当前位置:文档之家› 微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型 (1)

微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型 (1)

第29卷第15期农业工程学报 V ol.29 No.15

2013年8月Transactions of the Chinese Society of Agricultural Engineering Aug. 2013 263 微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型

和劲松1,祁凡雨1,叶章颖1,杨楠1,魏晓明2,朱松明1※(1. 浙江大学生物系统工程与食品科学学院,农业部设施农业装备与信息化重点实验室,杭州 310058;

2. 农业部规划设计研究院设施农业研究所,北京 100125)

摘要:为探明微酸性电解水(slightly acidic electrolyzed water, SAEW)在储藏及杀菌过程中理化指标的变化规律,将SAEW置于25、30、35、40、50℃环境温度下,测定其主要理化特性参数pH值、氧化还原电位(ORP),以及有效氯质量浓度(ACC)随储藏时间(0~12 d)的变化,同时也测定了SAEW对大肠杆菌(ATCC 25922)杀菌过程中ACC的变化规律。SAEW的pH值随储藏时间的延长而增大,ORP和ACC则减小,且储藏温度越高,各理化特性参数的变化幅度越大;在SAEW对大肠杆菌的杀菌过程中,ACC值不断降低。同时对储藏过程及杀菌过程中的有效氯衰减建立动力学模型,拟合后决定系数均达0.90以上。结果表明储藏温度和储藏时间对SAEW的理化特性参数有明显影响,且储藏过程与杀菌过程中的有效氯衰减符合一级动力学模型。相关研究结果为SAEW在农业、食品、医疗及环保等领域的应用提供了参考。

关键词:动力学,模型,储藏,微酸性电解水,有效氯,杀菌

doi:10.3969/j.issn.1002-6819.2013.15.032

中图分类号:S129 文献标志码:A 文章编号:1002-6819(2013)-15-0263-08

和劲松,祁凡雨,叶章颖,等. 微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型[J]. 农业工程学报,2013,29(15):263-270.

He Jinsong, Qi Fanyu, Ye Zhangying, et al. Decay kinetics model of available chlorine in slightly acidic electrolyzed water in storage and disinfection process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 263-270. (in Chinese with English abstract)

0 引 言

微酸性电解水(slightly acidic electrolyzed water, SAEW)是将稀盐溶液或稀盐酸溶液在电解装置中进行电解,得到pH值为5.0~6.5,有效氯质量浓度(available chlorine concentration, ACC)为10~30 mg/L的具有杀菌特性的功能水[1]。由于SAEW 能够有效杀灭多种微生物[2-5],并且与传统的强酸性电解水(strong acid electrolyzed water,pH值<2.7,ACC质量浓度=20~200 mg/L)以及弱酸性电解水(pH值=2.7-5.0,ACC质量浓度=20~60 mg/L)相比较,还具有高效、无残留、制取方便等特点[6-7],所以近年来SAEW被逐步应用于农业[8-11]、食品[12-14]、医疗及环保领域[15],并于2002年6月被日本厚生

收稿日期:2013-03-26 修订日期:2013-07-12

基金项目:浙江省重点科技创新团队计划(2011R09001);农业部公益性行业科研专项(201303091);浙江省公益性应用技术研究项目(2012C22075);浙江大学优秀青年教师资助计划(紫金计划)资助项目作者简介:和劲松(1970-),男,云南省丽江人,博士,从事农产品非热加工技术研究。杭州浙江大学生物系统工程与食品科学学院,农业部设施农业装备与信息化重点实验室,310058。

Email:hejinsong@https://www.doczj.com/doc/ac11562889.html,

※通信作者:朱松明(1962-),男,教授,从事设施农业工程方面的研究。杭州浙江大学生物系统工程与食品科学学院,农业部设施农业装备与信息化重点实验室,310058。Email:zhusm@https://www.doczj.com/doc/ac11562889.html,

劳动省认定为可使用的食品添加物[16-17]。

SAEW之所以能够高效杀菌,是由于其有效氯主要是以杀菌性能极高的HClO分子形式存在,研究表明HClO分子的杀菌效果是相同浓度ClO-的80倍左右[18]。然而SAEW的杀菌性能容易受时间、光照、空气及接触介质的影响[19],电解水有效氯浓度在储藏过程不断减小,其杀菌活性也会降低[20]。虽然对不同储藏条件下的各类电解水物理化学特性的研究较多[6-7],但对SAEW有效氯衰减动力学规律的研究却鲜有报道。

本研究对储藏过程以及微生物存在下SAEW 有效氯的衰减及其动力学规律进行探讨。

1 材料与方法

1.1 试验材料

NaCl,Na2S2O3,醋酸,淀粉,体积分数为36%~38% HCl均为分析纯,结晶紫中性红胆盐琼脂,均购于国药集团化学试剂有限公司。

1.2 试验方法

1.2.1 SAEW的制备及其理化指标的测定

配制9%(体积分数)盐酸溶液为辅液, 以自来水为原水,用“水神”微酸性次氯酸水生成机(HD-240L,旺旺集团,上海)电解生成。设备运行

·农产品加工工程·

农业工程学报 2013年264

30 min后,采集SAEW用于试验,并在制备后1 h 内使用。

电解水样品的pH值和氧化还原电位(oxidation- reduction potential,ORP)采用Seven-Multi型pH/电导率/离子综合测试仪(梅特勒-托利多仪器有限公司,上海)进行测定,ACC采用碘量法进行测定[21]。

1.2.2 菌悬液的制备

将E.coli (ATCC 25922)冻干粉活化,置于37℃恒温振荡器(WH-861,华利达实验设备有限公司,太仓市)中培养24 h,放于4℃冰箱中保存。菌种每2周转接到新的培养基中,以保持其活性。每次使用菌种时用接种环取一环菌液接种于新的肉汤培养中,置于恒温振荡器中,在37℃条件下培养24 h,连续做3次,使菌液中活菌数量达到108 cfu/mL。初步制成的菌悬液,先用细菌浓度比浊测定法测其含菌浓度,然后以稀释液稀释至所需使用的浓度[22]。比浊测定法中的生长曲线如图1所示。

图1 E.coli生长曲线

Fig.1 Growth curve of E.coli

1.2.3 储藏试验及杀菌试验

储藏试验:取新制备SAEW,分装在100 mL 透明和棕色的血清瓶中,瓶口不封,放入恒温生化培养箱(SPX-450,海曙赛福试验仪器厂,宁波)中,温度分别设置为25、30、35、40、50℃,每天定时取电解水样品,分别测定其ACC、pH值、ORP,连续12 d。每天08:00-20:00时储藏环境有灯光,培养箱内光照度为(45±4)lux,其余时间储藏环境无灯光,培养箱内光照度为1 lux以下。

杀菌试验:将菌悬液浓度调至108cfu/mL,取10 mL菌液与40 mL电解水混合均匀,置于25℃环境下,经1、3、5、10、15、20、25 min后,测定其ACC。

1.2.4 数据处理

应用Origin软件(Ver.8,Origin Lab)进行拟合分析,每组试验重复3次,结果以平均值±标准差表示。

2 结果与分析

2.1 不同温度储藏条件下SAEW理化参数的变化 2.1.1 有效氯的变化

设置环境温度25、30、35、40、50℃,不同温度储藏条件下,透明瓶与棕色瓶储藏的有效氯变化如图2所示。

注:初始pH值=6.06; 初始ORP=821mV

Note: initial pH value=6.06; initial ORP=821 mV

图2 不同温度储藏条件下SAEW的有效氯的变化Fig.2 Variations of ACC of SAEW under different stored

temperatures

由图2可知,随着储藏时间的延长,SAEW的ACC在不断降低,而随着储藏环境温度的升高,ACC的衰减幅度增大。透明瓶储藏条件下,SAEW 储藏12d时,25℃下ACC从20.53 mg/L降至5.06 mg/L,40℃下降至3.25 mg/L,50℃下ACC已低于0.1 mg/L(图2a)。棕色瓶储藏条件下,SAEW 储藏12 d时,50℃下ACC已为0(图2b)。显著性分析表明,在本试验中,储藏环境温度每增加5℃,ACC有显著性的降低(p<0.05),同时对透明瓶与棕色瓶储藏的SAEW的ACC进行比较,未见显著性差异(p>0.05)。

第15期和劲松等:微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型265

Cui等[23]研究发现pH值为3.01及ACC为25 mg/L的弱酸性电解水在20℃条件下密闭遮光保存30 d,ACC减少了约80%,Tatsumi[24]报导了pH 值为2.3及ACC为39.90 mg/L的强酸性电解水在4℃条件下保存30 d,其ACC降至5.90 mg/L,而在27℃条件下保存30 d后降为0。Rahman等[25]的研究发现ACC为10 mg/L的低浓度电解水(pH值=6.8~7.4),在无光室温条件下,敞口储藏7d后ACC下降为0,而密闭储藏7d降为5 mg/L,21d 后ACC降为0。综上可见,SAEW与其他种类的酸性电解水相似,ACC随储藏时间的增加而减小,不过同时本研究表明,在与大气接触条件下,光照变化对储藏过程中ACC的衰减并无显著影响(p>0.05)。ACC是SAEW杀菌的主要活性成分[26],因此有必要对其衰减规律进行深入探讨。

2.1.2 pH值的变化

设置环境温度25、30、35、40、50℃,在不同温度储藏条件下,透明瓶与棕色瓶储藏的pH值变化如图3所示。

注:初始ACC=20.53 mg/L; 初始ORP=821 mV

Note: initial ACC=20.53mg/L; initial ORP=821 mV

图3 不同储藏温度下SAEW的pH值的变化

Fig.3 Variations of pH values of SAEW under different stored

temperatures

储藏过程中SAEW的pH值呈上升趋势,且储藏环境温度越高,pH值上升越大(图3)。25和50℃条件下,透明瓶储藏的SAEW,其pH值在12d 从6.06分别上升到7.45和8.11,升幅达23%和34%(图3a)。棕色瓶储藏的SAEW,其pH值在12d 内从6.06分别上升到了7.38和8.03,升幅达22%和33%(图3b)。对透明瓶与棕色瓶储藏的SAEW 进行比较,ACC未见显著性差异(p>0.05)。

谢军等[27]研究了强酸性电解水(pH值 2.47),以及强酸性电解水与碱性电解水混合形成的中性电解水(pH值7.0)的储藏特性,结果表明2种电解水的pH值均随保存时间的延长而上升,这与Cui[23]和Tatsumi[24]关于弱酸性和强酸性电解水的报导一致。pH值上升会影响SAEW中高效杀菌成分HClO的含量,其杀菌能力也逐渐降低[28]。所以有必要对SAEW在储藏和杀菌过程中ACC衰减的动力学模型进行研究。

2.1.3 ORP的变化

设置环境温度25、30、35、40、50℃,在不同温度储藏条件下,透明瓶储藏与棕色瓶储藏的ORP 变化如图4所示。

注:初始pH值=6.06; 初始ACC=20.53 mg/L

Note: initial pH value=6.06; initial ACC=20.53 mg/L

图4不同储藏温度下SAEW的ORP的变化Fig.4 Variations of ORP of SAEW under different stored

temperatures

农业工程学报 2013年266

SAEW的ORP在储藏过程中呈下降趋势,且储藏环境温度越高,下降越快(图4)。透明瓶储藏的SAEW,在25℃条件下,由821 mV降到641 mV,降幅达22%,在50℃条件下,则降幅达29%,棕色瓶储藏的SAEW,在25和50℃条件下,分别降到了652和583 mV,降幅达21%和29%(图4)。对透明瓶与棕色瓶储藏的SAEW进行比较,ORP未见显著性差异(p>0.05)。

Tstsumi等[24]对强酸性电解水的研究结果显示ORP为1 180 mV的强酸性电解水在4℃条件下保存30 d,ORP没有明显变化,而在27℃条件下保存30 d,其ORP减至680 mV,ORP与强酸性电解水的杀菌能力具有一定的相关性,当ORP降到500 mV以下时,其杀菌能力大大降低。Rahman等[25]研究了低浓度酸性电解水在保存期间的稳定性,其试验结果表明开口保存28 d,ORP从700 mV降到500 mV。综上可见,SAEW在储藏过程中ORP的变化与其他类型酸性电解水类似。

2.1.4 杀菌过程中的ACC变化

为探讨不同初始有效氯浓度下SAEW杀菌过程中ACC的变化,将ACC为31.41 mg/L的SAEW 与原水分别按2∶3、3∶2、4∶1的体积比进行稀释,然后与浓度为108 cfu/mL的大肠杆菌液按体积比4∶1混合,经测定混合液初始有效氯浓度分别为9.91、15.93、19.82以及25.13 mg/L。

图5 不同初始有效氯浓度下杀菌过程中的有效氯变化

Fig.5 Variations of ACC at different initial ACC during

sterilization process

如图5所示4种不同初始浓度的SAEW,随着时间的延长,其ACC均在不断的降低,并且相同初始浓度下,杀菌过程中ACC的衰减比非杀菌过程中ACC的衰减快,如初始ACC为25.13 mg/L的SAEW,杀菌25 min后,其ACC降为15.05 mg/L,而非杀菌过程则略有减小。以上结果表明,杀菌过程中需要消耗有效氯成分。

2.2 ACC衰减过程的动力学研究

2.2.1 ACC衰减的动力学模型

为进一步探明储藏过程与杀菌过程中,ACC衰减规律的差异性,本文对储藏过程与杀菌过程中,ACC衰减的动力学规律进行了探讨。

根据化学反应动力学的一般方程,储藏过程和杀菌过程中,ACC衰减可按下式处理:

n

dC

k C

dt

=?(1)式中,C是有效氯浓度,mg/L,k'是衰减反应速率参数,n是反应级数。本研究中,n分别取0,1,2,即采用零级、一级、与二级动力学方程进行拟合分析。相应动力学方程为:

n C C k t′

==?(2)

1exp()

n C C k t′′

==?(3)

00

2/(1)

n C C C k t′′

==+(4)式中,C0是初始有效氯浓度,mg/L。进一步根据描述化学反应动力学参数与温度关系的阿伦尼乌斯方程,储藏温度对ACC衰减动力学参数遵循下式:

ln/ln

a

k E RT A

′=?+(5)式中,A为指前因子,E a为反应活化能,J/mol; R 为气体常数,K·mol; T为绝对温度,K。

通过对ln k′与 1/T的线性拟合,可求得ACC 衰减的反应活化能E a和指前因子A。

2.2.2 储存过程中ACC衰减的动力学分析

根据图2所示结果,分别利用式(2)~式(4),对透明瓶和棕色瓶储藏条件下,有效氯的衰减过程进行拟合分析,结果表明n=1,即采用一级动力学方程时,拟合结果具有较好相关性,决定系数R2均大于0.96(表1)。

根据拟合结果(图6),可求出各温度条件下的反应动力学参数k′。由表1可知,随储藏温度增加,ACC衰减反应的速率参数呈增加趋势,透明瓶与棕色瓶相比较,除25℃条件外,k′值无显著差异(p>0.05)。

根据式(5),可求出透明瓶与棕色瓶储藏条件下,ACC衰减反应的活化能分别为18.33 (R2=0.92)和18.47 kJ/mol (R2=0.78),指前因子均为403.43。根据式(5)可以计算求出45℃及透明瓶储藏条件下ACC衰减的动力学参数为0.167,通过试验测得该条件下动力学参数为0.160,两者较为吻合。

第15期和劲松等:微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型

267

图6 SAEW储藏过程中ACC衰减动力学拟合Fig.6 Dissipation dynamics fitting of ACC during SAEW

storage

表1 SAEW储藏过程中ACC衰减动力学参数Table 1 Dissipation dynamics parameters of ACC during

SAEW storage

透明瓶Transparent bottle

棕色瓶Brown bottle

温度Temperature

/℃k′/s-1决定系数

R2k′/s-1决定系数

R2

25 0.114±0.049 0.99 0.108±0.044 0.99

30 0.123±0.071 0.98 0.120±0.038 0.99

35 0.138±0.037 0.99 0.127±0.063 0.99

40 0.148±0.053 0.99 0.133±0.081 0.98

50 0.187±0.105 0.96 0.185±0.102 0.97

较高的活化能代表对温度的依赖较高[29],透明

瓶与棕色瓶储藏下,活化能无显著差异(p>0.05),

说明较高温度下,两种储藏方式对SAEW中ACC

衰减的影响差异不大。

周建华等[30]对配水管网中自来水余氯衰减的

动力学模型进行了探讨,发现温度影响能够用一级

动力学进行较好近似。王云等[18]也发现游离氯和一

氯胺等消毒剂的衰减符合一级动力学模型。

2.2.3 杀菌过程中ACC衰减的动力学分析

根据图5所示结果,分别利用式(2)~式(4),对杀菌过程中ACC的衰减进行拟合分析(图7),

结果表明n取1时,拟合结果具有较好相关性,决

定系数R2均大于0.94(表2)。通过对SAEW杀

菌过程中ACC的动力学拟合分析,可求得衰减速

率参数(表2)。

图7 杀菌过程中的有效氯动力学拟合

Fig.7 Dissipation dynamics fitting of ACC during

sterilization

表2 杀菌过程中的有效氯动力学参数

Table 2 Dissipation dynamics parameters of ACC during

sterilization

初始有效氯浓度

Initial Available Chlorine

Concentration/(mg·L-1)

k′/s-1决定系数

R2

9.912 0.043±0.005

0.94

15.93 0.037±0.003

0.96

19.82 0.027±0.002

0.99

25.13 0.024±0.005

0.94

由表1与表2可知,相同温度与初始ACC条

件下,杀菌过程中的ACC的衰减动力学参数远小

于储藏过程中的衰减动力学参数,即杀菌过程中,

ACC衰减比储藏过程中快。该结果表明,ACC是

杀菌作用的主要因素。王云等[31]研究了游离氯和一

氯胺对大肠杆菌的灭活作用,并就其动力学规律进

行探讨,结果表明,杀菌动力学过程与有效氯的减

小密切相关。

3 结 论

1)随储藏时间增加,微酸性电解水SAEW的

有效氯质量浓度ACC降低,pH值升高,氧化还

原点位ORP降低,且储藏环境温度越高,变化幅

度越大,储藏12 d时,25℃下ACC从20.53分别

降至5.06(透明瓶)与5.10 mg/L(棕色瓶),而

50℃下则分别低于0.1 mg/L(透明瓶)或为0(棕

色瓶)。

2)杀菌过程中ACC衰减较储藏过程迅速,25℃

与ACC=25.13 mg/L的条件下,杀菌25 min后

农业工程学报 2013年268

SAEW的 ACC降为15.05 mg/L,而储藏则需要5 d 以上。

3)储藏过程与杀菌过程,SAEW的有效氯衰减遵循一级动力学模型,且储藏过程的衰减动力学参数大于杀菌过程的衰减动力学参数,25℃与ACC=25.13 mg/L的条件下,储藏过程与杀菌过程的衰减反应速率参数k′分别为(0.108±0.044) s-1与(0.043±0.005) s-1。

[参 考 文 献]

[1] 堀田国元,郭永明. 酸性电解水的基础、应用及发展

动向[J]. 中国护理管理,2008,8(4):7-11.

Horita Kunishimoto, Guo Y M. Foundation, application

and development prospects of acidic electrolyzed water[J]. Chinese Nursing, 2008, 8(4): 7-11. (in

Chinese with English abstract)

[2] 黄吉诚. 电解氧化还原电位水的杀霉效果观察[J]. 中

国食品卫生杂志,1998,10(6):12-21.

Huang Jicheng. Observation on sterilization of electrolyzed oxidation reduction potential water to mould[J]. Chinese Food Health Magazine, 1998, 10(6):

12-21. (in Chinese with English abstract)

[3] 李盛,徐庆华,谢慧娟,等. 高氧化还原电位水杀灭

微生物效果的试验观察[J]. 中国消毒学杂志,2000,

17(1):9-11.

Li Sheng, Xu Qinghua, Xie Huijuan, et al. Observation

on sterilization of high oxidation reduction potential

electrolyzed water[J]. Chinese Journal of Disinfection,

2000, 17(1): 9-11. (in Chinese with English abstract) [4] Kim C, Hung Y C, Robert E. B. Efficacy of electrolyzed

oxidizing (EO) and chemically modified water on

different types of foodborne pathogens[J]. International

Journal of Food Microbiology, 2000, 61(2/3): 199-207 [5] Abdulsudi I Z, Yoshinori K, Adili T, et al. In vitro

inactivation of Escherichia coli, Staphylococcus aureus

and Salmonella spp. using slightly acidic electrolyzed

water[J]. Journal of Bioscience and Bioengineering, 2010,

110(3): 308-313.

[6] Huang Y R, Hung Y C, Hsu S Y, et al. Application of

electrolyzed water in the food industry[J]. Food Control,

2008, 19(4): 329-345.

[7] Park C M, Hung Y C, Lin C S, et al. Efficacy of

electrolyzed water in inactivating Salmonella enteritidis

and listeria monocytogenes on shell eggs[J]. Journal of

Food Protection, 2005, 68(5): 986-990.

[8] Susan M, William B III. Efficacy of electrolyzed

oxidizing water against Listeria monocytogenes and

Morganella morganii on conveyor belt and raw fish

surfaces[J]. Food Control, 2012, 24(1-2): 214-219.

[9] 郑炜超,李保明,尚宇超,等. 蛋种鸡场中性电解水

带鸡喷雾消毒试验研究[J]. 农业工程学报,2010,

26(9):270-273.

Zheng Weichao, Li Baoming, Shang Yuchao, et al.

Experimental study on spraying disinfection with neutral

electrolyzed water in a layer breeding farm[J].

Transactions of the Chinese Society of Agricultural

Engineering (Transactions of the CSAE), 2010, 26(9):

270-273. (in Chinese with English abstract)

[10] 曹薇,张春玲,李保明. 喷洒微酸性电解水对荞麦芽

菜生长的影响[J]. 农业工程学报,2012,28(9):159-

164.

Cao Wei, Zhang Chunling, Li Baoming. Effect of

spraying subacidic electrolyzed water on buckwheat

sprouts growth[J]. Transactions of the Chinese Society of

Agricultural Engineering (Transactions of the CSAE),

2012, 28(9): 159-164. (in Chinese with English abstract)

[11] 朱志伟,李保明,李永玉,等. 中性电解水对鸡蛋表

面的清洗灭菌效果[J]. 农业工程学报,2010,26(3):

358-362.

Zhu Zhiwei, Li Baoming, Li Yongyu, et al. Disinfection

effect of neutral electrolyzed water for shell egg washing[J]. Transactions of the Chinese Society of

Agricultural Engineering (Transactions of the CSAE),

2010, 26(3): 358-362. (in Chinese with English abstract)

[12] Abigail M, Jaesung L, Melvin A P. Efficacy of neutral

electrolyzed water for sanitization of cutting boards used

in the preparation of foods[J]. Journal of Food Engineering, 2012, 10(4): 541-546.

[13] 周然,刘源,谢晶,等. 电解水对冷藏河豚鱼肉质构

及品质变化的影响[J]. 农业工程学报,2011,27(10):

365-369.

Zhou Ran, Liu Yuan, Xie Jing, et al. Effects of electrolyzed water on texture and quality of obscure

puffer fish (Takifugu obscurus) during cold storage[J].

Transactions of the Chinese Society of Agricultural

Engineering (Transactions of the CSAE), 2011, 27(10):

365-369. (in Chinese with English abstract)

[14] 周然,谢晶,高启耀,等. 微酸性电解水结合壳聚糖

对水蜜桃护色保鲜的效果[J]. 农业工程学报,2012,

28(18):281-285.

Zhou Ran, Xie Jing, Gao Qiyao, et al. Effects of slightly

第15期和劲松等:微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型269

acidic electrolyzed water and carboxymethyl chitosan

preservative on flesh discoloration of peaches[J].

Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18):

281-285. (in Chinese with English abstract)

[15] Yu Q, Yasumitsu A, Satoshi K, et al. Cleaning efficacy

and dentin micro-hardness after root canal irrigation with

a strong acid electrolytic water[J]. Journal of Endodontics,

2006, 32(11): 1102-1106.

[16] 官報第3378号, 厚生労働省令第75号および厚生労働

省告示第212号[S].

[17] 厚生労働省医薬局食品保健部基準課. 新しい殺菌

課?酸性電解水[J].食と健康,2002, 544:12-17. [18] Anonymous. Principle of formation of electrolytic

water[M]. Sakae, Toyoake, Aichi, Japan: Hoshizaki Electric Co. Ltd, 1997.

[19] Koseki S, Itoh K. Prediction of microbial growth in

fresh-cut begetables treated with acid electrolyzed water

during storage under various temperature conditions[J].

Journal of Food Protection, 2001, 64(12): 1935-1942. [20] Horiba N, Hiratsuka K, Onoe T, et al. Bactericidal effect

of electrolyzed neutral water on bacteria isolated from

infected root canals[J]. Oral Surgery, Oral Medicine, Oral

Pathology, Oral Radiology, and Endodontics. 1999, 87(1):

83-87.

[21] 张铁垣. 化验员手册[M]. 第2版. 北京:中国电力出

版社,1996: 133-350.

[22] 朱瑞. 脉冲式超高压处理对食品的杀菌和贮藏期品质

的影响[D]. 杭州:浙江大学,2012.

Zhu Rui. Effects of Pulse Mode High Pressure Processing

on Sterilization and Qualities of Food During Storage[D].

Hangzhou: Zhejiang University, 2012. (in Chinese with

English abstract)

[23] Cui X, Shang Y, Shi Z, et al. Physicochemical properties

and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions[J].

Journal of Food Engineering, 2009, 91(4): 582-586. [24] Tatsumi Y, Umimoto K, Kumayama Y, et al. Effect of

long-term storage on bactericidal activity of strong acidic

electrolyzed water[C]//Springer, 2006: 3733-3736. [25] Rahman S M E, Park J H, Wang J, et al. Stability of low

concentration electrolyzed water and its sanitization

potential against foodborne pathogens[J]. Journal of Food

Engineering, 2012, 113(4): 548-553.

[26] Kiura H, Sano K, Shinichi M, et al. Bactericidal activity

of electrolyzed acid water from solution containing

sodium chloride at low concentration, in comparison with

that at high concentration[J]. Journal of Microbiological

Methods, 2002, 49(3): 285-293.

[27] 谢军,孙晓红,潘迎捷,等. 电解水的保存特性及杀

菌效果[J]. 江苏农业学报,2010,26(5):1053-1059.

Xie Jun, Sun Xiaohong, Pan Yingjie, et al.

Physicochemical properties of electrolyzed water during

storage and its bactericidal effect on shrimp[J]. Jiangsu

Journal of Agricultural Science, 2010, 26(5): 1053-1059.

(in Chinese with English abstract)

[28] 章恩明,杜林,黄鸿志. 电解水杀菌技术及其应用[J].

食品与机械,1999(3):30-31.

Zhang Enming, Du Lin, Huang Hongzhi. Electrolyzed

water sterilization technology and its application[J]. Food

and Mechanical, 1999(3): 30-31. (in Chinese with

English abstract)

[29] Polydera A C, Stofors N G, Taoukis P S. Quality

degradation kinetics of pasteurized and high pressure

processed fresh Navel orange juice: Nutritional parameters and shelf life[J]. Innovative Food Science and

Emerging Technologies, 2005, 6(1): 1-9.

[30] 周建华,赵洪宾,薛罡. 配水管网中与有机物反应的

余氯衰减动力学模型[J]. 环境科学,2003,24(3):45

-49.

Zhou Jianhua, Zhao Hongbin, Xue Gang. A kinetic model

of chlorine decay reacting with organics in water

distribution systems[J]. Environmental Science, 2003,

24(3): 45-49. (in Chinese with English abstract)

[31] 王云,鲁巍,张晓健. 氯及氯胺灭活大肠杆菌的消毒

动力学模型[J]. 环境科学,2005,26(5):100-104.

Wang Yun, Lu Wei, Zhang Xiaojian. Modeling of

inactivation kinetics of E.coli with free chlorine and

monochloramine[J]. Environmental Science, 2005, 26(5):

100-104. (in Chinese with English abstract)

农业工程学报 2013年270

Decay kinetics model of available chlorine in slightly acidic electrolyzed water in storage and disinfection process He Jinsong1, Qi Fanyu1, Ye Zhangying1, Yang Nan1, Wei Xiaoming2, Zhu Songming1※

(1. Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, College of

Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;

2. Institute of Facility Agriculture, Chinese Academy of Agricultural Engineering, Beijing 100125, China) Abstract: Slightly acidic electrolyzed water (SAEW) with pH 5.0–6.5 is produced by electrolysis of dilute hydrochloric acid or salt solution in a chamber without membrane.SAEW can effectively kill various pathogenic bacteria as one of the most potential green disinfectants. However, SAEW is susceptible to be exposed to time, air, and illumination etc. To study SAEW during storage and disinfection, the variations of pH value, oxidation-reduction potential (ORP) and available chlorine concentration (ACC) were analyzed under different storage temperatures (25°C, 30°C, 35°C, 40°C, and 50°C) for 12 days. Furthermore, variations in ACC during Escherichia coli (ATCC 25922) disinfection were investigated.

The results showed that the pH increased, but the ORP and ACC decreased during storage. When SAEW was stored in a transparent bottle at 25°C for 12 days, the ACC of SAEW was decreased from 20.53mg/L to 5.06mg/L, and the ORP of SAEW was also decreased from 821mv to 641 mv, while pH was increased from 6.06 to 7.45 in the same condition. Variations of ACC, ORP, and pH in a brown bottle under same stored temperatures had a similar tendency. When SAEW was stored in a brown bottle at 25°C for 12days, the ACC of SAEW was also decreased and the ORP of SAEW was decreased from 821mv to 652mv, while pH was increased from 6.06 to 7.38. The higher the stored temperature was, the quicker ACC, ORP, and pH of SAEW decayed during storage. SAEW was stored in a transparent bottle at 50°C for 12days, and the ACC of SAEW was decreased from 20.53mg/L to 0.10mg/L and the ORP from 821mv to 641mv, while pH was increased from 6.06 to 8.11 in the same condition. Similarly, when SAEW was stored in a brown bottle at 50°C for 12 days, the ACC of SAEW was decreased from 20.53mg/L to 0 and the ORP from 821mv to 583mv, while pH was increased from 6.06 to 8.03 in same condition. The same tendency of ACC was also found during E. coli disinfection, but the decay of ACC was quicker than it was presented during storage. The ACC of SAEW was reduced by 15.05 mg/L after SAEW with ACC of 25.13 mg/L was used to disinfect for 25 min., compared with the above storage condition for five days.

The decay kinetics models of the ACC in SAEW during storage and disinfection were established and the correlation coefficients were above 0.90. The temperature and duration of storage and disinfection had significant impacts on the physicochemical properties of SAEW. As the stored time prolonged, the ACC and ORP of SAEW was decreased while pH increased. The higher the stored temperature was, the larger the variation of amplitude of ACC, ORP, and pH of SAEW. The decay of ACC was quicker during disinfection than it was presented during storage and active chlorine needed to be expended during the disinfection process. The decay of ACC followed first-order kinetics during the storage and disinfection process, and the values of the kinetic parameters during the storage process were higher than it were presented during the disinfection process, and the value of k′ of storage and disinfection was 0.108 (±0.044) and 0.043 (±0.005) respectively under the condition of ACC of 25.13 mg/L at 25℃.

Key words:kinetics, models, storage, slightly acidic electrolyzed water, available chlorine, disinfection

(责任编辑:郭海枫)

微酸性电解水储藏和杀菌过程中有效氯衰减的动力学模型

作者:和劲松, 祁凡雨, 叶章颖, 杨楠, 魏晓明, 朱松明, He Jinsong, Qi Fanyu, Ye Zhangying,Yang Nan, Wei Xiaoming, Zhu Songming

作者单位:和劲松,祁凡雨,叶章颖,杨楠,朱松明,He Jinsong,Qi Fanyu,Ye Zhangying,Yang Nan,Zhu Songming(浙江大学生物系统工程与食品科学学院,农业部设施农业装备与信息化重点实验室,杭州 310058), 魏晓明,Wei

Xiaoming(农业部规划设计研究院设施农业研究所,北京,100125)

刊名:

农业工程学报

英文刊名:Transactions of the Chinese Society of Agricultural Engineering

年,卷(期):2013(15)

本文链接:https://www.doczj.com/doc/ac11562889.html,/Periodical_nygcxb201315032.aspx

相关主题
文本预览
相关文档 最新文档