当前位置:文档之家› 铣床加工精度

铣床加工精度

铣床加工精度
铣床加工精度

①余量最小原则,在保证加工精度和加工质量的前提下,余量越小越好。较小的加工佘量可缩短加工时间、减少材料消耗、降低加工成本^

②余量充分原则,防止因佘量不足而造成加工废品。

③余量中应包含热处理引起的变形。

④大零件取大余量,零件越大,切削力及内引力引起的加工变形就越大。

数控机床精度检测项目及常用工具

数控机床精度检测项目及常用工具 随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。 雷尼绍ML10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:BS4656英国三测机标准;BS3800英国机床标准;ISO 230-2国际标准;VDI/DGQ 3441德国工程师学会机床标准;VDI 2617德国工程师学会三测机标准;NMTBA美国机床协会标准;GB10931-89中国国家标准;ASME B89.1.12M美国机械工程师学会标准;ASME B5.54美国机械工程师学会标准;E60—099法国标准;JISB2330日本国家标准。 2 英国雷尼绍公司先进技术 英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成系列质量保证手段。她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。 2.1ML10激光干涉仪 雷尼绍ML10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1PPM(在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎! 为使大家进一步了解ML10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ML10激光干涉仪在精度检测中的应用。 (1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。 (2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差

加工中心精度检验规范标准

项次NO 检查项目 Inspection item 测试方法图 Measuring method diagram 许可差 Permissible deviation 实际 测量值 Measured value 1.1 床台X 轴 方向运动 之真直度 Straightn ess of the X axis movemen t a. X-Z 面内 0.06/1000 b. Y-Z 面内 1.2 床台Y 轴 方向运动 之真直度 Straightn ess of the Y axis movemen t a. X-Z 面内 0.06/1000 b. Y-Z 面内

单位Unit : mm 项次NO 检查项目 Inspection item 测试方法图 Measuring method diagram 许可差 Permissible deviation 实际 测量值 Measured value 1.3 床台X轴方向之 运动与其上面之 平行度 Parallelism between movement in X axis direction and table upper surface X≦500 0.02 500<X≦800 0.025 800<X≦1250 0.03 1250<X≦2000 0.04 1.4 床台Y轴方向之 运动与其上面之 平行度 Parallelism between movement in Y axis direction and table upper surface Y≦500 0.02 500<Y≦800 0.025 800<Y≦1250 0.03 1250<Y≦2000 0.04 1.5 X轴方向运动与 床台基准沟侧面 之平行度 Parallelism between movement in X axis direction and Side surface of table reference slot 每300mm的量测距离下 许可差为0.015mm 0.015for a measuring length of 300

铣床加工图及工艺说明

铣床加工图及工艺说明文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

(工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。

(工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀、?4平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。 工件3

数控车床几何精度检测

数控车床几何精度检测 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如0001 所示,水平仪沿Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如0002 所示,水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

2.溜板在水平面内移动的直线度 检验工具:指示器和检验棒,百分表和平尺 检验方法:如0003 所示,将直验棒顶在主轴和尾座顶尖上;再将百分表固定在溜板上,百分表水平触及验棒母线;全程移动溜板,调整尾座,使百分表在行程两端读数相等,检测溜板移动在水平面内的直线度误差。 3.尾座移动对溜板移动的平行度 ☆垂直平面内尾座移动对溜板移动的平行度 ☆水平面内尾座移动对溜板移动的平行度 检验工具:百分表 检验方法:如0004 所示,将尾座套筒伸出后,按正常工作状态锁紧,同时使尾座尽可能的靠近溜板,把安装在溜板上的第二个百分表相对于尾座套筒的端面调整为零;溜板移动时也要手动移动尾座直至第二个百分表的读数为零,使尾座与溜板相对距离保持不变。按此法使溜板和尾座全行程移动,只要第二个百分表的读数始终为零,则第一个百分表相应指示出平行度误差。或沿行程在每隔300mm 处记录第一个百分表读数,百分表读数的最大差值即为平行度误差。第一个指示器分别在图中ab 位置测量,误差单独计算。

4.主轴跳动 ☆主轴的轴向窜动 ☆主轴的轴肩支承面的跳动 检验工具:百分表和专用装置 检验方法:如0005 所示,用专用装置在主轴线上加力 F ( F 的值为消除轴向间隙的最小值),把百分表安装在机床固定部件上,然后使百分表测头沿主轴轴线分别触及专用装置的钢球和主轴轴肩支承面;旋转主轴,百分表读数最大差值即为主轴的轴向窜动误差和主轴轴肩支承面的跳动误差 5.主轴定心轴颈的径向跳动 检验工具:百分表 检验方法:如0006 所示,把百分表安装在机床固定部件上,使百分表测头垂直于主轴定心轴颈并触及主轴定心轴颈;旋转主轴,百分表读数最大差值即为主轴定心轴颈的径向跳动误差

数控铣床加工工艺设计

学号09131050701215 中南大学现代远程教育 毕业论文 论文题目数控铣床加工工艺设计 姓名武亚玲 专业机械设计制造及其自动化 层次专升本 入学时间 2009秋 管理中心重庆直属管理中心 学习中心重庆直属学习中心 指导教师李恩 2011年10月10日

目录 第一章前言 (1) 第二章数控加工工艺设计主要内容 (2) 2.1数控加工工艺内容的选择 (2) 2.1.1数控加工的内容 (2) 2.1.2适于数控加工的内容 (2) 2.2 数控加工工艺性分析 (3) 2.2.1标注应符合数控加工的特点 (3) 2.2.2几何要素的条件应完整、准确 (3) 2.2.3定位基准可靠 (3) 2.2.4统一几何类型及尺寸 (3) 2.3数控加工工艺路线的设计 (3) 2.3.1工序的划分 (4) 2.3.2顺序的安排 (4) 2.3.3数控加工工艺与普通工序的衔接 (4) 第三章数控加工工艺设计方法 (5) 3.1确定走刀路线和安排加工顺序 (5) 3.2确定定位和夹紧方案 (7) 3.3确定刀具与工件的相对位置 (7) 3.3.1对刀点的选择原则 (7) 3.4 确定切削用量 (9) 3.4.1填写数控加工技术文件 (10) 3.4.2数控编程任务书 (10)

3.4.3数控加工工件安装和原点设定卡片(简称装夹图和零件设定卡)11 3.4.4数控加工工序卡片 (12) 3.4.5数控加工走刀路线图 (13) 3.5数控刀具卡片 (14) 第四章数控铣床加工的基本特点 (15) 第五章数控铣床刀具的选择 (16) 5.1数控铣床对刀具的要求及铣刀的种类 (16) 5.1.1对刀具的要求 (16) 5.1.2常用铣刀种类 (17) 5.2孔加工刀具的选用 (17) 5.3铣削加工刀具选用 (18) 结论 (18) 结束语 (18) 参考文献 .......................................... 错误!未定义书签。

铣床加工图及工艺说明

(工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。

(工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀、?4平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。

加工中心几何精度检验

加工中心几何精度检验 检验项目主要有:各直线轴轴线运动直线度、各直线轴轴线运动的角度偏差、各直线轴相会垂直度检验、主轴的轴向窜动、主轴的径向跳动、主轴轴线与Z轴轴线运动间的平行度、工作台面的平面度等。 (1)X轴轴线运动直线度检测 (a)在Z-X垂直平面内(b)在X-Y水平面内 图8-1-7 X轴轴线运动直线度检测安装示意图 根据国家标准可知,X轴轴线运动直线度检测允差为:X≤500mm时,允差为0.010mm;500mm<X≤800mm时,允差为0.015mm;800mm<X≤1250mm时,允差为0.020mm;1250mm<X≤2000mm时,允差为0.025mm。局部公差要求为:在任意300mm 测量长度上为0.007mm。具体检测方法如下: ①将平尺和机床工作台表面擦拭干净。 ②将平尺沿X轴放置在机床工作台中间位置,找正平尺,使平尺与X轴平行。 ③将磁性表座组装好并吸附在机床主轴箱上,将千分表安装在磁性表座表架上。 ④移动机床坐标轴X轴,使千分表测头垂直触及平尺工作面。安装示意图如图8-1—7所示。 ⑤移动机床X轴并读取千分表的变化值,其读数最大差值则为机床X轴轴线运动直线度。 (2)Y轴轴线运动直线度检测 Y轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X轴相同,安装示意图如图8-1-8所示。 (a)在Y-Z垂直平面内(b)在X-Y水平面内 图8-1-8 Y轴轴线运动直线度检测安装示意图 (3)Z轴轴线运动直线度检测 Z轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X轴相同,安装示意图如图8-1-9所示。

机床精度检测方法

大型数控机床验收的几个问题 对集机、电、液、气于一体的进口大型数控机床(含加工中心)的验收,无论是预验收、还是最终验收,都是十分重要的。它是对机床设计、制造、安装调试的质量,特别是对机床精度的总体检验。它直接关系到机床的功能、可靠性、加工精度和综合加工能力。 然而在实际验收中,常常会出现一些带有技术性或管理性的问题。如果不能得到及时的正确处理,将会影响到机床的验收质量。 1 定位精度的检测 检测机床的定位精度,常用标准有两种: ·德国VDI/DGQ3441标准(机床运行精度和定位精度的统计方法)。 ·美国AMT标准(美国机械制造技术协会制定)。 用两个标准,测量数据的整理均采用数理统计方法。即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。进而求出平均值偏差、标准差、分散度。分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的最大定位偏差。 由于被测坐标轴长度不尽相同,因而其定位精度的线性允差的给定方式不应是单一的,而应有所区别。国标GB10931-89数字控制机床位置精度的评定方法中规定,轴线定位精度线性允差的给定方式主要有以下几种: ·在全行程上规定允差; ·根据被测对象长度分段规定允差; ·用局部公差方式规定允差; 既规定局部公差,同时也规定全行程允差。 东方汽轮机厂从德国科堡(COBURG)公司进口工作台5m×17m的数控龙门铣床(下称龙门铣),共有X、Y、Z、W四个坐标轴。只有Z轴长度小于2m、最长的X轴全行程为17.70m;从意大利贝拉尔蒂(BRERADI)公司进口的镗杆直径 250mm

常用铣加工工艺

常见铣加工工艺 一.毛料开六方 准备:将所要加工的毛坯料按尺寸规格检验,保证足够的加工余量。(我公司一般要求加工余量5mm,当加工余量较小时,应考虑先加工余量最小方向尺寸,见《粗加工尺寸标准》) 1.将铣床机头校正。(机头倾斜加工后工件表面不平) 2.选择合适的转速1500-2000转/分。 3.将所用的夹具装夹在铣床工作台面上,一般用平口钳。(特殊工件 需用直角码、虾工等工具)。装夹牢固。 4.将毛边毛刺去除,将工件装夹在平口钳上,先加工大平面,如果工 件高度比钳口低,底部可垫一块宽度比工件稍小垫块(标准垫块)夹紧后,用小铜锤敲击工件表面使其底面完全与平口身平行。 5.在工件表面对刀,找出最高点和最低点。以最低点铣平即可,如果 高低点差距较大,超出1mm,应在最后一刀留0.2-0.5光刀余量,而不能一刀铣平。飞刀在加工不同材料时吃刀量不同,一般开粗1mm,光刀0.1-0.5mm。 6.去除毛边、毛刺,将已加工好平面为底面,重新装夹在平口钳上, 同上部一样将其装夹好,去除多余金属层,加工到所须3尺寸。(注:如果所给尺寸为磨削尺寸,则每个尺寸应留0.5mm磨削余量) 7.将加工好面夹在平口钳上夹紧,将宽度方向铣到位,加工方法同上。 8.工件铣直角将加工好面夹在平口钳上,底部垫一平行垫块,用直 角尺将工件靠直,直角尺与工件无缝隙为准,加紧工件。将表面光平,用直角尺检验合格后,翻转将尺寸加工到位。

注:每加工一个平面后,在装夹时应将毛边、毛刺去除,工作台面和平口钳清理干净,以免削屑影响加工精度。自检合格后在工件表面上注明工件尺寸,以便下道工序加工。 二.钻孔 1螺丝孔加工方法 (1)根据图纸要求,在工件上划出螺丝孔的位置,并在工件上注明,以便加工时区别。 (2)将工件装夹在平口钳上,使工件表面与主轴成90° (3)用碰数器以工件基准碰数后,根据图纸所标注数值,在所需加工螺丝孔位置用中心钻找正中心,并根据划线检验位 置是否正确。 (4)选用合适钻头、加工深度、转速、进给量(加工参数附表)。 如图纸有特殊要求根据图纸加工。所有加工孔若为通孔,则需在加工底部垫一平行工艺垫板,以免加工时钻伤平口钳,加工时必须使用冷却液,以避免工件和刀具在加工时产生变形和刀具损伤。 (5)加工后倒角并在加工基准处加工打字槽,标准参照《打字槽加工规范》,在工件表面上注明编号,以便下道工序加 工。 2螺丝孔过孔加工方法 螺丝孔过孔与螺丝孔加工方法同理,只是在选用钻头时应区分(附表)如图纸对坯头深度有特殊要求则依据图纸加工 3铣斜面

数控机床精度及性能检验

数控机床精度及性能检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 一、精度检验 一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。 1、几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。 常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所测的几何精度高一个等级。 (一)卧式加工中心几何精度检验 1)x 、y 、z 坐标轴的相互垂直度。 2)工作台面的平行度。 3)x 、Z 轴移动时工作台面的平行度。 4)主轴回转轴线对工作台面的平行度。 5)主轴在Z 轴方向移动的直线度: 6)x 轴移动时工作台边界与定位基准面的平行度。 7)主轴轴向及孔径跳动。 8)回转工作台精度。 具体的检测项目及方法见表2—1。 (二)卧式数控车床几何精度检验 斜床身、带转盘刀架的卧式数控车床,其几何精度检验见表2—2。 2、定位精度的检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值,可判断零件加工后能达到的精度。 1.直线运动定位精度 这项检测一般在空载条件下进行,对所测的每个坐标轴在全行程内,视机床规格,分每20mm 、50mm 或100mm 间距正向和反向快速移动定位,在每个位置上测出实际移动距离和理论移动距离之差。先进的检测仪器有双频激光干涉仪,用它快速进行五次以上的测量,由处理装置进行计算打印,绘出带±3σ的误差曲线。在该曲线上得出正、反向定位时的平均位置偏差j X 、标准偏差j S ,则位置偏差max min (3)(3)j j j j A X S X S =+--。

车床几何精度检测及调整

实验三车床几何精度检测及调整 实验项目性质:综合性 实验计划学时:2学时 一、实验目的 1、了解进行车床几何精度检测、加工精度检测常用的工具及其使用方法 2、了解ISO标准、GB中常见的机床几何精度及加工精度检测项目标准数据。 3、掌握机床几何精度概念。 二.实验原理 机床的加工精度是衡量机床性能的一项重要指标。影响机床加工精度的因素很多 , 有机床本身的精度影响 , 还有因机床及工艺系统变形、加工中产生振动、机床的磨损以及刀具磨损等因素的影响。在上述各因素中 ,机床本身的精度是一个重要的因素。 例如在车床上车削圆柱面 ,其圆柱度主要决定于工件旋转轴线的稳定性、车刀刀尖移动轨迹的直线度以及刀尖运动轨迹与工件旋转轴线之间的平行度 ,即主要决定于车床主轴与刀架的运动精度以及刀架运动轨迹相对于主轴的位置精度。 机床的精度包括几何精度、传动精度、定位精度以及工作精度等 , 不同类型的机床对这些方面的要求是不一样的。车床的几何精度,是指车床在不工作情况下,对车床工作精度有直接影响的零部件本身及其相互位置的几何精度。属于这类精度的有:车床溜板移动的直线性及其与它表面间相互的不平行度;车床主轴的径向跳动和轴向窜动,及其中心线与溜板移动方向的不平行度;主轴锥孔中心线对机床导轨的不等距离等等。 三、实验步骤 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

数控机床精度检验

数控机床精度检测 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1、检验所用的工具 1.1、水平仪 水平:0.04mm/1000mm 扭曲:0.02mm/1000mm 水平仪的使用和读数 水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。 使用方法: 测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算: 实际倾斜值=分度值×L×偏差格数

水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。 1.2、千分表

1.3、莫氏检验棒

2、检验内容 2.1、相关标准(例) 加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998 加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998 加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998 机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000 加工中心技术条件JB/T8801-1998 2.2、检验内容 精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。 2.2.1、数控机床几何精度的检测 机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。所使用的检测工具精度必须比所检测的精度高一级。其检测项目主要有: 直线度 一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。 部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。 运动的直线度,如立式加工中心X轴轴线运动的直线度。 平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度。 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度。 等距度,如立式加工中心定位孔与工作台回转轴线的等距度。 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 旋转 径向跳动,如数控卧式车床或主轴定位孔的径向跳动。 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动。 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 2.2.2、机床的定位精度检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值判断机床是否合格。其内容有:

铣床加工图及工艺说明

工件1 (工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。

工件2 (工艺规程) 1、分析零件图,对零件进行工艺分析。 2、选择毛坯,进行装夹。 3、根据图纸要求进行CAM绘图,确定加工工艺,编写加工刀路。 4、确定各工序的加工余量,计算工序尺寸及公差。 5、确定各工序所用的刀具及辅助工具。 6、确定各工序的技术要求和检验方法。 7、确定切削用量及主轴转速。 8、后处理程序传输到机床进行加工。 9、加工完毕,根据图纸公差要求进行检验。 10、收拾好工量具,打扫机床卫生。 (工艺说明) 1、毛坯种类和材料:?70圆料棒。 2、安装方法:平口钳装夹。 3、刀具:?8平刀、?4平刀。 4、操作技巧及注意事项: ①夹紧工件。 ②单人单机操作。 ③加工时,防护门要关上。 ④在加工过程如发生意外,需及时按下急停开关。 ⑤严格要求遵守操作规程进行操作,以免发生意外。

一、数控机床的精度检验(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 一、数控机床的精度检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1. 几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所设的几何精度高一个等级。 以卧式加工中心为例,要对下列几何精度进行检验: 1)X、Y、Z坐标轴的相互垂直度; 2)工作台面的平行度; 3)X、Z轴移动时工作台面的平行度; 4)主轴回转轴线对工作台面的平行度; 5)主轴在Z轴方向移动的直线度; 6)X轴移动时工作台边界与定位基准的平行度; 7)主轴轴向及孔径跳动; 8)回转工作台精度。

2. 定位精度的检验 数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。 (1)定位精度检测的主要内容 机床定位精度主要检测内容如下: 1) 直线运动定位精度(包括X 、Y 、Z 、U 、V 、W 轴); 2) 直线运动重复定位精度; 3) 直线运动轴机械原点的返回精度; 4) 直线运动失动量的测定; 5) 直线运动定位精度(转台A 、B 、C 轴); 6) 回转运动重复定位精度; 7) 回转轴原点的返回精度; 8) 回转运动矢动量的测定。 (2)机床定位精度的试验方法 检查定位精度和重复定位精度使用得比较多的方法是应用精密线纹尺和读数显微镜(或光电显微镜)。以精密线纹尺作为测量时的比较基准,测量时将精密线纹尺用等高垫按最佳支架(见图5.1)安装在被测部件例如工作台的台面上,并用千分表找正。显微镜可安装在机床的固定部件上,调整镜头使与工作台垂直。在整个坐标的全长上可选取任意几个定位点,一般为5~15个,最好是非等距的。对每个定位点重复进行多次定位。可以从单一方向趋近定位点,也可以从两个方向分别趋紧,以便揭示机床进给系统中间隙和变形的影响。每一次定位的误差值X 可按下式计算: ()()00y y s s X L L ---= 式中 0s ——基准点或零点时显微镜的读数; L s ——工作台移动L 距离后显微镜的读数; 0y 、L y ——相应于0s 和L s 时机床调位读数装置或数码显示装置的读数,对于数

平面铣削工艺、编程

5. 5平面铳削工艺、编程 5. 5. 1平面铣削加工的内容、要求 平面铳削通常是把工件表面加工到某一高度并达到一定表面质量要 求的加工。 分析平面铳削加工的内容应考虑:加工平面区域大小,加工面相对 基准面的位置;分析平面铳削加工要求应考虑:加工平面的表面粗糙度要 求,加工面相对基准面的定位尺寸精度,平行度,垂直度等要求。 如图5-5-1所示工件的上表面,区域大小为80 X 120 矩形,距基准 面40 mm高度位置,并相对基准面A有0.08 伽的平行度要求,形状公 差0.04 m平面度要求,Ra3.2表面质量要求。 平面铳削加工内容、要求的正确分析是进行平面铳削工艺设计的前 提。 5. 5. 2平面铣削方法 (a)立铳刀周铳平面图(b )面铳刀端铳平面 图5-5-2平面铳削方法 对平面的铳削加工,存在用立铳刀周铳和面铳刀端铳两种方式,如图端铳有如下 特点: 1、用端铳的方法铳出的平面,其平面度的好坏主要取决于铳床主轴轴线与进给方向的垂直度。面铳刀加工时,它的轴线垂直于工件的加工表面。 2、端铳用的面铳刀其装夹刚性较好,铳削时振动较小。 那申08卜| ■ Jf 7 ISO 图5-5-1工平面加工工件 5-5-2。用面铳刀

3、端铳时,同时工作的刀齿数比较周铳时多,工作较平稳。这时因为端铳时刀齿在铳削层宽度的范围内工作。 4、端铳用面铳刀切削,其刀齿的主、副切削刃同时工作,由主切削刃切去大部分余量, 副切削刃则可起到修光作用,铳刀齿刃负荷分配也较合理,铳刀使用寿命较长,且加工表面 的表面粗糙度值也比较小。 5、端铳的面铳刀,便于镶装硬质合金刀片进行高速铳削和阶梯铳削,生产效率高,铳削表面质量也比较好。 一般情况下,铳平面时,端铳的生产效率和铳削质量都比周铳高,所以平面铳削应尽量端铳方法。一般大面积的平面铳削使用面铳刀,在小面积平面铳削也可使用立铳刀端铳。 5. 5. 3面铣刀及选用 面铳刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。由于面铳刀的直径一 般较大,为0 50?500mm,故常制成套式镶齿结构,即将刀齿和刀体分开,刀体采用40Cr 制作,可长期使用。硬质合金面铳刀与高速钢面铳刀相比,铳削速度较高、加工效率高、加工表面质量也较好,并可加工带有硬皮和淬硬层的工件,在数控面铳削时得到广泛应用。 图5-5-3可转位面铳刀 1.硬质合金可转位式面铣刀 硬质合金可转位式面铳刀(可转位式端铳刀),如图5-5-3所示。这种结构成本低,制作方便,刀刃用钝后,可直接在机床上转换刀刃和更换刀片。 可转位式面铳刀要求刀片定位精度高、夹紧可靠、排屑容易、更换刀片迅速等,同时各定位、夹紧元件通用性要好,制造要方便,降低成本,操作使用方便。 硬质合金面铳刀与高速钢面铳刀相比,铳削速度较高、加工效率高、加工表面质量也较 好,并可加工带有硬皮和淬硬层的工件,在提高产品质量和加工效率等方面都具有明显的优

数控铣削加工工艺范围及铣削方式

数控铣削加工工艺围及铣削方式 铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。铣削的主要工作及刀具与工件的运动形式如图所示。 在铣削过程中,根据铣床,铣刀及运动 形式的不同可将铣削分为如下几种: (1)根据铣床分类 根据铣床的结构将铣削方式分为立铣 和卧铣。由于数控铣削一个工序中一般要加 工多个表面,所以常见的数控铣床多为立式 铣床。 (2)根据铣刀分类 根据铣刀切削刃的形式和方位将铣削 方式分为周铣和端铣。用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a)所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2(b)所示。 图中平行于铣刀轴线测量的切 削层参数ap为背吃刀量。垂直于铣 刀轴线测量的切削层参数ac为切削 宽度,fz是每齿进给量。单独的周铣 和端铣主要用于加工平面类零件,数 控铣削中常用周、端铣组合加工曲面 和型腔。 (3)根据铣刀和工件的运动形 式公类 根据铣刀和工作的相对运动将铣 削方式分为顺铣和逆铣。铣削时,铣 刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示; 铣削时,铣刀切入工件时的切削速度方向与工件进 给方向相反,称为逆铣,如图(6-3)b所示。 顺铣与逆铣比较:顺铣加工可以提高铣刀耐用 度2~3倍,工件表面粗糙度值较小,尤其在铣削难 加工材料时,效果更加明显。铣床工作台的纵向进 给运动一般由丝杠和螺母来实现,采用顺铣法加工 时,对普通铣床首先要求铣床有消除进给丝杠螺母 副间隙的装置,避免工作台窜动;其次要求毛坯表 面没有破皮,工艺系统有足够的刚度。如果具备这

样的条件,应当优先考虑采用顺铣,否则应采用逆铣。目前生产中采用逆铣加工方式的比较多。数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。 数控铣削主要特点 (1)生产率高 (2)可选用不同的铣削方式 (3)断续切削 (4)半封闭切削 数控铣削主要加工对象 (1)平面类零件 加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件。目前,在数控铣床上加工的绝大多数零件属于平面类零件。 (2)变斜角类零件 加工面与水平面的夹角呈连续变化的零件称为斜角类零件。这类零件多为飞机零件,如飞机上的整体梁、框、橡条与肋等。 (3)曲面类零件 加工面为空间曲面的零件称为曲面类零件。如模具、叶片、螺旋桨等。 加工曲面类零件一般采用三坐标数控铣床。当曲面较复杂、通道较狭窄、会伤及毗邻表面及需刀具摆动时,要采用四坐标或五坐标铣床。 数控铣削的刀具与选用 对数控铣削刀具的基本要求 (1)铣刀刚性要好 (2)铣刀的耐用度要高 此外,铣刀切削刃的几何参数的选择及排屑性能也非常重要。 铣刀的种类 (1)面(端)铣刀 面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。由于面铣刀的直径一般较大,为直径50~500mm,故常制成套式镶齿结构,即将刀齿和刀体分开,刀齿为高速或硬质合金,刀体采用40cr制作,可长期使用。高速钢面铣刀按国家标准规定,直径d=直径80~250mm,螺旋角β=10度,刀齿数Z=10~26. 硬质合金面铣刀与高速钢铣刀相比,铣削速度较高,加工效率高,加工表面质量也较好,并可加工带有硬皮和淬硬层的工件,故得到广泛应用。硬质合金面铣刀按刀片和刀齿的安装方式不同,可分为整体焊接式、机夹一焊接式和可转位式三种(见图6-4)。 面铣刀主要以端齿为主加工各种平面,主偏角为90度的面铣刀还能用时加工出与平面垂直的直角

铣加工技术规范

铣加工技术规范 一、模架的加工 仔细阅读图纸,检查图纸是否有误、是否与材料尺寸符合,确定加工工件的基准,用抹布和锉刀去除工件毛刺和杂物。 1、定模部分 (1)定位模板的中心坐标。把定模板装夹在平口钳上,用千分表找正模板的长度边,使误差小于0.02MM。用分中棒分中,机床转速670rpm左右。 (2)用φ5MM钻头钻尼龙拉钉通孔,φ8MM钻头钻模框直角让位孔(机床转速670rpm左右)。钻32MM的下刀孔时,下刀深度比图纸尺寸少钻1.5MM。 先用φ10MM的钻头钻到深度留1MM(机床转速460rpm左右),再用φ25MM 的钻头扩孔(机床转速180rpm左右),最后用φ32的钻头扩孔(机床转速120rpm 左右)。 (3)铣模框滑块位和锁紧块插槽。根据模架的大小选用φ25MM或φ32MM的飞刀粗铣,转速1340rpm左右。下刀深度<4MM,单边留0.6MM余量。粗铣 完成后用千分表找正(误差小于0.02MM)分中,换φ12MM铣刀半精铣(转 速460rpm左右,进刀量≤0.2MM),单边留0.2MM余量。最后换φ12MM新 铣刀(转速670rpm左右,进刀量≤0.05MM)精铣到图纸尺寸,用千分尺和块 规检测,合格后用专用倒角刀倒1×45度的角(机床转速1340rpm左右)。 (4)钻4个尼龙拉钉孔。用φ14MM钻头钻孔(机床转速300rpm左右),深度 35MM,再用φ15.5MM钻头扩孔,最后用φ16MM铣刀精镗孔(机床转速 60rpm左右,进给量0.07mm/圈左右)。 (5)钻2-φ8MM水路孔深度按图纸要求,后用φ13MM的铣刀沉1.4MM的止水圈位(机床转速460rpm左右)。 (6)钻各螺钉孔、过孔和线割孔。 (7)加工脱浇板。把脱浇板放在定模板上,把四支导柱插入导套内,用φ4.7MM 钻头钻出拉料钉孔,再用φ5MM的铰刀精铰孔(机床转速60rpm左右,进给量 0.07mm/圈左右),最后用R4球头铣刀铣深度3.8MM的点浇口缩窝(机床转速 1340rpm左右)。 (8)铣定模板斜导柱压块槽和各螺钉过孔。取下脱浇板,定模板去毛刺后翻面

数控铣床零件加工工艺分析与程序设计

目录 目录...................................................................................... ……………- 1 -摘要......................................................................................... …………..- 3 -1、零件加工工艺的分析......................................................... ………………- 4 - 1)零件的技术要求分析......................................................................... - 4 -2)零件的结构工艺分析......................................................................... - 4 -2、编程尺寸的确定.................................................................... …………….- 6 - 1)、计算各节点的坐标尺寸................................................................... - 6 -3、毛坯选择................................................................................... …………..- 7 - 1)毛坯分析............................................................................................. - 7 - ①:材料的力学性能:................................................................... - 7 - ②:批量大小:小批量生产........................................................... - 7 - ③:零件形状尺寸:....................................................................... - 8 - ④:学校现有的设备:立式加工中心........................................... - 8 - 2)毛坯的选择......................................................................................... - 8 -4、工艺过程的设计........................................................................ ………….- 8 - 1)选择定位基准:................................................................................. - 8 -2)选择毛坯各表面加工方法:............................................................. - 8 -3)确定加工顺序:................................................................................. - 8 -4)确定走刀路线................................................................................. - 10 -5、选择机床、工艺装备.......................................................... …….……....- 10 - 1)数控机床及系统............................................................................... - 10 -2)选择工艺装备................................................................................... - 11 -(1)夹具的选择................................................................................... - 11 -(2)装夹方案的选择........................................................................... - 12 -(3)刀具的选择方案........................................................................... - 13 -(4)量具的选择方案........................................................................... - 14 -6、确定切削用量........................................................................... …………- 15 -

相关主题
文本预览
相关文档 最新文档