当前位置:文档之家› 第三章化工计算

第三章化工计算

第三章化工计算
第三章化工计算

第三章化工计算

第一节化工过程及过程参数

化工计算主要是应用守恒定律来研究化工过程的物料衡算和能量衡算问题。在进行计算时,必须熟悉有关化工过程的一些术语及基础知识。例如,对合成氨或环氧乙烷生产过程作物料衡算和能量衡算,则首先需要了解有关合成氨或环氧乙烷生产的基本原理、生产方法和工艺流程,然后,才能以示意图的形式表示出整个化工过程的主要设备及全部进、出物流,并选定所需温度、压力或物料组成等条件,再逐一进行计算。由此可见,必须具有化工过程方面的基础知识,才能进行物料和能量衡算。

主要内容包括:

●化工过程;

●化工工艺流程;

●化工过程开发;

●化工过程基本参数——温度、压力、流量、化学组成等基本概念。

1-1 化工过程

所谓化工过程,是指由原料经化学处理和物理处理加工成化学产品或中间产品的生产过程。它包括许多工序,每个工序又由若干个或若干组设备(如反应器、蒸馏塔、吸收塔、干燥塔,分离器、换热器及输送设备等等)组合而成。物料通过各设备时,完成某种化学或物理处理,最终成为合格的产品。

化工过程中的各种设备所进行的主要操作可归纳为下列几类:1.化学反应;2.分离或提纯,3.改变温度,4.改变压力,5.混合等。各类操作的作用简述如下。

1、化学反应。化学反应是整个化工过程的核心。一种化学反应是否能在工业上付诸实现取决于许多因素,如平衡收率(即反应系统达到平衡状态时,加入的原料转化为产品的数量)、反应速度、控制或减少副反应的可能性等。

2、分离或提纯。化工生产中的分离过程就是将两种或两种以上组分的混合物分成纯的或比较纯的组分。由于生产中的化学反应过程常常存在副反应、反应不完全或使用溶剂等方面原因,使原料经反应后得到的产物往往不是一种纯的产物,而是几种组分的混合物,必须经分离或提纯后,才能成为较纯的产品。

分离过程通常只是一种物理过程,不发生化学反应。它是利用物质在相变化过程中某些物理性质(如沸点、熔点、溶解度等)的差异来进行的。如蒸馏是基于不同组分挥发度或沸点的不同;结晶是基于熔点或溶解度的不同;溶剂萃取是基于一种物质在两种互不相溶的液体中溶解度的不同等。

3、改变温度。化学反应速度和收率、物质的相态变化(如蒸气的冷凝、液体的气化或凝固、固体的熔化等)以及物质的其他物理性质变化(如粘度、溶解度、表面张力等)等均与温度有密切的关系,改变温度可调节以上各性质达到所需的要求。

物质的加热都要消耗能量。所以,回收热量使热量充分利用,是化工厂提高经济效益的一个重要措施。例如,要将原科加热到反应温度则需要热量。而反应器排出的是热的产物,此部分热量可回收利用,这就可以把原料先与热的反应产物进行换热,回收部分热量,然后再将其加热到反应温度。

4、改变压力。化学反应的反应物或生成物中如有气体时,改变压力对平衡收率有影响。例如,合成氨反应N2+3H2=2NH3,压力增高,氨的平衡产率就增加。除此之外物质的相态变化,如蒸气冷凝或液体气化等与压力亦有密切关系。当用泵或压缩机输送流体时,压力用于克服设备和管线中的阻力。

5、混合。混合是与分离相反的一个过程。在化工生产中,常常需要将两种或两种以上物质混合在一起。通常,混合不消耗能量,只有为了加速混合使用搅拌器时,才消耗少量能量。

化工过程中的每一个设备进行上述一种或几种操作。设计化工过程,就是设计以上一系列操作,将其适当地、合理地组合起来,以改变原料的化学和物理性质,使之能够生产合格的产品。把完成这些操作的设备串连组合起来,就成为一个化工过程。

通常,发现一种新的化学反应使之实施于生产或开发一个新的化工过程,从技术角度来考察,它主要决定于下述三类因素:

(1)化学工艺因素——反应体系本性、温度、压力、组成、催化剂等操作条件以及体系的反应速度、转化率、循环比等。

(2)化学工程因素——体系的物性、相态、热性质、传递性质、传热传质方式、物料(流体及固体)输送、反应技术、分离技术等。

(3)机械设备、仪表及控制手段——设备材料、制造、贮运、安装、维修、检测、备品备件、正常操作及事故处理等。

应该指出,在决定化工过程时,上述诸因素是密切相关的,其中不少因素还是互相矛盾和制约的。需要对过程进行分析实行最优化,其中包括很多单个过程的最优化,最后使过程的总费用为最低。

但是,决定一个具体的化工过程,除考虑其技术上的可行性外,还必须符合国家的政治、经济政策方针。诸如资源、环境、能源、劳动保护、工业布局等因素,并使之获得最佳的经济效益。

1-2 化工工艺流程

化工过程常用流程图来表示。所谓流程图,就是把生产过程中物料经过的设备按其形状画出示意图,并画出各设备之间的主要物料管线及其流向。简化的流程图可以用方框来表示设备或设备组,称方框流程图。在

工艺流程设计中,还有其他类型的流程图,如表明物料量的物料流程图、以装置为单元的装置流程图、以管线为主的管线流程图以及带测量仪表控制点的流程图等。

工艺流程图能简明、扼要的表明化工产品的生产工序,看来一目了然。从工艺流程图可以初步了解生产方法、生产过程以及各主要物料的来龙去脉。在解物料和能量衡算题时,也需要用图来表示各设备之间的物料关系。因此,学会用流程图来表达化工过程,对工程技术人员是一项基本训练。

1-3 化工过程开发

化工过程开发是指一个化学反应从实验室过渡到第一套生产装置的全部过程。

化工过程开发,首先是决定子化学反应的可能性、转化率及反应速度是否具有工业价值,产物分离的难易程度以及机械、设备、材料是否可行。当然,最终取决于是否有经济效益。

化工过程开发的第一步就是要设计一个流程图。由于化学反应或产物的分离可用不同的方法来完成,因此,设计流程时,必须选择一个安全、可靠、经挤效益高的最佳方案。

1-4 过程参数

在化工生产过程中,能影响过程运行和状态的物理量,如温度、压力、流量及物料的百分组成或浓度等,在指定条件下它的数值恒定,条件改变其数值也随之变化,这些物理量称为过程参数。这些参数也常作为控制生产过程的主要指标。

进行化工计算时,上述参数是基本数据,可以直接测定。对一些不易直接测定的参数,可找出与容易测定的参数之间的关系,通过计算求得,有时也可以根据经验数据选定。

主要介绍温度、压力、流量及物料的百分组成或浓度等参数的基本概念及计算方法。

第二节化工基础数据

在化工计算以及化工工艺和设备设计中,必不可少地要用到有关化合物的物性数据。例如,进行化工过程物料与能量衡算时,需要用到密度或比容、沸点、蒸汽压、烩、热容及生成热等等的物性数据;设计一个反应器时,则需要知道化学反应热的数据;计算传热过程时,需要导热系数的数据等等。这些数据习惯上称为“化工基础数据”,它是由物料本身的物理化学性质所决定的。因此,又被称作“物化数据”或“物性数据”。

化工基础数据包括很多,现将常用的一些化工基础数据大致归纳成以下几类:

(1) 基本物性数据—如临界常数(临界压力、临界温度、临界体积)、密度或比容、状态方程参数、压缩系数、蒸气压、气一液平衡关系等。

(2 )热力学物性数据—如内能、焓、熵、热容、相变热、自由能、自由焓等。

(3) 化学反应和热化学数据—如反应热、生成热、燃烧热、反应速度常数、活化能,化学平衡常数等。

(4) 传递参数—如粘度、扩散系数、导热系数等。

通常这些数据可用下列方法得到:

1、查手册或文献资料

有关常用物质的物性数据,前人已系统地进行归纳总结,从表格或图的形式表示。这些致据可从有关的化学化工类手册或专业性的化工手册中查到。

2、估算。可以应用物理和化学的一些基本定律计算各种物质的性质参数。

3、用实验直接测定。

以上三种数据来源,从手册或文献中查得数据最方便,但往往有时数据不够完整,有时也会出现一些错误。用一些理论的、半经验的和经验的公式估算,也是一种简便的方法。当手册或文献中无法查得时,可以进行估算。直接用实验测定得到的数据最可靠,只是实验比较费时间又花钱。但是,如果查不到有关数据,而用公式估算得到的结果精度又不够时,则必须用实验进行测定。

近年来,随着电子计算机的迅速发展,应用计算机储存、检索和推算物性数据日益增多。一些大型化工企业、研究部门和高等院校都相应建立了物性数据库,以便于通过计算机自动检索或估算所要求的数据,而不必自行查找或计算,大大节省了时间和精力。

第三节物料衡算

物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。

物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。

3-1 物料衡算式 1、化工过程的类型

化工过程操作状态不同,其物料或能量衡算的方程亦有差别。

化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态

操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。

闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物

料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

连续操作过程:在整个操作期间,原料不断稳定地输入生产设备,同时不断从设备排出同样数量(总

量)的物料。设备的进料和出料是连续流动的,即为连续操作过程。在整个操作期间,设备内各部分组成与条件不随时间而变化。

半连续操作过程:操作时物料一次输入或分批输入,而出料是连续的,或连续输入物料,而出料是一

次或分批的。

稳定状态操作就是整个化工过程的操作条件(如温度、压力、物料量及组成等)如果不随时间而变化,

只是设备内不同点有差别,这种过程称为稳定状态操作过程,或称稳定过程。如果操作条件随时间而不断变化的,则称为不稳定状态操作过程,或称不稳定过程。

间歇过程及半连续过程是不稳定状态操作。连续过程在正常操作期间,操作条件比较稳定,此时属稳

定状态操作多在开、停工期间或操作条件变化和出现故障时,则属不稳定状态操作。

2、物料衡算式

物料衡算是研究某一个体系内进、出物料量及组成的变化。所谓体系就是物料衡算的范围,它可以根

据实际需要人为地选定。体系可以是一个设备或几个设备,也可以是一个单元操作或整个化工过程。

进行物料衡算时,必须首先确定衡算的体系。根据质量守恒定律,对某一个体系,输入体系的物料量

应该等于输出物料量与体系内积果量之和。所以,物料衡算的基本关系式应该表示为:

???

?

?

?????

?

?????

?

?物料量积累的+物料量输出的=物料量输入的

如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把反应消耗或生成的量亦考

虑在内。即

???

?

?

?????

?

?????

?

?±????

?

?物料量积累的+物料量输出的=消耗的物料量反应生成或物料量输入的

上式对反应物作衡算时,由反应而消耗的量,应取减号;对生成物作衡算时,由反应而生成的量,应

取加号。

列物料衡算式时应注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化

学反应,则平衡式中各项用摩尔/时为党委时,必须考虑反应式中的化学计量系数。因为反应前后物料中的分子数不守恒。

如图,表示无化学反应的连续过程物料流程。图中方框表示一个体系,虚线表示体系边界。共有三个流股,进料F 及出料P 和W 。有两个组分。每个流股的流量及组成如图所示。图中x 为质量分数。

F P W f1f2

p1p2w1w2x x x x x x 无化学反应的连续过程物料衡算

可列出物料衡算式:

总物料衡算式 F = P + W

每种组分衡算式 F ·x f1 = P ·x p1 + W ·x w1

F ·x f2 = P ·x p2 + W ·x w2

对于连续不稳定过程,由于该过程内物料量及组成等随时间而变化,因此,物料衡算式须写成以时间为自变量的微分方程,表示体系内在某一瞬时的平衡。

3-2 物料衡算的基本方法

进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,按正确的解题方法和步骤进行。尤其是对复杂的物料衡算题,更应如此,这样才能获得准确的计算结果。

1、画物料流程简图。求解物料衡算问题,首先应该根据给定的条件画出流程简图。

2、计算基准及其选择。进行物料、能量衡算时,必须选择一个计算基准。从原则上说选择任何一种计算基准,都能得到正确的解答。但是,计算基准选择得恰当,可以使计算简化,避免错误。

对于不同化工过程,采用什么基准适宜,需视具体情况而定,不能作硬性规定。 3、物料衡算的步骤

进行物料衡算时,尤其是那些复杂的物料衡算,为了避免错课,建议采用下列计算步骤。对于一些简单的问题,这种步骤似乎有些繁琐,但是训练这种有条理的解题方法,可以培养逻辑地思考问题,对今后解决复杂的问题是有帮助的。计算步骤如下:

(1) 搜集计算数据。 (2) 画出物料流程简图。 (3) 确定衡算体系。

(4) 写出化学反应方程式,包括主反应和副反应,标出有用的分子量。 (5) 选择合适的计算基准,并在流程图上注明所选的基准值。 (6) 列出物料衡算式,然后用数学方法求解。 (7) 将计算结果列成输入-输出物料表(物料平衡表)。 (8) 校核计算结果

3-3 无化学反应过程的物料衡算

在化工过程中,一些只有物理变化,不发生化学反应的单元操作,如混合、蒸馏、蒸发、干燥、吸收、结晶、萃取等,这些过程都可以根据物料衡算式,列出总物料和各组分的衡算式,再用代数法求解。

一、简单过程的物料衡算

简单过程是指仅有一个设备或一个单元操作或整个过程简化成一个设备的过程。这种过程的物料衡算比较简单,在物料流程简图中,设备边界就是体系边界。

下面举例说明计算步骤和计算方法。

一种废酸,组成为23%(质量%)HNO 3,57%H 2SO 4和20%H 2O ,加入93%的浓H 2SO 4及90%的浓HNO 3,要求

混合成27%HNO 3及60%H 2SO 4的混合酸,计算所需废酸及加入浓酸的数量。

解:

设 x ——废酸量,kg ; y ——浓H 2SO 4量,kg ; z ——浓HNO 3量; 1、画物料流程简图

0.20

z kg

y kg

22

2、选择基准,可以选废酸或浓酸的量为基准,也可以用混合酸的量为基准,因为四种酸的组成均已知,选任何一种作基准计算都很方便。

3、列物料衡算式,该体系有3种组分,可以列出3个独立方程,所以能求出3个未知量。

基准:100kg混合酸

总物料衡算式x + y + z=100 (1)

H2SO4的衡算式0.57x + 0.93y=100×0.6=60 (2)

HNO3的衡算式0.23x + 0.90z=100×0.27=27 (3)

解(1),(2),(3)方程,得x=41.8kg废酸

y = 39kg浓H2SO4

z = 19.2kg浓HNO3

即由41.8kg废酸、39kg浓H2SO4和19.2kg浓HNO3可以混合成100kg混合酸。

根据水平衡,可以核对以上结果:

加入的水量= 41.8× 0.2 + 39 × 0.07 + 19.2 × 0.10 = 13kg

混合后的酸,含13%H2O,所以计算结果正确。

以上物料衡算式,亦可以选总物料衡算式及H2SO4与HNO3二个衡算式或H2SO4、HNO3和H2O三个组分衡算式进行计算,均可以求得上述结果。

二、有多个设备过程的物料衡算

对有多个设备的过程,进行物料衡算时,可以划分多个衡算体系。此时,必须选择恰当的衡算体系,这是很重要的步骤。不然会使计算繁琐,甚至无法求解。

3-4 有化学反应过程的物料衡算

有化学反应的过程,物料中的组分比较复杂。因为,工业上的化学反应,各反应物的实示用量,并不等于化学反应式中的理论量。为了使所需的反应顺利进行,或使其中较昂贵的又应物全部转化,常常使价格较低廉的一些反应物用量过量。因此,使物料衡算比无化学反应过程的计算复杂,尤其是当物料组成及化学反应比较复杂时,计算更应注意。

一、反应转化率、选择性及收率等概念

工业化学反应过程中,当反应原料的配比不按化学计量比时,限据反应物的化学计量数大小可称其为限制反应物与过量反应物。

1、限制反应物:化学反应原料不按化学计量比配料时,其中以最小化学计量数存在的反应物称为限制反应物。

2、过量反应物:不按化学计量比配料的原料中,某种反应物的量超过限制反应物完全反应所需的理论量,该反应物称为过量反应物。

3、过量百分数:过量反应物超过限制反应物所需理论量的部分占所需理论量的百分数。若以从表示过量反应物的摩尔数,N t 表示与限制反应物完全反应所需的摩尔数,则过量百分数即为

过量%=

100?-t

t

e N N N

4、转化率(以x 表示):某一反应物反应掉的量占其输入量的百分数。若以N A1、N A2分别表示反应物A

输入及输出体系的摩尔数,则反应物A 的转化率为

%

1001

2

1?-=

A A A A N N N x

一个化学反应,由不同反应物可计算得到不同的转化率。因此,应用时必须指明某个反应物的转化率。

若没有指明时,则往往是指限制反应物的转化率。

5、选择性(以S 表示):反应物反应成目的产物所消耗的量占反应物反应掉的量的百分数。若反应物

为A ,生成的目的产物为D ,Nn 表示生成的目的产物D 的摩尔数,。、d 分别为反应物d 与目的产物D 的化学计量系数,则选择性为

%

1002

1

?-?=

A A D N N d

a

N S

式中N A1-N A2为反应物A 反应掉的摩尔数。 转化率与选择性是反应过程的两个主要技术指标。

6、收率(以Y 表示):目的产物的量除以反应物(通常指限制反应物)输入量,以百分数表示。它可

以用物质的量(摩尔数)或质量进行计算。若以摩尔数计算,考虑化学计量系数,则目的产物D 的收率为

%

1001

??=

A D D N d a N Y

转化率、选择性与收率三者之间的关系为

Y = S ·x

二、一般反应过程的物料衡算

对有化学反应过程的物料衡算,由于各组分在过程中发生了化学反应,因此就不能简单地列组分的衡

算式,必须考虑化学反应中生成或消耗的量,应该根据化学反应式,列衡算方程。对一般的反应过程,可用下列几种方法求解。

1、直接求解法

有些化学反应过程的物料衡算,有时只含一个未知量或组成,这类问题比较简单,通常可根据化学反

应式直接求解,不必列出衡算式。

2、元素衡算法

元素衡算是物料衡算的一种重要形式。在作这类衡算时,并不需要考虑具体的化学反应,而是按照元

素种类被转化及重新组合的概念表示为

输入(某种元素)=输出(同种元素)

对反应过程中化学反应很复杂,无法用一、两个反应式表示的物料衡算题,可以列出元素衡算式,用

代数法求解。

3、用联系组分作衡算

“联系组分”是指随物料输入体系,但完全不参加反应,又随物料从体系输出的组分,在整个反应过

程中,它的数量不变。

如果体系中存在联系组分,那么输入物料和输出物料之间就可以根据联系组分的含量进行关联。例如,

F 、P 分别为输入、输出物料,T 为联系组分。T 在F 中的质量分数为x FT ,在P 中的质量分数为x PT ,则F 与P 之间的关系为

F

FT

=P x PT ,即

FT

PT x x P

F

用联系组分作衡算,尤其是对含未知量较多的物料衡算,可以使计算简化。

选择联系组分时,如果体系中存在数种联系组分,那么,此时就要选择一个适宜的联系组分,或联合

采用以减小误差。但是,应该注意,当某个联系组分数量很小,而且此组分的分析相对误差又较大时,则不宜选用。

4、具有循环、排放即旁路过程的物料衡算

在化工过程中,有一些具有循环、排放及旁路的过程,这类过程的物料衡算与以上介绍的方法相类似,

只是需要先根据已知的条件及所求的未知量选择合适的衡算体系,列出物料衡算式再求解。如果存在联系组分,则可以利用联系组分计算。

进反应器的物料MF 是由新鲜原料与循环物料R 混合而成,从反应器出来的产物RP 经分离器分成产品P

与循环物料R 。

有循环的过程,转化率常分为单程转化率与总转化率:

%

100?-=

MF A

RP A

MF

A

N

N

N

单程转化率

%

100?-F A

S A

F A

N

N

N

总转化率=

式中

RP

A

MF

A N N 、——反应物A 输入、输出反应器的摩尔数;

式中

S

A

F A N N 、——反应物A 输入、输出过程的摩尔数;

所以,单程转化率是以反应器为体系,总转化率是以整个过程为体系。

循环过程在稳定状态下操作时,物料的质量既不积累也不消失,各流股的组分恒定。但是,如果原料

中含有不反应的杂质或惰性物质,经长时间的循环会使其浓度逐渐增加,因此就必须把一部分循环物料不断地排放掉,以维持进料中杂质的含量不再增大。

通常对有循环过程的物料衡算,若已知总转化率,可以先做总物料衡算;若已知单程转化率,则可以

先从反应器衡算做起。

第四节 能量衡算

循环物料R

有循环过程的物料流程图

在化工生产中,能量的消耗是一项重要的技术经济指标,它是衡量工艺过程、设备设计、操作制度是否先进合理的主要指标之一。

能量衡算有两种类型的问题,一种是先对使用中的装置或设备,实际测定一些能量,通过衡算计算出另外一些难以直接测定的能量,由此作出能量方面的评价,即由装置或设备进出口物料的量和温度,以及其它各项能量,求出装置或设备的能量利用情况;另一类是在设计新装置或设备时,根据已知的或可设定的物料量求得未知的物料量或温度,和需要加入或移出的热量。

能量衡算的基础是物料衡算,只有在进行完备的物料衡算后才能作出能量衡算。

4-1 能量衡算的基本概念

一、能量的形式

能量衡算也象物料衡算那样,要用到守恒的概念,也就是姿开算进入的能量和离开的能音,因此就要分清不同的能量形式和表示的方法。

●动能(E k)运动着的流体具有动能;

●位能(E P)物体自某一基准面移高到一定距离,由于这种位移而具有的能量。

●静压能(Ez)流体由于一定的静压强而具有的能量。

●内能(U)内能是指物体除了宏观的动能和位能外所具有的能量。

二、几个与能量衡算有关的重要物理量

1、热量(Q)

温度不同的两物体相接触或靠近,热量从热(温度高)的物体向冷(温度低)的物体流动,这种由于温度差而引起交换的能量,称为热量。因此对于热量要明确两点,第一,热量是一种能量的形式,是传递过程中的能量形式;第二,一定要有温度差或温度梯度,才会有热量的传递。

2、功(W)

功是力与位移的乘积。在化工中常见的有体积功(体系体积变化时,由于反抗外力作用而与环境交换的功)、流动功(物系在流动过程中为推动流体流动所需的功)以及旋转轴的机械功等。以环境向体系作功为正、反之为负。

功和热量都是能量传递的两种不同形式,它们不是物系的性质,因此不能说体系内或某物体有多少热量或功。

功和热量的单位在SI制中为焦耳,除此以外,公制中的卡或千卡、英制中的英热单位(Btu)还常有使用,应注意它们之间的换算关系。

3、焓(H)

这是我们在能量衡算中经常遇到的一个变量,它的定义是:

H =U +PV

式中 P 为压力,V 为容积。对于纯物质,焓可表示成温度和压力的函数:

H=H(T ,P)

对H 全微分:

dP

P H dT T H dH T

P ??? ????+??? ????=

其中(?H /?T)P ,为恒压热容,以C P ,表示,在多数实际场合,(?H /?P)T 很小,故上式右边第二项

可忽略,因此焓差可表示成

?

=

-2

1

12T T p dT

C H H

4、热容

热容是一定量的物质改变一定的温度所需要的热量,可以看作是温度差?T 和引起温度变化的热量Q 之

间的比例常数,即Q =mC ?T

4-2 能量衡算的基本方法及步骤

根据能量守恒原理,能量衡算的基本方法可表示为:

输入的能量 一 输出的能量 = 积累的能量

由于物质具有各种形式的能量,因此作能量衡算时也应注意输入榆出体系的各种能量,上式中各项指的

都是“总能量”,因为总能量中某部分能量并不总是守恒的。

1、总能量衡算

连续稳定流动过程的总能量衡算

?H +?E k + ?E P = Q + W

间歇过程的总能量衡算

?U +?E k + ?E P = Q + W

一般间歇操作,能量、位能差项等于零,即?E k =0,?E P =0,所以上式又可简化为

?U = Q + W

此式即为热力学第一定律的数学式,此处W 的符号以环境向体系作功为正。 2、热量衡算

热量衡算式

Q = ?H = H 1 –H 2

Q = ?U = U 1 –U 2 (间歇过程)

热量衡算就是计算在指定的条件下进出物料的焓差,从而确定过程传递的热量。在实际计算时,由于

进出设备的物料不止一个,因此可改写为:

ΣQ =ΣH 1 –ΣH 2

或 ΣQ = ΣU 1 –ΣU 2

热量衡算的基本方法及步骤

热量衡算有两种情况:一种是在设计时,根据给定的进出物料量及已知温度求另一殷物料的未知物料量

或温度,常用于计算换热设备的蒸汽用量或冷却水用量。另一种是在原有的装置上,对某个设备,利用实际测定(有时也要作一些相应的计算)的数据,计算出另一些不能或很难直接测定的热量或能量,由此对设备作出能量上的分析。如根据各股物料进出口量及温度,找出该设备的热利用和热损失情况。热量衡算也需要确定基准,画出流程图,列出热量衡算表等。

3、机械能衡算

在反应器、蒸馏塔、蒸发器、换热器等化工设备中,功、动能、位能的变化,较之传热量、内能和烩的

变化,是可以忽略的。因此作这些设备的能量衡算时,总能量衡算式可以简成Q = ?U (封闭体系)或Q = ?H (敞开体系)。

但在另一类操作中,情况刚好相反,即传热量、内能的变化与动能变化、位能变化、功相比,却是次要的了。这些操作大多是流体流入流出贮罐、贮槽、工艺设备、输送设备、废料排放设备。或在这些设备之间流动。

连续稳定流动过程总能量衡算式:

?H +?u 2

/2+g ?Z +?(PV)=Q +W

1千克不可压缩流体流动时的机械能衡算式:

?P/ρ+?u 2

/2+g ?Z +F =W

4-3 无化学反应过程的能量衡算

无化学反应过程的能量衡算,一般应用于计算指定条件下进出过程物料的烩差,用来确定过程的热量。 为了计算一个过程的AH ,可以用假想的、由始态到终态几个阶段来代替原过程,这些阶段的焓变应该是可以计算的,所需的数据也可以得到的。由于焓是状态函数,所以每一阶段的 ?H 之和即为全过程的?H 。

1、无相变的变温变压过程

?=?=2

1T T v v dT

C n U Q

?

=?=2

1

T T p p dT

C n H Q

2、相变过程的能量衡算

汽化和冷凝、熔化和凝固、升华和凝华这类相变过程往往伴有显著的内能和烩的变化,这种变化常成

为过程热量的主体,不容忽视。

在恒定的温度和压力下,单位质量或摩尔的物质发生相的变化时的焓变称为相变热。例如100o

C 、latm

时液体水转变成水汽的焓变?H 等于40.6kJ/mol ,称为在该温度和压力下水的汽化潜热。

三种相变的相变热定义如下: 三种相变的相变热定义如下:

①汽化潜热(?H v )当T 和P 不变,单位数量的液休汽化所需的热量。 ②熔化潜热(?H m )翩当T 和P 不变,单位数量的固体熔化所需的热量。 ③升华潜热(?H t )当T 和P 不变,单位数量的固体气化所需的热量。

相变热随相变温度变化会有显著的不同,但随相变压力变化很微小。许多纯物质在正常沸点(或熔点)

下的相变热数据,可在手册中查到。如果查到的数据,其条件不符合要求时,可设计一定的计算途径来求算。

4-4 化学反应过程的能量衡算

化学反应过程通常都伴随较大的热效应——吸收热量或放出热量。象邻二甲苯氧化制苯二甲酐、乙烯氧化制氧化乙烯这些主要的工业过程,就是放热反应,乙苯脱氢制苯乙烯就是吸热反应。为了使反应温度得到控制,必须自反应体系排走热量或向反应体系供给热量,即反应器必须有供热或冷却用的换热设备,这种措施不但成为反应能否进行的关键,也与能量的合理利用有密切关系。

这里主要讨论反应热的计算方法,反应热可用生成热或燃烧热来计算,所以先要讨论燃烧热和生成热,及其用于反应热的计算,然后将反应热结合到能量衡算中去。

1、反应热及其表示

恒压反应热 Q p =?H r ●

恒容反应热 Q v =?U r (T)

2、反应热的计算

反应热可以用实验方法测定,也可以用已有的实验数据进行计算。根据盖斯(Hess)定律,化学反应热

只决定于物质的初态和终态,与过程的途径无关,反应热可用简单的热量加和法求取。

(1)由标准生成热?H f o

计算标准反应热?H r o

?H r o=Σ生成热μi(?H f o)i-Σ反应热μi(?H f o)i

(2)由标准燃烧热?H c o计算标准反应热?H r o

?H r o=Σ反应物μi(?H c o)i-Σ产物μi(?H c o)i

3、化学反应过程的能量衡算

当体系进行化学反应时,应将反应热列入能量衡算式中。

反应体系能量衡算的方法按计算烩时的基准区分,主要有两种,下面讨论这两种基准以及对应每种基准计算?H的方法。

(1)第一种基准

如果已知标准反应热,则可选298K,latm为反应物及产物的计算基准。对非反应物质另选适当的温度为基准(如反应器的进口温度,或平均热容表示的参考温度)。

如果一个过祖的反应很复杂,难以写出平行反应的化学反应式,或难以确定一种原料参加不同反应的量的比例,反应如此之多,以致无法判别出每个单独的反应,更谈不上各反应间的比例关系,标准反应热也无法知道,因此用第一种基准来算这类问题就显得有困难。此时,可以用下面介绍的第二种基准。

(2)第二种基准

以组成反应物及产物的元素,在25℃,1atm时的焓为零,非反应分子以任意适当的温度为基准,也要画一张填有所有流股组分 n i和 H i 的表,只是在这张表中反应物或产物的H i,是各物质25o C的生成热与物质由25℃变到它进口状态或出口状态所需显热和潜热之和。

化工生产中有许多反应过程是连续进行的,即反应物连续加入反应器,产物连续离开反应器,例如气固相反应过程即是这样。反应过程的热效应通过换热设备与外界进行换热,这种反应过程称为带换热的反应过程。与此相对应,有的反应过程不与外界换热,称为绝热反应过程。在进行计算时,应针对具体不同的类型参照以上介绍的方法分别处理。

《化工设备机械基础》习题解答 3

《化工设备机械基础》习题解答 第三篇: 典型化工设备的机械设计 第七章管壳式换热器的机械设计 一、思考题 1.衡量换热器好坏的标准大致有哪些? 答:传热效率高,流体阻力小,强度足够,结构可靠,节省材料;成本低;制造、安装、检修方便。 2.列管式换热器主要有哪几种?各有何优缺点? 3.列管式换热器机械设计包括哪些内容? 答:①壳体直径的决定和壳体壁厚的计算; ②换热器封头选择,压力容器法兰选择; ③管板尺寸确定; ④管子拉脱力的计算; ⑤折流板的选择与计算; ⑥温差应力计算。 此外还应考虑接管、接管法兰选择及开孔补强等。 4.我国常用于列管式换热器的无缝钢管规格有哪些?通常规定换热管的长度有哪些? 答:我国管壳式换热器常用无缝钢管规格(外径×壁厚),如下表2所示。换热管长度规定为:1500mm, 2000mm, 2500mm, 3000mm, 4500mm, 5000mm, 6000mm, 7500mm, 9000mm, 12000mm。 换热器的换热管长度与公称直径之比,一般在4~25之间,常用的为6~10。立式换热器,其比值多为4~6。 表 2 换热管规格(mm)

5.换热管在管板上有哪几种固定方式?各适用范围如何? 答:固定方式有三种:胀接、焊接、胀焊结合。 胀接:一般用在换热管为碳素钢,管板为碳素钢或低合金钢,设计压力不超过 4.0MPa,设计温度在350℃以下,且无特殊要求的场合。 焊接:一般用在温度压强都较高的情况下,并且对管板孔加工要求不高时。 胀焊结合:适用于高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用,工作环境极其苛刻,容易发生破坏,无法克服焊接的“间隙腐蚀” 和“应力腐蚀”的情况下。 6.换热管胀接于管板上时应注意什么?胀接长度如何确定? 答:采用胀接时,管板硬度应比管端硬度高,以保证胀接质量。这样可避免在胀接时管板产生塑性变形,影响胀接的紧密性。如达不到这个要求时,可将管端进行退火处理, 降低硬度后再进行胀接。另外,对于管板及换热器材料的线膨胀系数和操作温度与室 温的温差△t,必须符合表3的规定。 1212 △α=∣α1-α2∣,1/℃。 △t等于操作温度减去室温(20℃)。 7.换热管与管板的焊接连接法有何优缺点?焊接接头的形式有哪些? 答:焊接连接比胀接连接有更大的优越性:在高温高压条件下,焊接连接能保持连接的紧密性;管板孔加工要求低,可节省孔的加工工时;焊接工艺比胀接工艺简单;在压力 不太高时可使用较薄的管板。 焊接连接的缺点是:由于在焊接接头处产生的热应力可能造成应力腐蚀和破裂;同时 管子与管板间存在间隙,这些间隙内的流体不流动,很容易造成“间隙腐蚀”。 焊接接头的形式有:①管板孔上不开坡口; ②管板孔端开60o坡口; ③管子头部不突出管板; ④孔四周开沟槽。 8.换热管采用胀焊结合方法固定于管板上有何优点?主要方法有哪些? 答:胀焊结合方法的优点:由于焊接连接产生应力腐蚀及间隙腐蚀,尤其在高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用下,工作环境极其苛刻, 容易发生破坏,无论采用胀接或焊接均难以满足要求。而胀焊结合法能提高连接处的 抗疲劳性能,消除应力腐蚀和间隙腐蚀,提高使用寿命。 主要方法有:先强度焊后贴胀、先强度焊后强度胀、先强度胀后密封焊等多种。 9.管子在管板上排列的标准形式有哪些?各适用于什么场合? 答:排列的标准形式有:①正三角形和转角正三角形排列,适用于壳程介质污垢少,且不 需要进行机械清洗的场合。 ②正方形和转角正方形排列,一般可用于管束可抽出清洗管间的 场合。 10.《钢制管壳式换热器设计规定》中换热器管板设计方法的基本思想是什么? 答:其基本思想是:将管束当作弹性支承,而管板则作为放置于这一弹性基础上的圆平板,然后根据载荷大小、管束的刚度及周边支撑情况来确定管板的弯曲应力。由于它比较

初中化学常用计算公式和方程式

初中化学 一. 常用计算公式: (1)相对原子质量 (2)设某化合物化学式为 ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数 (3)混合物中含某物质的质量分数(纯度) (4)标准状况下气体密度(g/L) (5)纯度

(6)溶质的质量分数 (7)溶液的稀释与浓缩 (8)相对溶质不同质量分数的两种溶液混合 (9)溶液中溶质的质量 =溶液的质量×溶液中溶质的质量分数 =溶液的体积×溶液的密度 二. 化学方程式: (1)镁带在空气中燃烧 (2)碱式碳酸铜受热分解 (3)磷在空气中燃烧 (4)木炭在氧气中充分燃烧

(5)硫在氧气中燃烧 (6)铁在氧气中燃烧 (7)氯酸钾与二氧化锰共热 (8)高锰酸钾受热分解 (9)氧化汞受热分解 (10)电解水 (11)锌与稀硫酸反应 (12)镁与稀硫酸反应 (13)铁与稀硫酸反应 (14)锌与盐酸反应

(15)镁与盐酸反应 (16)铁与盐酸反应 (17)氢气在空气中燃烧 (18)氢气还原氧化铜 (19)木炭在空气不足时不充分燃烧 (20)木炭还原氧化铜 (21)木炭与二氧化碳反应 (22)二氧化碳与水反应 (23)二氧化碳与石灰水反应

(24)碳酸分解的反应 (25)煅烧石灰石的反应 (26)实验室制取二氧化碳的反应 (27)泡沫灭火器的原理 (28)一氧化碳在空气中燃烧 (29)一氧化碳还原氧化铜 (30)一氧化碳还原氧化铁 (31)甲烷在空气中燃烧 (32)乙醇在空气中燃烧

(33)甲醇在空气中燃烧 (34)铁与硫酸铜反应 (35)氧化铁与盐酸反应 (36)氢氧化铜与盐酸反应 (37)硝酸银与盐酸反应 (38)氧化铁与硫酸反应 (39)氢氧化铜与硫酸反应 (40)氯化钡与硫酸反应 (41)氧化锌与硝酸反应

常用化工设备标准规范

常用化工设备标准 第一部分: 1 《压力容器安全技术监察规程》 2 《压力管道安全管理与监察规定》 3 钢制压力容器(GB150-1998) 4 钢制管壳式换热器(GB151-1999) 5 钢制化工容器设计基础规定(HG20580-1998) 6 钢制化工容器材料选用规定(HG20581-1998) 7 钢制化工容器强度计算规定(HG20582-1998) 8 钢制化工容器结构设计规定(HG20583-1998) 9 钢制化工容器制造技术要求(HG20584-1998) 10 钢制低温压力容器技术规定(HG20585-1998) 11 塔器设计技术规定(HG20652-1998) 12 钢制压力容器焊接工艺评定(JB4708-2000) 13 钢制压力容器焊接规程(JBT4709-2000) 14 钢制塔式容器(JB/T4710-2005) 15压力容器涂敷与运输包装(JB4711-2003) 16 压力容器无损检测(JB4730-2005) 17 钢制卧式容器(JB/T4731-2005) 18 钢制焊接常压容器(JBT4735-1997) 第二部分 1 机械搅拌设备(HG/T20569-94) 2 塔盘制造安装技术条件(JB/T1025-2001)

3 钢制管法兰及垫片选用规定(HG20593-98) 4 不锈钢-硫酸铜腐蚀试验方法(GB4334.5-1990) 第三部分 1 化工管道设计规范(HG20695-1986) 2 化工装置管道布置设计规定(HG/T20549-1998) 3 化工设备、管道外防腐设计规定(HG/T20679-1990) 4 管架标准图(HG/T21629-1999) 5 石油化工企业设备和管道隔热设计规范(SH3010-2000) 6 化工装置设备布置设计规定(HG20546-92) 7 石油化工管道布置设计通则(SH3012-2000) 8 石油化工企业蒸汽伴管及夹套管设计规范(SHJ40-91) 9 石油化工企业管架设计规范(SH3055-93) 10 管道常用数据表(TC42A1-93)

化工机械设备基础

第一章 刚体的受力分析及平衡规律 一、基本概念 1、刚体:在任何情况下都不发生变形的物体。 约束:限制非自由体运动的物体。(三种约束) 二、力的基本性质 三、二力平衡定律 三力平衡定理 三力平衡定理:如果一物体受三个力作用而处于平衡时,若其中两个力的作用线相交于一点,则第三个力的作用线必交于同一点。 四、平面汇交力系、平面一般体系 五、力的平移定理 力的平移定理: 作用在刚体上的力可以平移到刚体内任意指定点,要使原力对刚体的作用效果不变,必须同时附加一个力偶,此附加力偶的力偶矩等于原力对新作用点的力矩,转向取决于原力绕新作用点的旋转方向。 第二章 金属的力学性质 一 基本概念 弹性模量:材料抵抗弹性变形的能力 ???? ???===∑∑∑0 00o m Y X

拉伸试件的横向线应变与纵 向线应变之比的绝对值。 线应变:反应杆的变形程度,杆的相对伸长值。 蠕变:金属试件在高温下承受某已固定的应力时,试件会随着时间的延续而不断发生缓慢增长的塑性形变。 应力松弛:总变形量保持不变,初始的弹性变形随时间的推移逐渐转化为塑性变形并引起构件内应力减小的现象 二 拉伸曲线 (重要,看书!!!) 第四章 直 梁 的 弯 曲 中性层:梁内纵向长度既没有伸长也没有缩短的纤维层。 中性轴:中性层与横截面的交线 。 剪力与弯矩的计算 剪力:抵抗该截面一侧所有外力对该截面的剪切作用,大小应该等于该截面一侧所有横向外力之和。 弯矩:抵抗该截面一侧所有外力使该截面绕其中性轴转动,大小应等于该截面一侧所有外力对该截面中性轴取距之和。 剪力的符号约定 ε εμ'= με ε-='泊松比 横向线应变

常用化工设备标准规范

常用化工设备标准规范公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

常用化工设备标准 第一部分: 1 《压力容器安全技术监察规程》 2 《压力管道安全管理与监察规定》 3 钢制压力容器(GB150-1998) 4 钢制管壳式换热器(GB151-1999) 5 钢制化工容器设计基础规定(HG20580-1998) 6 钢制化工容器材料选用规定(HG20581-1998) 7 钢制化工容器强度计算规定(HG20582-1998) 8 钢制化工容器结构设计规定(HG20583-1998) 9 钢制化工容器制造技术要求(HG20584-1998) 10 钢制低温压力容器技术规定(HG20585-1998) 11 塔器设计技术规定(HG20652-1998) 12 钢制压力容器焊接工艺评定(JB4708-2000) 13 钢制压力容器焊接规程(JBT4709-2000) 14 钢制塔式容器(JB/T4710-2005) 15压力容器涂敷与运输包装(JB4711-2003) 16 压力容器无损检测(JB4730-2005) 17 钢制卧式容器(JB/T4731-2005) 18 钢制焊接常压容器(JBT4735-1997) 第二部分 1 机械搅拌设备(HG/T20569-94) 2 塔盘制造安装技术条件(JB/T1025-2001)

3 钢制管法兰及垫片选用规定(HG20593-98) 4 不锈钢-硫酸铜腐蚀试验方法() 第三部分 1 化工管道设计规范(HG20695-1986) 2 化工装置管道布置设计规定(HG/T20549-1998) 3 化工设备、管道外防腐设计规定(HG/T20679-1990) 4 管架标准图(HG/T21629-1999) 5 石油化工企业设备和管道隔热设计规范(SH3010-2000) 6 化工装置设备布置设计规定(HG20546-92) 7 石油化工管道布置设计通则(SH3012-2000) 8 石油化工企业蒸汽伴管及夹套管设计规范(SHJ40-91) 9 石油化工企业管架设计规范(SH3055-93) 10 管道常用数据表(TC42A1-93)

中考化学常用计算公式大全(整理)教案资料

中考化学常用计算公式大全(整理)

中考化学常用计算公式 相对分子质量=(化学式中各原子的相对原子质量×化学式中该元素原子个数)之和 如设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数ω=A的相对原子质量×m /AmBn的相对分子质量 ④A的化合价×m + B的化合价×n = 0 ⑤原子个数比:A : B = m : n (3)混合物中含某物质的质量分数(纯度)=纯物质的质量/混合物的总质量× 100% (4)标准状况下气体密度(g/L)=气体质量(g)/气体体积(L) (5)纯度=纯物质的质量/混合物的总质量× 100% =纯物质的质量/(纯物质的质量+杂质的质量) × 100%= 1- 杂质的质量分数 (6)溶质的质量分数=溶质质量/溶液质量× 100% =溶质质量/(溶质质量+溶剂质量) × 100% (饱和溶液溶质的质量分数=溶质质量/(溶质质量+100) × 100%)、 含有晶体溶质的质量分数=溶质所有质量-晶体质量/(溶质所有质量-晶体质量+溶剂质量) × 100%)(7)溶液的稀释与浓缩 M浓× a%浓=M稀× b%稀=(M浓+增加的溶剂质量) × b%稀 (8)相对溶质不同质量分数的两种溶液混合 M浓× a%浓+M稀× b%稀=(M浓+M稀) × c% (9)溶液中溶质的质量=溶液的质量×溶液中溶质的质量分数=溶液的体积×溶液的密度 (1)化合物中某元素百分含量的计算式 (2)化合物质量与所含元素质量的关系式 仅供学习与交流,如有侵权请联系网站删除谢谢2

化工原理化工计算所有公式总结

化工原理化工计算所有 公式总结 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

化工原理化工计算所有公式总结 第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ2 22212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρ ρ2 22 212112121+ 5. 雷诺数:μ ρ du = Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?= =??=22322 7. 哈根-泊谡叶方程:2 32d lu p f μ= ? 8. 局部阻力计算:流道突然扩大:2 211??? ? ? -=A A ξ流产突然缩小:??? ??- =2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+=

3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 2 21r r t t l Q λπ-= 或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +-=ln 2λ π(由公式4推导) 6. 三层圆筒壁定态热传导方程:3 4 12321214 1ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμ Cp =Pr 格拉晓夫数223μρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ?????? ??=λμμρλα8 .0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝: )(12221t t c q r q Q p m m -== 11. 总传热系数: 2 1 211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程:2 12121 211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:??? ? ??-=--22111112211ln p m p m p m c q c q c q KA t T t T

高中化学常见化学计算方法

常见化学计算方法 主要有:差量法、十字交叉法、平均法、守恒法、极值法、关系式法、方程式叠加法、等量代换法、摩尔电子质量法、讨论法、图象法(略)、对称法(略)。 一、差量法 在一定量溶剂的饱和溶液中,由于温度改变(升高或降低),使溶质的溶解度发生变化,从而造成溶质(或饱和溶液)质量的差量;每个物质均有固定的化学组成,任意两个物质的物理量之间均存在差量;同样,在一个封闭体系中进行的化学反应,尽管反应前后质量守恒,但物质的量、固液气各态物质质量、气体体积等会发生变化,形成差量。差量法就是根据这些差量值,列出比例式来求解的一种化学计算方法。该方法运用的数学知识为等比定律及其衍生式: a b c d a c b d == --或c a d b --。差量法是简化化学计算的一种主要手段,在中学阶段运用相当普遍。常见的类型有:溶解度差、组成差、质量差、体积差、物质的量差等。在运用时要注意物质的状态相相同,差量物质的物 理量单位要一致。 1.将碳酸钠和碳酸氢钠的混合物21.0g ,加热至质量不再变化时,称得固体质量为1 2.5g 。求混合物中碳酸钠的质量分数。 2.实验室用冷却结晶法提纯KNO 3,先在100℃时将KNO 3配成饱和溶液,再冷却到30℃,析出KNO 3。现欲制备500g 较纯的KNO 3,问在100℃时应将多少克KNO 3溶解于多少克水中。(KNO 3的溶解度100℃时为246g ,30℃时为46g ) 3.某金属元素R 的氧化物相对分子质量为m ,相同价态氯化物的相对分子质量为n ,则金属元素R 的化合价为多少? 4.将镁、铝、铁分别投入质量相等、足量的稀硫酸中,反应结束后所得各溶液的质量相等,则投入的镁、铝、铁三种金属的质量大小关系为( ) (A )Al >Mg >Fe (B )Fe >Mg >Al (C )Mg >Al >Fe (D )Mg=Fe=Al 5.取Na 2CO 3和NaHCO 3混和物9.5g ,先加水配成稀溶液,然后向该溶液中加9.6g 碱石灰(成分是CaO 和NaOH ),充分反应后,使Ca 2+、HCO 3-、CO 32-都转化为CaCO 3沉淀。再将反应容器内水分蒸干,可得20g 白色固体。试求: (1)原混和物中Na 2CO 3和NaHCO 3的质量; (2)碱石灰中CaO 和NaOH 的质量。 6.将12.8g 由CuSO 4和Fe 组成的固体,加入足量的水中,充分反应后,滤出不溶物,干燥后称量得5.2g 。试求原混和物中CuSO 4和Fe 的质量。 二、十字交叉法 凡能列出一个二元一次方程组来求解的命题,即二组分的平均值,均可用十字交叉法,此法把乘除运算转化为加减运算,给计算带来很大的方便。 十字交叉法的表达式推导如下:设A 、B 表示十字交叉的两个分量,AB —— 表示两个分量合成的平均量,x A 、x B 分别表示A 和B 占平均量的百分数,且x A +x B =1,则有:

第二章 化工设备强度计算基础

第二章 化工设备强度计算基础 第一节 典型回转薄壳应力分析 一、回转薄壳的形成及几何特性。 1、形成:任一平面曲线绕同平面内的一直成旋转而成的曲面称之为回转曲面。 其中:直成称为回转曲面的轴;侥轴旋转而成平面曲线称为母线。 对于回转壳体: 壳体外径i o D D —内径≤1.2时,称回转薄壁壳体(只讨论薄壳的 应力分析)。 二、第一曲半径、第二曲率半径。 R1为第一半径。R2为第二曲毕半径。 同一点的第一曲毕半径与第二曲毕半径都在该点的法线上。 通过图a 可得r=R2sin4 i 当所示半径为R 的圆筒形壳体,经线条体直其上任一点M 处的第一曲毕半径R1=20,与径线垂直的平面切割中间面形成曲线也是一个平行圆,故第二曲毕半径与平行圆半径相等。 所以R2= r =R R1=∞,与径线垂直的平面切割中间而形成曲线也是一个平行圆,故第二曲毕半径与平行圆半径相等。 所以R2= r =R R1=∞ 圆筒形 ii 当所示贺锥形壳体,径线为与旋转轴相交的直线,其第一曲毕半径R1=∞,R2的曲毕径如图求得:R2=x r cos =Ltacnx

iii 当图示半径R 的圆球形壳体,其半径成为半圆曲线,与径线垂直的平面就是半径所在平面,所以:R1=R2=R 三、承受气压回转薄壳的受力分析 1、先根跟工程力学的基本方法对圆筒形壳体和球形壳体进行应力分析,再研究圆锥形壳体和隋圆形壳体。 假设壳体材料连续、均匀、名向同性;受力后的变形是强性小变形。 以圆筒形壳体为例分析受力对于薄壁圆筒形壳体是由圆筒和封头组成,有内压使用时其直径必增大,长度也会增加在远离圆筒封头的壳体中取一数圆弧进行分析,发现受压前后圆周方向的变形等弧疫和AB 弧疫和B A ''弧疫是不相等的,如下图,说明左圆周的切线方向有拉应力存在。即环向应力2同时,由于内压作用于两端封头,使圆筒体交长沿轴向必存在拉应力;即轴向(径向)应力1表除了上述的应力之外,壳体沿壁厚方向还有径向应力r 和弯曲应力,组在薄壁壳体中忽略不计。∴主伙圆筒壳体上任一点仍是二向应力状态。 1)分析轴向应力1 依垂直于圆筒轴线横面,留下圆筒左半部分,设内压力个,中间面直径D ,壁厚为δ,内压作用下产生轴向合力24D P π (压强*投影面积),方向指左方,∴圆筒器壁的横截面上必然产生轴向向右的轴向拉应力与其平衡,合力δπD 1(应力*面积)14 2δππ D p D =?∴ δ41D P ?=∴

初中常见化学方程式及常用计算公式

初中常见化学方程式及 常用计算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

初中常见化学方程式及常用计算公式 一.化合反应 二.分解反应 三.置换反应 四.复分解反应 1.盐酸和氢氧化钠反应:NaOH+HCl=NaCl+H 2O 2.中和胃酸的反应:Al (OH )3+3HCl=AlCl 3+3H 2O 3.熟石灰和硫酸反应:Ca(OH)2+H 2SO 4=CaSO 4+2H 2O 4.盐酸和硝酸银反应:AgNO 3+HCl=AgCl ↓+HNO 3 5.硫酸和氯化钡反应:BaCl 2+H 2SO 4=BaSO 4↓+2HCl 6.碳酸钙和过量盐酸反应:CaCO 3+2HCl=CaCl 2+H 2O+CO 2↑ 7.碳酸氢钠和盐酸反应:NaHCO 3+HCl=NaCl+H 2O+CO 2↑ 8.碳酸钠和过量盐酸反应:Na 2CO 3+2HCl=2NaCl+H 2O+CO 2↑ 9.氢氧化钠和硫酸铜反应:2NaOH+CuSO 4=Na 2SO 4+Cu(OH)2↓ 10.氢氧化钙和碳酸钠反应:Ca(OH)2+Na 2CO 3=CaCO 3↓+2NaOH 11.氯化钙和碳酸钠反应:CaCl 2+Na 2CO 3=CaCO 3↓+2NaCl 12.硝酸银和氯化钠反应:AgNO 3+NaCl=AgCl ↓+NaNO 3 13.硫酸钠和氯化钡反应:BaCl 2+Na 2SO 4=BaSO 4↓+2NaCl 14.盐酸除铁锈:Fe 2O 3+6HCl=2FeCl 3+3H 2O 15.硫酸除铁锈:Fe 2O 3+3H 2SO 4=Fe 2(SO 4)3+3H 2O 16.氧化铜和硫酸反应:CuO +H 2SO 4=CuSO 4+H 2O 五.其他反应 1.二氧化碳和过量澄清石灰水反应:CO 2+Ca(OH)2=CaCO 3↓+H 2O 2.二氧化碳和过量氢氧化钠反应:CO 2+2NaOH=Na 2CO 3+H 2O 3.氢氧化钠吸收二氧化硫:SO 2+2NaOH=Na 2SO 3+H 2O 4.一氧化碳还原氧化铜:CO+CuO ?=Cu+CO 2 5.一氧化碳还原氧化铁:3CO+Fe 2O 3高温=2Fe+3CO 2 6.甲烷燃烧:CH 4+2O 2点燃=2H 2O+CO 2 7.酒精燃烧:C 2H 5OH+3O 2点燃 =3H 2O+2CO 2 8.葡萄糖在酶的作用下与氧气反应:C6H12O6+6O2酶=6H2O+6CO2

高中化学常用计算公式

1. 有关物质的量(mol )的计算公式 (1)物质的量(mol 即n= M m ;M 数值上等于该物质的相对分子(或原子)质量 (2)物质的量(mol )= )(个微粒数(个)mol /1002.623 ? 即n=A N N N A 为常数6.02×1023,应谨记 (3)气体物质的量(mol 即n= m g V V 标, V m 为常数22.4L ·mol -1,应谨记 (4)溶质的物质的量(mol )=物质的量浓度(mol/L )×溶液体积(L )即n B =C B V aq (5)物质的量(mol )=)反应热的绝对值()量(反应中放出或吸收的热mol KJ KJ / 即n=H Q ? 2. 有关溶液的计算公式 (1)基本公式 ①溶液密度(g/mL 即ρ = aq V m 液 ②溶质的质量分数=%100) g g ?+溶剂质量)((溶质质量)溶质质量(=) ) g g 溶液质量(溶质质量(×100% 即w= 100%?液质m m =剂质质m m m +×100% ③物质的量浓度(mol/L 即C B=aq B V n (2)溶质的质量分数、溶质的物质的量浓度及溶液密度之间的关系: ①溶质的质量分数100%(g/mL) 1000(mL)(g/mol) 1(L)(mol/L)????= 溶液密度溶质的摩尔质量物质的量浓度 即C B = B M ρω 1000 ρ单位:g/ml (3)溶液的稀释与浓缩(各种物理量的单位必须一致): 原则:稀释或浓缩前后溶质的质量或物质的量不变! ①浓溶液的质量×浓溶液溶质的质量分数=稀溶液的质量×稀溶液溶质的质量分数 即浓m 稀稀浓ωωm =

化工设备的计算

一般化工和设备的设计及其计算 编辑: 二00四年+月+八日

目录 1、目录-----------------------------------------------2 2、筒体和封头设计的参数选择---------------------------3 (一)、设计压力 P---------------------------------3(二)、设计温度 T---------------------------------3(三)、许用应力[σ]和安全系数 n-------------------4(四)、焊接接头系数 ----------------------------6(五)、壁厚附加量 C ------------------------------7(六)、直径系列与钢板厚度-------------------------7(七)、最小壁厚-----------------------------------8 3、筒体与封头的设计及计算-----------------------------9 (一)、受内压薄壁园筒的计算公式-------------------9(二)、半球形封头的计算公式(凹面受压)----------11(三)、椭圆形封头的壁厚计算----------------------11(四)、锥形封头的壁厚计算------------------------13(五)、平板封头的壁厚计算------------------------13 4、化工计算公式及举例--------------------------------16 (一)、热位移和热--------------------------------16(二)、热应力产生的轴向推力----------------------16(三)、流体管径的计算----------------------------17(四)、流体管子壁厚计算--------------------------18(五)、泵的功率和效率计算------------------------19 5、传热学的有关公式及举例----------------------------21 (一)、热量衡算----------------------------------21(二)、传热方程式--------------------------------26(三)、传热温度差--------------------------------27(四)、导热方程式和导热系数----------------------30(五)、给热方程式和给热系数----------------------34(六)、传热系数----------------------------------40(七)、污垢热阻----------------------------------48(八)、管路与设备的热损失和热绝缘----------------50(九)、加热、冷却和冷凝--------------------------54(+)、蒸发--------------------------------------64 6、有关参数------------------------------------------75

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核 算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。 常用折算公式如下: 烟气量(dry)=烟气量(wet) >(1-烟气含水量%) 实际态烟气量=标态烟气量>气压修正系数x温度修正系数 烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%) S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量) S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857 物料平衡计算 1 )吸收塔出口烟气量G2 G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2)) G1: 吸收塔入口烟气流量 mw1: 入口烟气含湿率 P2:烟气压力 Pw2 :饱和烟气的水蒸气分压 说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。(计算步骤见热平衡计 算) 2) 氧化空气量的计算 根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。采用氧枪式氧化分布技术,在浆池中氧化 空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为: S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41 所需空气流量Qreq Qreq=S x22.4/(0.21 0.x3) G3= Qreq >K G3:实际空气供应量 K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。 3) 石灰石消耗量计算 W1=100x qs xns W1: 石灰石消耗量 qs: :入口S02 流量 n S兑硫效率 4) 吸收塔排出的石膏浆液量计算 W2=172xx qs xn s/Ss W2:石膏浆液量 Ss石膏浆液固含量 5) 脱水石膏产量的计算 W3=172xx qs xn s/Sg W3: 石膏浆液量 Sg:脱水石膏固含量(1-石膏含水量) 6) 滤液水量的计算 W4=W3-W2 W3: 滤液水量 7) 工艺水消耗量的计算 W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT

化工设备设计计算

华东理工大学 第一届化工设备计算机辅助概念设计 比赛说明书 设计者: 高一聪(过程012) 杜鼎(机设015) 孙英策(机设011) 2003年11月6日

目录 一.设计要求 (3) 二.设计思路概述 (3) 三.设计尺寸 (4) 四.设计建模过程 (4) 塔体 (4) 裙座 (4) 接管 (6) 法兰 (6) 人孔 (6) 吊柱 (7) 操作平台 (7) 梯子 (8) 五.椭圆形封头钣金展开 (9) 六.心得体会 (13) 七.参考书目 (14)

一.设计要求 1 塔设备三维造型 2设计平台、扶梯、并与塔组装。 a除了图中已注尺寸,其余部分形状大小由设计而定。 b塔筒体内零件忽略不作,只作塔设备外形。 c接管、人孔、支座等方位由设计而定。 d平台与扶手形状、大小自行设计。 e 支座数量为4个。 f 支座与法兰大小应由有关系列标准而定。 3 画出塔设备椭圆封头的展开图。展开方法合理,所用材料最省。 二.设计思路概述 塔设备是化工,炼油生产中最重要的设备之一。它主要分为板式塔和填料塔两大类。我们设计的塔设备就是以板式塔为模板的。我们通过查看实物图片,查阅相关塔设备资料和设计标准手册研究除了一套较合理的方案。我们的设计主要分为以下几部分: 1、塔体:塔设备的外壳。它由等直径、等厚度的圆筒和作为头盖和低盖的椭圆形 封头组成。 2、塔体支座:塔体安放在基础上的连接部分。它用以确定塔体的位置。本题中塔 设备采用的是最常用的支座形式——裙座。 3、除沫器:用于捕集夹带在气流中的液滴。对于回收物料,减少污染非常重要。 4、接管:用以连接工艺管道,把塔设备与其他设备连成系统。安用途可分为进液 管、除液管、进气管、出气管等。 5、人孔:为安装、检修、检查的需要而设置的。

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

初中化学-常用计算公式

初中化学常用计算公式 一. 常用计算公式: (1)相对原子质量= 某元素一个原子的质量 / 一个碳原子质量的1/12 (2)设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数ω=A的相对原子质量×m /AmBn的相对分子质量 (3)混合物中含某物质的质量分数(纯度)=纯物质的质量/混合物的总质量× 100% (4)标准状况下气体密度(g/L)=气体质量(g)/气体体积(L) (5)纯度=纯物质的质量/混合物的总质量× 100% = 纯物质的质量/(纯物质的质量+杂质的质量) × 100%= 1- 杂质的质量分数 (6)溶质的质量分数=溶质质量/溶液质量× 100% =溶质质量/(溶质质量+溶剂 质量) × 100% (7)溶液的稀释与浓缩 M浓× a%浓=M稀× b%稀=(M浓+增加的溶剂质量) × b%稀 (8)相对溶质不同质量分数的两种溶液混合 M浓× a%浓+M稀× b%稀=(M浓+M稀) × c% (9)溶液中溶质的质量 =溶液的质量×溶液中溶质的质量分数 =溶液的体积×溶液的密度 化学计算中的重要公式 1.溶解度S:固体~S=100m(质)/m(剂),气体~S=V(质)/V(剂);

2.饱和溶液的质量百分比浓度A%:A%=S/(100+S)×100% 3.质量分数A%:A%=m(质)/m(液)×100% 4.物质的量n:n=m/M=N/NA=V(L)/22.4(STP) 5.原子的绝对质量m:m=M/NA 6.平均摩尔质量M平:M平=(m1+m2+…)/(n1+n2+…) 7.物质的量浓度c:c=n/V=1000rA%/M=c1V1/V 8.25℃,Kw=[H+][OH-]=1.0×10-14,pH=-lg[H+],pOH=-lg[OH-] 9.PV=nRT=mRT/M,PM=mRT/V=rRT,PVNA=NRT,22.4P=RT 10.M(g)=22.4r(STP); 11.纯度:纯度=纯净物的质量/混合物的质量×100% 12.产率:产率=实际产量/理论产量×100% 13.电离度a:a=已电离分子数/原分子总数×100% 14.转化率:转化率=已反应的物质的量/起始时的物质的量×100% 15.a价金属与酸反应通式:2M+2aH+¾®2Ma++aH2­~ m(M)/2M=m(H2)/2a m(M)/m(H2)=M/a(产生1 g H2所需要金属的质 1)相对原子质量= 某元素一个原子的质量/ 一个碳原子质量的1/12 (2)设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数ω=A的相对原子质量×m /AmBn的相对分子质量

化工设备设计计算书

化工设备设计计算书 编辑: 二00四年+月+八日

目录 1、目录-----------------------------------------------2 2、筒体和封头设计的参数选择---------------------------3 (一)、设计压力 P---------------------------------3 (二)、设计温度 T---------------------------------3 (三)、许用应力[σ]和安全系数 n-------------------4 (四)、焊接接头系数 ----------------------------6 (五)、壁厚附加量 C ------------------------------7 (六)、直径系列与钢板厚度-------------------------7 (七)、最小壁厚-----------------------------------8 3、筒体与封头的设计及计算-----------------------------9 (一)、受内压薄壁园筒的计算公式-------------------9 (二)、半球形封头的计算公式(凹面受压)----------11 (三)、椭圆形封头的壁厚计算----------------------11 (四)、锥形封头的壁厚计算------------------------13 (五)、平板封头的壁厚计算------------------------13 4、化工计算公式及举例--------------------------------16 (一)、热位移和热--------------------------------16 (二)、热应力产生的轴向推力----------------------16 (三)、流体管径的计算----------------------------17 (四)、流体管子壁厚计算--------------------------18 (五)、泵的功率和效率计算------------------------19 5、传热学的有关公式及举例----------------------------21 (一)、热量衡算----------------------------------21 (二)、传热方程式--------------------------------26 (三)、传热温度差--------------------------------27 (四)、导热方程式和导热系数----------------------30 (五)、给热方程式和给热系数----------------------34 (六)、传热系数----------------------------------40 (七)、污垢热阻----------------------------------48 (八)、管路与设备的热损失和热绝缘----------------50 (九)、加热、冷却和冷凝--------------------------54 (+)、蒸发--------------------------------------64 6、有关参数------------------------------------------75

化工原理计算试题

离心泵的计算 1计算题j01b10029 如图所示, 水通过倾斜变径管段(A-B), D A=100mm,D B =240mm,水流量为2m3/min,在截面A与B处接一U形水银压差计,其读数R=20mm,A、B两点间的垂直距离为h=0.3m试求:(1) 试求A、B两点的压差等于多少Pa?(2)A、B管段阻力损失为多少mmHg?(3)若管路水平放置,而流量不变,U形水银压差计读数及A、B两点压差有何变化? 计算题j01b10029 (题分:20) (1) u A=(2/60)/[(π/4)×(0.10)2]=4.244 m/s, u B=4.244×(1/2.4)2=0.7368 m/s p A/ρ+u A2/2= gh+p B/ρ+u B2/2+∑h f ∵p A/ρ-(gh+p B/ρ)=(ρi-ρ)gR/ρ ∴p A-p B=(ρi-ρ)gR+ρgh =(13.6-1)×103×9.81×0.020+103×9.81×0.3 =5415 Pa (2) ∑h f=(p A/ρ-gh-p B/ρ)+u A2/2-u B2/2 =(ρi-ρ)gR/ρ+u A2/2-u B2/2 =(13.6-1)×9.81×0.020+(4.244)2/2-(0.7368)2/2 =11.2 J/kg 即?p f=ρ∑h f=103×11.2=11.2×103 Pa 换成mmHg: ∑H f=?p f/(ρHg?g)= 11.2×103/(13.6×103×9.81) =0.0839 mHg=83.9 mmHg (3) p A/ρ+u A2/2=p B/ρ+u B2/2+∑h f ∵u A、u B、∑h f均不变,故(ρi-ρ)gR’/ρ之值不变 即R’不变,R’=R=20 mm 水平放置时p A-p B = (13.6-1)?103?9.81?0.020 =2472Pa比倾斜放置时的压差值小。 2计算题j02b20067 (20分) 如图所示的输水系统,输水量为36m3/h,输水管均为φ80×2mm的钢管,已知水泵吸入管路的阻力损失为0.2m水柱,压出管路的阻力损失为0.5m水柱,压出管路上压力表的读数为2.5Kgf/cm2。试求: (1) 水泵的升扬高度; (2) 若水泵的效率η=70%,水泵的轴功率(KW); (3) 水泵吸入管路上真空表的读数(mmHg 柱)。 注:当地大气压为750mmHg 柱。 0.2 4.8

相关主题
文本预览
相关文档 最新文档