度。 飞行时间检测器原理 质荷比与时间的平方成正比,只要测定出飞行时间,就可换算成质荷比。在检测时,显然是质荷比小的先到达检测器,质荷比大的后到达。在通常情况下,离子的飞行时间为微秒数量级。 飞行时间性能指标: 1.分辨率:RP = M / ?M (M:为测定的质量,?M:半峰高的峰宽) 线性模式,分辨串较低;反射模式,分辨率可高达15000 “延迟引出”(DE)技术或称“脉冲离子引出”(PIE)

高中化学方程式:电离方程式

高中化学方程式:电离方程式 来源:网络资源 | 作者:未知 | 本文已影响1237 人 1、酸的电离(H2SO4、HNO3、HCl、HBr、HI、H3PO4、HF、H2SO3、CH3COOH、H2CO3、H2S、HNO 2、C6H5OH、HCN、HClO) H2SO4==2H++SO42- 或:H2SO4+2H2O==2H3O++SO42- HNO3==H++NO3- 或:HNO3+H2O==H3O++NO3- (以下雷同) HCl==H++Cl HBr==H++Br HI==H++I H3PO4 H++H2PO H2PO H++HPO HPO H++PO HF H++F H2SO3 H++HSO HSO H++SO CH3COOH H++CH3COO H2CO3 H++ H++ H2S H++ H++ HNO2 H++NO C6H5OH H++C6H5O- (苯酚不是酸,显酸性) HCN H++CN HClO H++ClO H2O H++OH 2H2O H3O++OH 2、碱的电离(NaOH、KOH、Ba(OH)2、Mg(OH)2、Al(OH) 3、NH3?H2O) NaOH==Na++OH KOH==K++OH Ba(OH)2==Ba2++2OH Mg(OH)2 Mg2++2OH Al(OH)3 Al3++3OH 酸式电离:Al(OH)3 H++ +H2O NH3?H2O +2OH Ca(OH)2==Ca2++2OH (澄清石灰水) Ca(OH)2 Ca2++2OH (石灰悬浊液) 3、盐的电离(NaCl、Na2SO 4、NaHSO4、Na2SO3、NaHSO3、MgSO4、CaSO4、Al2(SO4)3、CuSO4、AlCl3、AgNO3、CH3COONa、NH4NO3、FeCl3、Na2CO3、NaHCO3、Na2S、NaHS、NaH2PO4、Na2HPO4、Na3PO4、KI、NaBr、NaClO、AgCl、CaCO3) NaCl==Na++Cl Na2SO4==2Na++ NaHSO4==H++Na++ Na2SO3==2Na++ NaHSO3==Na++HSO3- (错误书写:NaHSO3==Na++H++SO42-) MgSO4==Mg2++ Al2(SO4)3==2Al3++3 CuSO4==Cu2++ AlCl3==Al3++3Cl AgNO3==Ag++NO3

质谱基本原理

质谱基本原理 质谱法是将样品离子化,变为气态离子混合物,并按质荷比(m/z)分离的分析技术;质谱仪是实现上述分离分析技术,从而测定物质的质量与含量及其结构的仪器。质谱分析法是一种快速,有效的分析方法,利用质谱仪可进行同位素分析,化合物分析,气体成分分析以及金属和非金属固体样品的超纯痕量分析。在有机混合物的分析研究中证明了质谱分析法比化学分析法和光学分析法具有更加卓越的优越性,其中有机化合物质谱分析在质谱学中占最大的比重,全世界几乎有3/4仪器从事有机分析, 现在的有机质谱法,不仅可以进行小分子的分析,而且可以直接分析糖,核酸,蛋白质等生物大分子,在生物化学和生物医学上的研究成为当前的热点,生物质谱学的时代已经到来,当代研究有机化合物已经离不开质谱仪。 一.仪器概述 1.基本结构 质谱仪由以下几部分组成 供电系统 ┏━━━━━┳━━━━━━╋━━━━━━━┳━━━━━━┓ 进样系统离子源质量分析器检测接收器数据系统┗━━━━━┻━━┳━━━┻━━━━━━━┛ 真空系统 (1)进样系统:把分析样品导入离子源的装置,包括:直接进样,GC,LC及接口,加热进样,参考物进样等。 (2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离——最经典常规的方式,其他均属软电离,EI 使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般≤1,000。 CI(Chemical Ionization):化学电离——核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的[M+H]+或[M-H]+等‘准’分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI法同样,样品需要汽化,对难挥发性的化合物不太适合。 原理R + e-→R+·+ 2e-(电子电离)反应气为含H的 R为反应气体分子R+·+ R →RH+ + (R-H)·分子,例如异丁 M为样品分子RH+ + M →R + (M+H)+ (质子转移)烷,甲烷,氨气, R浓度>>M浓度R+·+ M →R + M+·(电荷交换)甲醇气等 R+·+ M →(R+M)+·(加合离子) FD(Field Desorption):场解吸——大部分只有一根峰, 适用于难挥发极性化合物,例如糖,应用较困难,目前基本被FAB取代。 FAB(Fast Atom Bombardment):快原子轰击——利用氩,氙,80年代初发明,或者铯离子枪(LSIMS,液体二次离子质谱),高速中性原子或离子对溶解在基质中的样品溶液进行轰击,在产生“爆发性”汽化的同时,发生离子-分子反应,从而引发质子转移,最终实现样品离子化。适用于热不稳定以及极性化合物等。FAB法的关键之一是,选择适当的(基质)底物,从而可以进行从较低极性到高极性的范围较广的有机化合物测定,是目前应用比较广的电离技术。不但得到分子量还能提供大量碎片信息。产生的谱介于EI与ESI之间,接近硬电离技术。生成的准分子离子,一般常见[M+H]+和[M+底物]+。另外:还有根据底物脱氢以及分解反应产生的[M-H]_ 容易提供电子的芳烃化合物产生M+

质谱 离子源

液质联用和气质联用 气质联用仪(GC-MS): 适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 GC-MS一般采用EI和CI离子源。 EI:电子电离源,最常用的气相离子源,有标准谱库 CI:化学电离源,可获得准分子离子。PCI,NCI 液质联用(LC-MS): 不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定; 液质的离子源种类比较多,这里只列主要的几个。 大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI) ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些; APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。 APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等 ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和 APPI 搭配使用比 ESI 和APCI 的应用范围更广一些。 电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da 以上的蛋白质。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子

生物质谱技术

生命科学被誉为21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。 1.质谱技术 质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。 质谱分析的基本原理 用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。 质谱技术的发展 质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。

QTOF质谱材料培训

QTOF质谱材料培训

仪器原理介绍 ESI) 电喷雾电离源( 电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。(对于非极性、挥发性的待测化合物,则不使用。) 电喷雾电离源的最大特点是容易形成多电荷离子。 这样,一个分子量为10000Da的分子若带有10个电 荷,则其质荷比只有1000Da,进入了一般质谱仪可 以分析的范围之内。根据这一特点,目前采用电喷 雾电离,可以测量分子量在300000Da以上的蛋白 质。(因此由ESI电离源电离的质谱仪在测量的分子 量范围上,理论无上限,只需要调节条件,让其带上 更多的电荷即可。) 2

电离源几个参数的意义 1、毛细管电压(3KV~8KV) 控制合适的电压,以便对于待测化合物有更好的电离度并且在这个条件下不会发生电化学反应,从而降低待测物质的信号。在负离子模式下,由于电压过高,电离源尖端会出现紫色的尖端放电现象,做样品测试的时候要尽量避免,防止由于尖端放电,电压过高使样品发生裂解,从而不能得到较高丰度的分子离子峰。同时也会由于电流的产生,损毁离子源内的元件。 2、去溶剂温度(溶剂的最低的气化温度到最高的气化温度之间) 电离源温度是溶剂气化的重要参数。软件添加附件之后可以将该参数设置到350℃。对于水比较多流动相而言,我们需要调高电离源的去溶剂温度以便水能最大程度液化,因为有时候未气化的水会进入到质谱仪器内部,对一些阀门造成损坏。(当然,对于水而言,由于表面张力比较高,很难形成电喷雾,所以可以在不影响液相分离的情况下,尽量减少水的含量,避免信号的损失。) 3、锥孔电压(根据灵敏度和分辨率进行数值优化) 3

表面解吸常压化学电离源的研制及应用_陈焕文

仪器装置与实验技术 表面解吸常压化学电离源的研制及应用 陈焕文 *1,2 赖劲虎1 周瑜芬1 郇延富2 李建强 1 张燮1 王志畅1 罗明标 1 1 (东华理工学院,抚州344000) 2 (吉林大学化学学院,长春130021) 摘 要 根据表面解吸常压化学电离源(SDA PC I)对表面痕量待测物进行常压解吸化学电离的原理,自行研制了SDAPCI 电离源及其与线性离子阱(LTQ )质谱仪的接口,成功地在LTQ 上实现了表面解吸常压化学电离。此方法无需样品预处理,直接利用电晕放电产生的H 3O +在常压下对待测样品进行表面解吸化学电离,避免了甲醇等有毒试剂的使用。在优化的仪器参数条件下,分别用正/负离子模式成功地检测了片剂药品中的氯雷他定、乙酰氨基酚等活性成分和其它不同表面上TNT 、氨基酸和多肽等物质,对这些常见物质的检出限不高于10pg /c m 2。采用氩气作为电离试剂,观测到乙酰氨基酚、多肽等物质形成的自由基阳离子,提出了在氩气氛围中获得自由基阳离子的可能机理。实验表明SDA PC I 具有灵敏度较高,选择性好,适用范围宽等特点,适合用于药品、食品等非破坏、无污染检测以及对复杂基体物质进行快速现场分析。关键词 表面解吸常压化学电离质谱,表面分析,化学电离,自由基阳离子 2007-01-15收稿;2007-04-02接受本文系国家自然科学基金(N o .20505003)和科技部仪器升级改造项目(No .2006S J 156100)资助*E-m ai:l c hw 8868@g m ai.l co m 1 引 言 离子源是质谱仪的关键部件之一。为拓宽质谱仪的应用领域,提高分析测试的效率,开发出许多新型的离子源,例如用于生物大分子分析的电喷雾电离(ESI) [1] 、稍后出现的解吸离子化(D I) [2] 则形成了 包括等激光解吸离子化(LD I)[3] 、基体辅助激光解吸离子化(MALD I)[4] ,二级离子质谱(SI M S)[5] 和快 原子轰击(FAB)[6] 等多种电离方式的离子源系列,为特定形式的固体样品的质谱分析提供了有效途径。在20世纪70年代出现了大气压化学电离(APC I) [7,8] ,使液相中弱极性化合物的质谱分析成为可 能,而且进一步提高了质谱分析的灵敏度。但是,无论是ESI/APC I 还是经典解吸电离,都需要对待分析样品进行特定的转化后才能够进行质谱分析,尤其是对复杂基体样品的预处理,其过程更加繁琐,难以满足现代分析的实际需要。 2004年,Takats 等[9] 发明了电喷雾解吸电离(DESI)技术,能够将表面吸附的低蒸汽压物质直接进 行解吸电离,从而可以在无须样品预处理的情况下对复杂基体样品进行快速质谱分析[10~16] 。但是,DESI 也具有如灵敏度不高,需要使用笨重的高压钢瓶,不能直接分析粉末样品,且须将甲醇等有毒试剂喷射到样品表面,造成受检产品污染等缺点,因此,难以在药品、食品等相关领域得到实际应用。 本研究成功地结合DESI 与APC I 技术的优点,研制了表面解吸常压化学电离源(SDAPC I)。在无须样品预处理的前提下,可以对各种不同表面吸附的痕量非挥发性物质进行常压解吸化学电离,大幅度提高了灵敏度。同时,由于可利用空气中水分作为电离试剂,不使用有毒试剂和笨重的钢瓶等,能够直接对粉末样品进行分析,有利于在小型质谱仪上进行复杂物质的现场快速质谱分析。 2 原 理 2.1 常压化学电离 表面解吸常压化学电离源(SDAPC I)充分结合了APC I 和DESI 的优点。在APC I 中,待测物质必须 第35卷2007年8月 分析化学(FENX IHUAXU E) 仪器装置与实验技术 Ch i nese Journa l o f Ana l y ti ca l Chem istry 第8期1233~1240

离子源

目前,气相质谱和液相质谱的联用已经越来越普及。作为质谱仪中的一个重要组成部分—离子源有哪些种类以及各自不同的用途呢? 首先对于气相质谱(GS/MS)来说,主要有电子轰击电离源(EI)、化学电离源(CI)和场致电离源(FI)及场解吸电离源(FD)。EI是利用一定能量的电子与气相中的样品分子相互作用(轰击),使分子失去电子,电离成离子。当分子离子具有的剩余能量大于其某些化学键的键能时,分子离子便发生碎裂,生成碎片离子。其优点在于它是非选择性电离,只要样品能气化都能够离子化,且离子化效率高、灵敏度高;能够提供丰富飞结构信息,是化合物的指纹谱;有庞大的标准谱库供检索。其缺点在于不适用于难挥发、热不稳定的样品,而且只能检测正离子,不检测负离子。CI是指引入一定的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或裂解,生成的离子和反应气分子进一步反应或和样品分子发生离子分子反应,通过质子交换使样品分子电离。其优点在于可以通过控制反应,根据离子亲和力和电负性选择不用的反应试剂,用于不同化合物的选择性检测。其缺点在于也不适用于难挥发和热不稳定样品,谱图重复性不如EI图谱,而且反应试剂容易形成较高的本底,影响检测限。FI和FD是一种软电离方式,由一个电极和一组聚焦透镜组成,形成高达几千伏的强电场,使气态分子的电子被拉出而电离。其优点在于几乎没有碎片离子,没有本底,图谱很干净。缺点在于仅适用于扇形磁场质谱和飞行时间质谱仪,我们常见的四级杆质谱和离子肼质谱都不能配置FI和FD源,而且高压容易产生放电效应,操作也更难一些。EI源是我们最常见的气质离子源。

对于液相质谱(LC/MS)来说,主要有大气压离子源(API)、快原子轰击源(FAB)和基质辅助激光解析电离源(MALDI)三种电离方式。API主要给出分子量信息,一定条件下可以提供有限的信息结构,它又包括电喷雾电离(ESI)和大气压化学电离(APCI)。ESI是指样品溶液从毛细管流出时,在电场及辅助气流的作用下喷成雾状的带电液滴,液滴中溶剂被蒸发,使液滴直径变小,发生“库伦爆炸”,把液滴炸碎,此过程不断重复,形成样品离子。其优点在于能够给出分子量信息,适合于离子型和极性分析物,灵敏度高,高分子量测定,适合毛细管高效液相色谱,缺点在于对液相的流速有一定的限制,在高盐浓度下对离子有抑制。APCI是指样品被迫通过一根窄的管路喷雾针,使其得到较高的线速度,并且给喷雾针高温加热及雾化气,使液流在脱离管路的时候快速蒸发成液体,然后再大气压条件下利用尖端高压放电而使分析物发生气相化学电离。其优点在于使用方便,耐用性好,灵敏度高,可以匹配高流速,适合于非极性至弱极性样品,小分子样品以及抗菌素和碱性药物等。其缺点在于有可能发生热裂解,有低质量端的化学噪声大,有限的结构信息。因此ESI和APCI是互补的。FAB离子化能力强,适用于强极性、挥发性低、热稳定性差和相对分子质量大的样品,对非极性样品灵敏度下降、低质量区以下产生较多干扰峰。MALDI的准分子离子峰很强,几乎没有碎片离子,可以直接分析蛋白质酶解后多肽混合物,对样品中杂质的耐受量较大,适用于多肽、蛋白质、糖蛋白、DNA片段、多糖及其他生物技术产品的分析。API源是我们最常用的液质离子源。 ELEMENT GD双聚焦辉光放电质谱仪

电离辐射源

电离辐射源 每个在地球上生存的人都会受到电离辐射源的照射,这种照射来自于空间,也来自土壤、空气,另外人们最常接触到的比如X光机、CT及核医学应用的131I 18F 等都是我们常见的电离辐射源,那么这些电离辐射源分类及相关剂量贡献是怎样的呢?具体来说,本部分内容包括: ?天然辐射源 ?人工辐射源 请你仔细观看教学录像,然后完成随后的案例分析,最后进行自我检测,以巩固所学。 案例分析回馈(电离辐射源) 碘-131是一种人工放射性同位素,正常情况下自然界是不会存在的,其符号 I-131,半衰期8天,它的原子核内有78个中子,而碘的稳定性核素原子核有74个中子,碘131是β衰变核素,发射β射线(99%)和γ射线(1%)。碘131 属高毒性核素,敏感器官是甲状腺。人体若在短期内受到大剂量辐射,近期可引起甲状腺炎、甲状腺功能减退,远期可发生甲状腺结节和癌变。 对放射性核素碘-131来说,它既放出高传能线密度粒子,又放出低传能线密度的射线,所以既要防止内照射又要防止外照射。如在医学上操作碘-131时,工作人员在利用时间、距离、屏蔽防护的同时,还要利用通风柜等设施进行操作,做到内外防护兼顾,并需具备处理废水、废物的设施,如废水衰变池和废物储存箱等。 自我检测 1.正常本底地区,天然辐射源对成年人造成的平均年有效剂量约为________。 A. 20 mSv/年; B. 2.4 mSv/年; C. 5 mSv/年 2. 3.在人工辐射源中,对人类照射剂量贡献最大的是________。 A. 核电; B. 医疗照射; C. 氡子体 4. 5.天然辐射源对成年人造成的平均年有效剂量当量

A. 其中2/3来自内照射 B. 其中2/3来自外照射 C. 其中2/3来自宇宙照射 6. 网上活动二 比起日本福岛核电站相对一过性的核污染,我们更需注意生活中的辐射,试思考我们身边每天都在接受的哪些辐射反而更应该引起注意? 2011年3月,日本本州岛东部海域地震引发福岛核电站发生放射性物质泄漏,裂变产物碘-131是其中一种泄漏的放射物。放射性碘是由铀或钚和中子反应生成重要的核裂变产物之一,由于裂变碘在早期混合裂变产物中的份额较大,其中主要的是碘-131,因此放射性碘可以作为核爆炸或核反应堆泄漏事故的信号核素。 国家核事故应急协调委员会2011年3月26日发布消息称,在中国黑龙江省东北部空气中发现了极微量的人工放射性核素碘-131。对此,有关专家初步判断,这些极微量的放射性污染物是从近日本福岛核电站的地区由一个小环流带入中国的。这些核污染物更在国内引发一连串的抢盐事件,令国人闻之色变。 这种骇人听闻的碘-131,除了是核污染产物外,还有实际医用价值。在核医学中,碘-131可以通过碘化钠溶液被甲状腺的摄取量来检查甲状腺的功能。除此之外,碘131还可用来标记许多化合物,供体内或体外诊断疾病之用。如碘-131标记的玫瑰红钠盐和马尿酸钠就是常用的肝、胆和肾等的扫描显像剂。 思考问题 1.对于I-131这个核素对人体有何害处? 2. 3.放射医护人员对I-131的防护工作又应有何装备呢? 案例分析回馈(电离辐射源) 碘-131是一种人工放射性同位素,正常情况下自然界是不会存在的,其符号 I-131,半衰期8天,它的原子核内有78个中子,而碘的稳定性核素原子核有74个中子,碘131是β衰变核素,发射β射线(99%)和γ射线(1%)。碘131 属高毒性核素,敏感器官是甲状腺。人体若在短期内受到大剂量辐射,近期可引起甲状腺炎、甲状腺功能减退,远期可发生甲状腺结节和癌变。

离子源与质谱仪作用机理

离子源与质谱仪作用机理 质谱离子源及质量分析器的种类及作 用机理 课程名称掺伪掺杂食品鉴别与检验技术 学院专业姓名学号指导老师 二〇一四年七月 质谱离子源及质量分析器的种类及作用机理 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,可用来分析同位素成分、有机物构造及元素成分等。其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。与色谱分析技术同为现代掺伪掺杂技术的支撑,色谱是一种分离的手段,而质谱是一种鉴定手段,检验过程中通常采用质谱联用技术。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。 质谱分析作为一种新型的现代仪器分析手段,因其高灵敏性、高准确性、高选择性、分析检测范围宽以及其定性、定量方面的强大功能等特点,在食品添加剂、激素、抗生素,农兽药残留等食品分析检测领域得到了广泛的应用。下面主要介绍几种主要:质谱离子源及质量分析器的种类及作

用机理。 1 离子源类型——“接口”技术 离子源是使中性原子或分子电离,并从中引出离子束流的装置。它是各种类型的质谱仪不可缺少的部件。离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。常用的离子源有以下几种。 1.1快原子轰击源(Fast Atomic bombardment,FAB) FAB是一种常用的离子源,由Barber研究小组于1981年研发成功并使用,适合于分析离子化能力强,极性强,分子量大、难气化、热稳定性差的样品,例如肽类、低聚糖、天然抗生素、有机金属络合物等,但对非极性样品灵敏度下降、低质量区以下产生较多干扰峰。FAB得到的质谱不仅有较强的准分子离子峰,而且有较丰富的结构信息。但是,它的分子量信息不是分子离子峰M,而往往是(M+H)+或(M+Na)+等准分子离子峰。FAB 主要用于磁式双聚焦质谱仪。 1.2电喷雾电离源(Electrospray ionization,ESI) 样品溶液经色谱柱分离,流经色谱管,到达喷雾针,针上加有3~5kV 的电压,在强电场和雾化气的作用下,溶液迅速雾化产生高电荷液滴,并形成扇状喷雾。在加热辅助气及高温条件下,溶剂迅速蒸发,带电液滴的表面积不断缩小,表面电荷密度逐渐增大。当密度达到“Rayleigh极限”时,带电雾滴中的样品就会由于雾滴发生“库伦爆裂”而分离出来,形成样品离子。带电的碎片离子就在电场的作用下进入质谱的质量分析器进行

串联质谱技术的应用综述

《有机结构分析II》 串联质谱技术的应用

液相色谱-质谱法(LC/MS)将应用范围极广的分离方法与灵敏、专属、能提供相对分子质量和结构信息的质谱法结合起来, 因此已成为一种重要的现代分离分析技术。虽然与LC相连的单极质谱仪也能够提供相对分子质量的信息, 但不足之处在于基质对待测组分的干扰难以排除及待测组分的结构信息不能充分利用。液相色谱与串联质谱联用可在一级质谱MS条件下获得很强的待测组分的准分子离子峰, 几乎不产生碎片离子, 并可对准分子离子进行多级裂解, 进而获得丰富的化合物碎片信息, 可用来推断化合物结构, 确认目标化合物, 辨认重叠色谱峰以及在高背景或干扰物存在的情况下对目标化合物定量, 因而成为药物代谢过程和产物研究, 复杂组分中某一组分的鉴定和定量测定, 以及药用植物成分研究中更为强有力的工具。本文对液相色谱-串联质谱法(LC-MSn)的原理及其在药物代谢方面的应用作简要介绍。 1 串联质谱(MS/MS)基本原理 1.1 离子源 离子源的种类包括:电子轰击电离(EI)、化学电离(CI)、快原子轰击(FAB)、场电离(FI)和场解吸(FD)、大气压电离源(API)、基质辅助激光解吸离子化(MALDI)和电感耦合等离子体离子化(ICP)等。现在主要采用大气压离子化技术(API), 包括电喷雾离子化(ESI)、大气压化学离子化(APCI)和大气压光电离化(APPI)。API 是软电离技术, 通常只产生分子离子峰, 因此可直接测定混合物。其中,ESI应用十分广泛, 适用于极性、热不稳定、难气化的成分分离分析, 小到无机离子, 大到蛋白质、核酸。ESI-MS中可以容易地控制碎片的裂解程度。用串联质谱可以选择特定的离子, 通过碰撞诱导解离(CID)使其碎裂成碎片离子;另一种方法是通过改变锥孔(取样口)电压(源内CID)的方式, 无选择地将源内所有的离子击碎。 1.2 质量分析器及其特点 质量分析器是质谱计的核心, 不同类型的质量计其功能、应用范围、原理和实验方法均有所不同。磁质谱:分为单聚焦磁场分析器和双聚焦分析器。离子源中生成的离子通过扇形磁场和狭缝聚焦形成离子束。离子离开离子源后, 进入垂直于其前进方向的磁场。不同质荷比的离子在磁场的作用下, 前进方向产生不同的偏转, 从而使离子束发散。由于不同质荷比的离子在扇形磁场中有其特有的运动曲率半径, 通过改变磁场强度, 检测依次通过狭缝出口的离子, 从而实现离

气相色谱-负化学电离源质谱法测定土壤中8种多溴联苯醚

气相色谱-负化学电离源质谱法测定土壤中8种多溴联苯醚 1 王林1,周友亚*1,杨进2,欧冬妮2,张超艳1,唐艳冬3,韩得满4,颜增光1,2 李发生1 3 1(中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012) 4 2(通标标准技术服务(上海)有限公司,上海200233) 5 3(环境保护部环境保护对外合作中心,北京100035) 6 4(浙江省台州学院,台州318000) 7 8 摘要 9 建立了气相色谱-负化学电离源-质谱法测定土壤中8种多溴联苯醚的分析方10 法。利用V(二氯甲烷):V(丙酮)=1:1混合溶液提取土壤中多溴联苯醚,采用11 气相色谱-负化学源-质谱法进行检测分析。结果表明,土壤中各PBDEs单体的检12 出限为0.05~10.00 ng/g,加标回收率为75%~135%,相对标准偏差为6.3%~24.4%。 13 方法用于浙江台州12个实际土壤样品PBDEs的检测,结果令人满意。 14 关键词 15 气相色谱-负化学离子源-质谱法;多溴联苯醚;土壤样品 16 1 引言 17 多溴联苯醚(PBDEs)是一种常见的溴代阻燃剂(BFRs),因其阻燃效果高,18 热稳定性好,价格便宜,对材料性能影响小等优点,而被广泛应用于塑料、纺织19 品、油漆及电子产品中[1,2]。目前,PBDEs已经在底泥、沉积物[3,4]、鱼类[5,6]、人20 体[7,8]和土壤[9,10]等基质中被不同程度的检出,环境介质中痕量的PBDEs可通过21 食物链对人类和高级生物的健康造成危害,也可通过“蚱蜢跳效应”广域迁移,22 导致全球污染。 23 目前,国内尚缺少环境样品中PBDEs的检测标准,美国环保署在2003年的24 本文系国家自然科学基金(21075114)和环保公益性行业科研专项(201009015)资助 * E-mail:zhouyy@https://www.doczj.com/doc/a212059666.html,

质谱法基本知识(3)—电离源(a电子电离源)

质谱法基本知识(3)—电离源(a电子电离源) 电离源 电离源的功能是将进样系统引入的气态样品分子转化成离子。由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的离解方法。通常称能给样品较大能量的电离方法为硬电离方法,而给样品较小能量的电离方法为软电离方法,后一种方法适用于易破裂或易电离的样品。 离子源是质谱仪的心脏,可以将离子源看作是比较高级的反应器,其中样品发生一系列的特征降解反应,分解作用在很短时间(~1μs)内发生,所以可以快速获得质谱。 由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的离解方法。 许多方法可以将气态分子变成离子,它们已被应用到质谱法研究中。 类型:电子电离源、化学电离源、场电离源、快速原子轰击源及电喷雾电离源等,其中以电子电离源及电喷雾电离源应用广泛。 表21.l列出了各种离子源的基本特征。 电子轰击电离源(electron ionization, EI) 电子电离源是通用的电离法,是使用高能电子束从试样分子中撞出一个电子而产生正离子,即

M+e → M++2e 电子束产生各种能态的M+。若产生的分子离子带有较大的内能(转动能、振动能和电子跃迁能),可以通过碎裂反应而变成碎片离子,如 A+和B为碎片离子;N和N·分别为中性分子和游离基。

离子电离后经加速进入磁场中,其动能与加速电压及电荷Z 有关,即

Eo是离子在加速前于电离过程中得到的动能;z为所带电荷;V为加速电压;m是离子质量;v是离子线速度。若忽略Eo 灯丝和阳极之间加入约70V电压 而有些分子离子由于形成时获能不足,难以发生碎裂作用,而可能以分子离子被检测到。图21-5所示为一电子轰击源的示意图。在灯丝和阳极之间加入约70V电压,获得轰击能量为70eV的电子束(一般分子中共价键电离电位约 10eV),它与进样系统引入气体束发生碰撞而产生正离子。正离子在第一加速电极和反射极间的微小电位差作用下通过第一加速电极狭缝,至质量分析器电极狭缝,

质谱仪电子轰击离子源与化学电离源的清洗和安装

引言 经过一段时间的操作,最终需要清洗气相色谱—质谱仪离子源。如果分析物信号有损失,发现已经无法通过维护气相色谱进样口和色谱柱来改善;或者在离子源调谐时发现校正离子峰峰形较差或者推斥极或电子倍增器电压升高,则说明离子源需要清洗。参考图1,显示了几个农残组分在离子源正确清洗前后的响应对比。正确清洗和重新安装对于可靠稳定的分析操作而言至关重要,特别是化学电离源的重新安装。当今世界各 质谱仪电子轰击离子源与化学电离源的清洗和安装技术概述 地实验室中存在各种不同的离子源清洗方法,某些方法比较推崇抛光成分、肥皂或腐蚀剂。此类方法通常应用范围很有限而且无法达到长期有效性。例如大多数的抛光成分和某些肥皂含有分子量较大的蜡质,通常会导致背景噪声升高,信号响应下降。化学试剂会对离子源的表面化学起负作用,甚至增加化学活性。基于多年的实际经验,本技术概述说明了一个简便可行的方法来清洗和重新安装5973和5975电子轰击惰性离子源(EI)、电子轰击标准离子源和化学电离源(CI) 。 Charles Thomson, Max Ruemler, Mickey Freed, Dave Peterson and Harry Prest 图1.清洗离子源前(图中下面的谱线)后(上面的谱线),乙基谷硫磷(左)和内吸磷异构体(右)的RTIC 重叠图

2 预防安全措施 像所有涉及可燃或潜在有毒化学试剂的实验室工作一样,清洗离子源需要采取相应的预防安全措施。所有的试剂,玻璃容器和锡纸必须是洁净无污染的,清洗过程中需要进行必要的更换。 开始清洗之前,消耗品,例如灯丝,或备件;如推斥极陶瓷片都应该事先准备好。 清洗程序 按照硬件说明书和所附的录像(参考Agilent 5973和5975系列质谱仪硬件用户信息DVD )拆卸离子源。重要的是所有陶瓷片、入口和离子聚焦镜绝缘体,离子加 热块,所有的螺母和灯丝都应该放置在一张干净,无纤维材料(例如经过溶剂洗涤的或火焰处理过的锡纸)上,并且避免与任何溶剂接触(参考图2)。将金属元件分离开来有助于更加容易地清洗离子源(参考图2和图3)。过去,砂纸被推荐用于清洗离子源。此方法仍然适用于Agilent 5971和5972 M SD 系列,但是不推荐用于清洗5973和5975 MSD 系列的新型离子源。而是要用以下程序清洗5973和5975系列质谱仪离子源。 1.向少量超细粉中加入去离子水,将超细铝粉调成均匀而浓稠的浆状(参考图4)。 2.用棉签将少量的超细铝粉浆状物涂在金属组件表面。摩擦去除表层附着的材料后,可获得光洁的金属表面。 清洗EI 和CI 离子源源体时,清洗灯丝孔也很重要。使用木质的牙签将超细铝粉浆状物涂在孔中,在离子源清洗程序结束之前再将灯丝孔中的超细铝粉浆状物清除掉。 最容易受污染的部件有离子源源体、推斥极和拉出极透镜。清洗这些部件时需要格外小心。3.用去离子水冲洗所有部件。尽可能将超细铝粉清除干净。 ? 图2.拆卸EI 离子源部件 图3.待清洁的EI 和CI 金属组件

质谱介绍及质谱图的解析(来源小木虫)

质谱介绍及质谱图的解析(来源:小木虫)质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。 一、进样系统和接口技术 将样品导入质谱仪可分为直接进样和通过接口两种方式实现。 1. 直接进样 在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。 对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。 目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

相关主题
相关文档 最新文档