当前位置:文档之家› 不可压缩多介质流动问题的数值模拟

不可压缩多介质流动问题的数值模拟

不可压缩多介质流动问题的数值模拟
不可压缩多介质流动问题的数值模拟

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3、4、3统一取弹性模量206000MPa 。泊松比约为0。3 ) (有限元材料库得参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000G P。) (HT200,弹性模量为135GP a,泊松比为0、27) (HT200 密度:7、2-7。3,弹性模量:70-80; 泊松比0。24—0、25 ;热膨胀系数 加热: 10冷却—8) (用灰铸铁 HT 200,根据资料可知其密度为7340kg /m3,弹性模量为120GPa ,泊松比为0。 25) (HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0。25,密度ρ=7800 k g/m 3) ( HT200 122 /0。 3 /7。 2 ×10 — 6) (材料H T200,密度为7。 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0。3) ( H T200,其弹性模量 E=140GPa,泊松 比μ=0、25,密度ρ=7.8×10 3 kg /m 3) (模具材料为灰口铸铁 HT200,C —3.47%,Si —2。5%,密度 7210 kg / m3 ,泊松比 0.27 、) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0。3,密度为ρ=7.8×10 3 k g.m —3 ) (模型材料H T200,其主要物理与机械性能参数如下:密度7。25 t /m 3 ,弹性模量126 GPa, 泊松比0。3) (垫板得材料采用 HT200, 材料相关参数查表可 得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比 μ= 0125, 密度ρ=712 ×10 - 9 t /m m 3) 表58—23,常用材料得弹性模量,泊松比与线胀系数

常用材料泊松比

常用材料泊松比

摩擦系数 ━━━━━━━━━━━━━━━━━━━━━━━━摩擦副材料摩擦系数μ 无润滑有润滑

──────────────────────── 钢-钢 0.15* 0.1-0.12* 0.1 0.05-0.1 钢-软钢 0.2 0.1-0.2 钢-不淬火的T8 0.15 0.03 钢-铸铁 0.2-0.3* 0.05-0.15 0.16-0.18 钢-黄铜 0.19 0.03 钢-青铜0.15-0.18 0.1-0.15* 0.07 钢-铝0.17 0.02 钢-轴承合金0.2 0.04 钢-夹布胶木0.22 - 钢-钢纸0.22 - 钢-冰0.027* - 0.014 石棉基材料-铸铁或钢 0.25-0.40 0.08-0.12 皮革-铸铁或钢 0.30-0.50 0.12-0.15 材料(硬木)-铸铁或钢 0.20-0.35 0.12-0.16 软木-铸铁或钢 0.30-0.50 0.15-0.25 钢纸-铸铁或钢 0.30-0.50 0.12-0.17 毛毡-铸铁或钢 0.22 0.18 软钢-铸铁 0.2*,0.18 0.05-0.15 软钢-青铜 0.2*,0.18 0.07-0.15 铸铁-铸铁 0.15 0.15-0.16 0.07-0.12 铸铁-青铜 0.28* 0.16* 0.15-0.21 0.07-0.15 铸铁-皮革0.55*,0.28 0.15*,0.12 铸铁-橡皮 0.8 0.5 皮革-木料0.4-0.5* - 0.03-0.05 铜-T8钢0.15 0.03 铜-铜0.20 - 黄铜-不淬火的T8钢 0.19 0.03 黄铜-淬火的T8钢 0.14 0.02 黄铜-黄铜 0.17 0.02 黄铜-钢 0.30 0.02 黄铜-硬橡胶 0.25 - 黄铜-石板 0.25 - 黄铜-绝缘物 0.27 - 青铜-不淬火的T8钢 0.16 - 青铜-黄铜 0.16 - 青铜-青铜 0.15-0.20 0.04-0.10 青铜-钢0.16 - 青铜-夹布胶木0.23 - 青铜-钢纸0.24 - 青铜-树脂0.21 - 青铜-硬橡胶0.36 - 青铜-石板0.33 - 青铜-绝缘物0.26 - 铝-不淬火的T8钢0.18 0.03 铝-淬火的T8钢0.17 0.02 铝-黄铜0.27 0.02 铝-青铜0.22 - 铝-钢0.30 0.02 铝-夹布胶木0.26 - 硅铝合金-夹布胶木 0.34 - 硅铝合金-钢纸 0.32 -

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。 第一节流体微团的运动分析 运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。 在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。 二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了 dy y u y ??,而 y u y ??就代表1=dy 时液体基体运动时,在单位时间内沿 y 轴方向的伸长率。 x u x ??,y u y ??,z u z ?? 三、角变形(角变形速度) d d d D C A B C D B A

dt y u dy dt dy y u d x x ??=???=α dt x u dx dt dx x u d y y ??=???=β θβθα+=-d d 2 βαθd d -= ∴ 角变形: ???? ????+??=+=-=x u y u d d d y x z 212βαθαθ ?? ? ????+??= x u z u z x y 21θ ???? ????+??=y u z u z y x 21θ 四、旋转(旋转角速度) ??? ? ????-??=-=y u x u x y z 21θω ??? ? ????-??=z u y u y z x 21ω 即, ?? ? ????-??=x u z u z x y 21ω z y x u u u z y x k j i ??????= 21ω 那么,代入欧拉加速度表达式,得: z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t x u u u u u u u u dt t y u u u u u u u u dt t z αθθωωαθθωωαθθωω??? = =++++-???? ????==++++-???? ????==++++-? ??? 各项含义: (1) 平移速度 (2)线变形运动所引起的速度增量

常见材料的泊松比

常见材料的泊松比、弹性模量 (2007-08-26 16:26:46) 标签: 分类: 收集了几种常见材料的泊松比,供大家作分析时的参考. 轧制黄铜:0.36 轧制青铜:0.32-0.35 硬铝合金:0.26-0.33 锰合金:0.25-0.30 混凝土:0.1-0.22 一般取1/6即0.167 锌:0.27 铅:0.42 橡胶:0.47 碳钢:0.24-0.29 铸钢:0.3 合金钢:0.25-0.3 轧制钢:0.31-0.34 某试验数据: 中强混凝土(比如:C40)可取0.24 高强混凝土(比如:C70)可取0.23 超高强混凝土(比如:C100)可取0.20 特种超强混凝土(比如:C150~C200)可取0.17

序号材料名称弹性模量 \E\Gpa 切变模量 \G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土14~23 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

常用材料的弹性模量及泊松比

常用材料的弹性模量及 泊松比 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

常用材料的弹性模量及泊松比 序号材料名称弹性模量\E\Gpa切变模量\G\Gpa泊松比\μ 1镍铬钢、合金钢20679.380.25~0.3 2碳钢196~206790.24~0.28 3铸钢172~202-0.3 4球墨铸铁140~15473~76- 5灰铸铁、白口铸铁113~157440.23~0.27 6冷拔纯铜12748- 7轧制磷青铜113410.32~0.35 8轧制纯铜108390.31~0.34 9轧制锰青铜108390.35 10铸铝青铜10341- 11冷拔黄铜89~9734~360.32~0.42 12轧制锌82310.27 13硬铝合金7026- 14轧制铝6825~260.32~0.36 15铅1770.42 16玻璃55220.25 17混凝土14~23 4.9~15.70.1~0.18 18纵纹木材9.8~120.5- 19横纹木材0.5~0.980.44~0.64- 20橡胶0.00784-0.47 21电木 1.96~2.940.69~2.060.35~0.38 22尼龙28.310.10.4 23可锻铸铁152-- 24拔制铝线69-- 25大理石55-- 26花岗石48-- 27石灰石41-- 28尼龙1010 1.07-- 29夹布酚醛塑料4~8.8-- 30石棉酚醛塑料 1.3-- 31高压聚乙烯0.15~0.25-- 32低压聚乙烯0.49~0.78-- 33聚丙烯 1.32~1.42-- 常用金属材料的密度表

流体力学 气体的一元流动

第8章 气体的一元流动 一、 学习的目的和任务 1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念 3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。 二、 重点、难点 1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算 由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。 气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。 8.1 气体的伯努利方程 在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即 22 1122 1222p u p u z z g g g g ρρ++=++ (8.1-1) 上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速 在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

形式,即 2 212 11222 2 u u p gz p gz ρρρρ++ =++ (8.1-2) 由于气体的密度一般都很小,在大多数情况下1gz ρ和2gz ρ很相近,故上式(8.1-2)就可以表示为 2 212 122 2 u u p p ρρ+ =+ (8.1-3) 前面已经提到,气体压缩性很大,在流动速度较快时,气体各点压强和密度都有很大的变化,式(8.1-3)就不能适用了。必须综合考虑热力学等知识,重新导出可压缩流体的伯努利方程,推导如下。 如图8-1所示,设一维稳定流动的气体,在上面任取一段微小长度ds ,两边气流断面1、2的断面面积、流速、压强、密度和温度分别为A 、u 、p 、ρ、T ;A dA +、 u du +、p dp +、d ρρ+、T dT +。 取流段1-2作为自由体,在时间dt 内,这段自由体所作的功为 ()()()W pAudt p dp A dA u du dt =-+++ (8.1-4) 根据恒流源的连续性方程式,有uA C ρ=(常数),所以上式(8.1-4)可写成 ()p p dp p p dp W Cdt Cdt Cdt d d ρ ρρρρρ ++= - =-++ 由于在微元内,可认为ρ和d ρρ+很相近,则上式可化简为 图8-1 ds 微元流段

常见材料的泊松比

常见材料的泊松比、弹性模量(2007-08-26 16:26:46) 转载▼ 标签: 分类:土木工程 知识/探索 收集了几种常见材料的泊松比,供大家作分析时的参考. 轧制黄铜:0.36 轧制青铜:0.32-0.35 硬铝合金:0.26-0.33 锰合金:0.25-0.30 混凝土:0.1-0.22 一般取1/6即0.167 锌:0.27 铅:0.42 橡胶:0.47 碳钢:0.24-0.29 铸钢:0.3 合金钢:0.25-0.3 轧制钢:0.31-0.34 某试验数据: 中强混凝土(比如:C40)可取0.24 高强混凝土(比如:C70)可取0.23

超高强混凝土(比如:C100)可取0.20 特种超强混凝土(比如:C150~C200)可取0.17 序号材料名称 弹性模量 \E\Gpa 切变模量 \G\Gpa 泊松比μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25

可压缩流动离散涡方法

万方数据

万方数据

万方数据

万方数据

可压缩流动离散涡方法 作者:吴文权, 居江宁, WU Wen-Quan, JU Jiang-Ning 作者单位:上海理工大学, 刊名: 工程热物理学报 英文刊名:JOURNAL OF ENGINEERING THERMOPHYSICS 年,卷(期):2001,22(2) 被引用次数:1次 参考文献(10条) 1.Sarpkaya T Computational Methods with Vortices-the 1988Freeman Scholar Lecture 1989 2.Wu wenquan;Sisto F Vortex Simulation ofUnsteady Stall in a Cascade with Piecewise Linearization andRecorrection Technique 1987 3.Sisto F;Wu Wenquan Computational Aerodynamics ofOscillating Cascades with the Evolution of Stall 1989(04) 4.Wenquan Wu;F Sisto Numerical Simulation forAero- elasticity in Turbomachines with Vortex Method 1994 5.吴文权旋涡的场特征与物质性-离散涡方法基础 1996(03) 6.叶春明;吴文权数值模拟园柱绕流旋涡运动及尾流不稳定性分析 1997(02) 7.吴文权;郭少为非定常空气流场中污染气体的对流与粘性扩散 1998(02) 8.吴文权;黄远东液固两相流动中旋涡对固体粒子运动影响的数值研究 1999(03) 9.Ju Jiangning;Wu Wenquan A New DiscreteVortex Method for Compressible Flow 1999 10.Yoshifumi Ogami;Hiroki Inaba ParticleMethod for Isentropic Compressible Flow Simulation 1996(03) 本文读者也读过(10条) 1.索奇峰二维钝体绕流计算的离散涡奇点分布法[学位论文]2002 2.居江宁.吴文权圆柱绕流远场涡结构的数值研究[会议论文]-2001 3.董婧.宗智.陈伟.李章锐.孙雷.DONG Jing.ZONG Zhi.CHEN Wei.LI ZhangRi.SUN Lin二维圆柱绕流的离散涡法计算[期刊论文]-中国海洋平台2011,26(1) 4.黄远东.吴文权.王远成.张红武.王光谦非定常不稳定气固两相流动的离散涡数值仿真Ⅲ.非定常不稳定气固两相流动中颗粒运动与旋涡的相关结构[期刊论文]-郑州工程学院学报2003,24(1) 5.居江宁.吴文权.JU Jiang-ning.WU Wen-quan圆柱绕流远场涡对的数值模拟[期刊论文]-上海理工大学学报2000,22(3) 6.徐晓亮.黄海明.章梓茂.XU Xiaoliang.HUANG Haiming.ZHANG Zimao两相流方柱绕流的离散涡模拟[期刊论文]-北京交通大学学报(自然科学版)2008,32(4) 7.董婧.宗智.孙雷.李章锐基于离散涡法的二维圆柱绕流数值模拟[会议论文]-2010 8.索奇峰.周述华二维钝体绕流的离散涡数值模拟[期刊论文]-四川建筑2002,22(4) 9.GAO Li-jin THE INVESTIGATION OF VORTEX METHOD AND ITS APPLICATION TO DRAG REDUCTION TECHNOLOGY[期刊论文]-水动力学研究与进展B辑2006,18(3) 10.刘中秋轴对称射流中拟序结构演变的数值模拟[学位论文]2001 引证文献(1条) 1.罗坤气固两相自由剪切流动的直接数值模拟和实验研究[学位论文]博士 2005

CFD可压缩及不可压缩流体的解释

1、可压缩/ 不可压缩流体的概念 不可压缩流体压缩性是流体的基本属性。任何流体都是可以压缩的,只不过可压缩的程度不同而已。液体的压缩性都很小,随着压强和温度的变化,液体的密度仅有微小的变化,在大多数情况下,可以忽略压缩性的影响,认为液体的密度是一个常数。dP/dT=0的流体称为不可压缩流体,而密度为常数的流体称为不可压均质流体。 气体的压缩性都很大。从热力学中可知,当温度不变时,完全气体的体积与压强成反比,压强增加一倍,体积减小为原来的一半;当压强不变时,温度升高1℃体积就比0℃时的体积膨胀1/273。所以,通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。我们把密度随温度和压强变化的流体称为可压缩流体。 2、特例 把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。例如,研究管道中水击和水下爆炸时,水的压强变化较大,而且变化过程非常迅速,这时水的密度变化就不可忽略,即要考虑水的压缩性,把水当作可压缩流体来处理。又如,在锅炉尾部烟道和通风管道中,气体在整个流动过程中,压强和温度的变化都很小,其密度变化很小,可作为不可压缩流体处理。再如,当气体对物体流动的相对速度比声速要小得多时,气体的密度变化也很小,可以近似地看成是常数,也可当作不可压缩流体处理。 3、维基百科中的解释 在连续介质力学里,不可压缩流是流速的散度等于零的流动,更精确地称为等容流。这理想流动可以用来简化理论分析。实际而言,所有的物质多多少少都是可压缩的。请注意“等容”这术语指的是流动性质,不是物质性质;意思是说,在某种状况,一个可压缩流体会有不可压缩流的动作。由于做了不可压缩这假设,物质流动的主导方程能够极大地简化。 4、应用 1、在一般情况下,液体的可压缩性可以忽略,建立不可压缩流体模型(ρ=常数)。 2、在常温常压下气体作低速流动时(v< 100 m/s ),气体密度的相对变化小于5%,也可按不可压缩流体处理(液体和气体压缩性比较)。当气体作高速流动时(V>100m/s ),要考虑其密度变化带来的影响,称之为可压缩流体。

(推荐)常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3.4.3统一取弹性模量206000MPa。泊松比约为0.3 )(有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.)(HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25 ;热膨胀系数加热: 10 冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础 1.已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。求在点(1,-1)处流体微团的线变形速度,角变 形速度和旋转角速度。 解:(1)线变形速度: y x x u x x +=??= 2θ 54+=??= xy y u y y θ 角变形速度:()x y y u x u x y z +=??? ? ????+??=222121ε 旋转角速度: ()x y x u x u x y z -=???? ????-??=222 1 21ω 将点(1,-1)代入可得流体微团的 1=x θ,1=y θ;23/z =ε;21/z =ω 2.已知有旋流动的速度场为322+=y u x ,x z u y 32+=,y x u z 32+=。试求旋转角速度,角变形速度和 涡线方程。 解:旋转角速度: 2 1 21=???? ????-??=z u y u y z x ω 2 121=??? ????-??=x u z u z x y ω 2 1 21=???? ????-??=y u x u x y z ω 角变形速度:2 5 21=???? ????+??=z u y u y z x ε 2 521=??? ????-??=x u z u z x y ε 25 21=??? ? ????-??=y u x u x y z ε 由 z y x dz dy dx ωωω= = 积分得涡线的方程为: 1c x y +=,2c x z +=

3.已知有旋流动的速度场为2 2z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。 解:流场的涡量为: 0=??-??= z u y u y z x Ω 2 2 z y cz x u z u z x y +=??-??= Ω 2 2z y cy y u x u x y z +-=??- ??= Ω 旋转角速度分别为: 0=x ω 2 2 2z y cz y += ω 2 22z y cy z +- =ω 则涡线的方程为: c dz dy z y +=? ?ωω 即 c y dz z dy +-=?? 可得涡线的方程为: c c y =+22 4.求沿封闭曲线 2 22b y x =+,0=z 的速度环量。(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3) 0=y u ,r A u =θ。其中A 为常数。 解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。 在z =0的平面上速度分布为: Ax u x =,0=y u 涡量分布为: 0=z Ω 根据斯托克斯定理得: 0==?z A z s dA ΩΓ (2)涡量分布为: A z -=Ω 根据斯托克斯定理得: 2b A dA z A z s πΩΓ-==?

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础 1.已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。求在点(1,-1)处流体微团的线变形速度,角变 形速度和旋转角速度。 解:(1)线变形速度:y x x u x x +=??=2θ 54+=??=xy y u y y θ 角变形速度:()x y y u x u x y z +=??? ? ????+??=222121ε 旋转角速度:()x y x u x u x y z -=???? ????-??=2221 21ω 将点(1,-1)代入可得流体微团的 1=x θ,1=y θ;23/z =ε;21/z =ω 2.已知有旋流动的速度场为322+=y u x ,x z u y 32+=,y x u z 32+=。试求旋转角速度,角变形速度和 涡线方程。 解:旋转角速度:21 21=???? ????-??=z u y u y z x ω 2 121=??? ????-??=x u z u z x y ω 2121=???? ????-??=y u x u x y z ω 角变形速度:2 521=???? ????+??=z u y u y z x ε 2 521=??? ????-??=x u z u z x y ε 2521=??? ? ????-??=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为: 1c x y +=,2c x z +=

3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。 解:流场的涡量为: 0=??-??=z u y u y z x Ω 22z y cz x u z u z x y +=??-??= Ω 22z y cy y u x u x y z +-=??-??=Ω 旋转角速度分别为:0=x ω 222z y cz y +=ω 222z y cy z +-=ω 则涡线的方程为:c dz dy z y +=??ωω 即c y dz z dy +-=?? 可得涡线的方程为: c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。其中A 为常数。 解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。 在z =0的平面上速度分布为: Ax u x =,0=y u 涡量分布为:0=z Ω 根据斯托克斯定理得:0==?z A z s dA ΩΓ (2)涡量分布为:A z -=Ω 根据斯托克斯定理得:2b A dA z A z s πΩΓ-==?

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━名称弹性模量E 切变模量G 泊松比μ GPa GPa ──────────────────镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39

第八章 粘性不可压缩流体的层流运动

8.6 不可压缩粘性流体在无穷长直圆管内流。由实验知,其璧面传热系数h 与圆管的直径D , 热传导系数k,流体的平均速度U ,密度ρ,粘度系数μ和流体比热c 有关,其中h 具有 h/D 的量纲。试由量纲分析证明 P r ). (R e ,f Nu = 式中k hD Nu =叫做努塞尔特(Nusselt )数,μ ρUD = Re 是雷诺数,k c μ= Pr 是 普朗特数。 解:由题意:,,,,,(][c U k D f h μρ= 此式中有n=6个物理量,其中含4=r 个基本量纲,按π定理可简化为2=-r n 个无量纲间的函数关系。 记质量,长度,时间和温度的基本量纲分别为K T L M ,,,写出各量的量纲如下: []L D =,[][]1 3 )/(--==K MLT LK W k ,[]1 -=LT U ,[]3-=ML ρ,1 1][--=T ML μ, []1 3 --=?? ? ???= K MT D k h ,1 22][-=K T L c 。 现取D ,k ,U ,ρ为基本量,将其余各量与这些基本量组合成无量纲量。 例如,设 ]ξ γ β α ρ][][][][U k D h =,列出此式两侧的量纲有: ξ γβαβ γ βξ β331 3 -++---+--=L K T M K MT 显然两侧的幂次应该分别相等:???????=-++-=--=--=+031331ξγβαβγβξβ解得??? ????===-=001 1ξγβα, 即[]][][1 k D h -=,于是k hD Nu = 构成一个无量纲量。 同理: ),,,,,(][1c U k D h f μρ=,取μ,,,k U D 为基本量,将其余各量与这些基本量组合成无量纲量。 设[]ξ γ β α μρ][][][][k U D =,列出此式两侧的量纲有: β βξ γβαξ β----+++-=K T L M ML r 333 两侧的幂次应该分别相等:???????=-=---=-++=+003331βγβξγβαξβ解得??? ????====100 0ξγβα,

常用材料的弹性模量及泊松比

常用材料的弹性模量及泊松比 数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土14~23 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - - 34 Q235钢筋210 35 HRB335级HRB400级 RRB400级 200 36 钢绞线195

不可压缩流体恒定流能量方程

(二)不可压缩流体恒定流能量方程 (伯诺里方程)实验及问题分析 一、实验目的要求 1.验证流体恒定总流的能量方程; 2.通过对动水力学诸多水力现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特性; 3.掌握流速、流量、压强等动水力学水力要素的实验量测技能。 二、实验装置 本实验的装置如图2.1所示。 图2—1自循环伯诺里方程实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计;8.滑动测量尺;9.测压管;10.实验管道;11.测压点;12.毕托管;13.流量调节阀; 说明 本仪器侧压管有两种: 1.毕业托管测压管(表2.1中标*的测压管),用以测读毕托管探头对准点的

总水头g u p Z H 22 ++='γ,须注意一般情况下H '与断面总水头 )2(2 g v p Z H ++=γ不同(因一般u υ≠),它的水头线只能定性表示总水头变化 趋势; 2.普通测压管(表2.1未标*者),用以定量量测测压管水头。 实验流量用阀13调节,流量由体积时间法(量筒、秒表另备)、重量时间法(电子称另备)或电测法测量(以下实验类同)。 三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i=2,3,……,n ) 22 1 111122i i i i i p a p a Z Z hw g g υυγγ-++=+++ 取,121===n αααΛ,选好基准面,从已设置的各断面的测压管中读出 γ p Z +值,测出通过管路的流量,即可计算出断面平均流速v 及g v 22 α,从而即可 得到各断面测管水头和总水头。 四、实验方法与步骤 1.熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。 2.打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。 3.打开阀13,观察思考1)测压管水头线和总水头线的变化趋势;2)位置水头、压强水头之间的相互关系;3)测点(2)、(3)测管水头同否?为什么?4)测点(12)、(13)测管水头是否不同?为什么?5)当流量增加或减少少测管水头如何变化? 4.调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管供演示用,不必测记读数)。 5.改变流量2次,重复上述测量。其中一次阀门开度大到使19号测管液面接近标尺零点。

流体力学第八章气体的一元流动

流体力学-第八章-气体的一元流动

————————————————————————————————作者:————————————————————————————————日期: 1

189 第8章 气体的一元流动 一、 学习的目的和任务 1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念 3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。 二、 重点、难点 1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算 由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。 气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。 8.1 气体的伯努利方程 在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即 22 1122 1222p u p u z z g g g g ρρ++=++ (8.1-1) 上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速 在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

不可压缩流体动力学基础习题答案

不可压缩流体动力学基础 1.已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。求在点(1,-1)处流体微团的线变形速度,角变形速度与 旋转角速度。 解:(1)线变形速度:y x x u x x +=??=2θ 54+=??=xy y u y y θ 角变形速度:()x y y u x u x y z +=??? ? ????+??=222121ε 旋转角速度:()x y x u x u x y z -=???? ????-??=2221 21ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω 2.已知有旋流动的速度场为322+=y u x ,x z u y 32+=,y x u z 32+=。试求旋转角速度,角变形速度与涡线方程。 解:旋转角速度:21 21=???? ????-??=z u y u y z x ω 2 121=??? ????-??=x u z u z x y ω 2121=???? ????-??=y u x u x y z ω 角变形速度:2 521=???? ????+??=z u y u y z x ε 2 521=??? ????-??=x u z u z x y ε 2521=??? ? ????-??=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为: 1c x y +=,2c x z +=

3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。 解:流场的涡量为: 0=??-?? =z u y u y z x Ω 22z y cz x u z u z x y +=??-??=Ω 22z y cy y u x u x y z +-=??-??=Ω 旋转角速度分别为:0=x ω 2 22z y cz y +=ω 222z y cy z +-=ω 则涡线的方程为:c dz dy z y += ??ωω 即c y dz z dy +-=?? 可得涡线的方程为:c c y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速 度环量。(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。其中A 为常数。 解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。 在z =0的平面上速度分布为: Ax u x =,0=y u 涡量分布为:0=z Ω 根据斯托克斯定理得:0==?z A z s dA ΩΓ (2)涡量分布为:A z -=Ω 根据斯托克斯定理得:2 b A dA z A z s πΩΓ-==?

相关主题
文本预览
相关文档 最新文档