当前位置:文档之家› 3.1.5空间向量的数量积 教案1 2017-2018学年高中数学选修2-1 苏教版

3.1.5空间向量的数量积 教案1 2017-2018学年高中数学选修2-1 苏教版

3.1.5空间向量的数量积 教案1 2017-2018学年高中数学选修2-1 苏教版
3.1.5空间向量的数量积 教案1 2017-2018学年高中数学选修2-1 苏教版

3.1.5空间向量的数量积

●三维目标

1.知识与技能

(1) 掌握空间向量的定义及数量积公式.(2)掌握空间向量的数量积的坐标运算.(3)掌握向量垂直的充要条件.

(4)掌握向量模长及夹角公式.

2.过程与方法

(1)通过比较平面向量、空间向量的数量积运算,培养学生观察、分析、类比转化的能力.

(2) 通过向量数量积的运算过程,培养学生基本的运算能力.

(3)通过向量数量积的应用,学会向量法探究空间几何图形,将几何问题代数化,提高学生分析问题、解决问题的能力.

3.情感、态度与价值观

(1)通过师生的合作与交流,体现教师为主导、学生为主体的教学模式.(2)通过空间向量在立体几何中的应用,提高学生的空间想象力,培养学生探索精神和创新意识,让学生感受数学,体会数学的魅力,激发学生学数学、用数学的热情.

●重点难点

重点:空间向量数量积公式及其应用.

难点:如何将几何问题等价转化为向量问题;在此基础上,通过向量运算解决几何问题.

(教师用书独具)

●教学建议

向量作为一种基本工具,在数学解题中有着极其重要的地位和作用.利用向量知识,可以解决不少复杂的的代数几何问题.通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了

新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.本节课围绕“提出问题——分析问题——解决问题——应用拓展”的教学模式,让学生从几何体直观感知空间直线所成的角度,在熟练掌握平面向量数量积的基础上理解空间向量数量积的计算公式.这样在教师的引导下学生很容易得知空间向量也是在组成新的平面后进行运算.顺势直接对比分析与前面所学的平面内数量积运算的异同点,并在后续通过学生的自主探究使学生获得知识、形成能力.

●教学流程

回顾平面向量数量积的定义及公式,类比得出空间向量的夹角定义,得出空间向量的数量积的定义、运算公式.要注意类比思维的应用,注意平面向量与空间向量的数量积定义的区别与联系.?回顾平面向量数量积的运算性质及运算律,类比得出空间向量的运算性质及运算律.注意向量运算与实数运算的区别,注意数量积运算与数乘运算的区别.数量积的运算性质中蕴含了模与夹角的计算方法,应得出相应公式.?空间向量的数量积的坐标表示.在空间直角坐标系中,得出空间向量数量积的坐标公式,从而得出向量垂直的坐标条件,向量夹角与模的坐标公式,从而简化相应计算,?通过例1及变式训练,使学生掌握求空间向量数量积的方法与步骤,掌握基向量法与坐标法两种形式的运算规律,比较两种运算方法的优劣.?通过例2及变式训练,使学生掌握空间两向量夹角的求法,一是利用基向量,二是利用坐标法,坐标法更接近实数运算,更易操作.?通过例3及变式训练,使学生会利用数量积运算求空间两点间的距离,及求向量的模,关键是用基向量或坐标表示向量.?通过例4及变式训练,使学生会利用向量垂直的两个充要条件证明两条直线垂直,从而利用向量法证明空间垂直.?通过易错易误辨析,体会向量夹角与数量积的关系,向量夹角的大小决定数量积的正负,向量夹角是共起点时两射线的夹角,弄错就会导致数量积反号.?归纳整理,进行课堂小结,整体认识本节课所学知识.?完成当堂双基达标,巩固基本知识,形成基本能

.

【问题导思】

a ,

b 与 b ,a 相等吗? a ,b 与 a ,-b 呢? 【提示】 a ,b = b ,a , a ,b =π- a ,-b .

a ,

b 是空间两个非零向量,过空间任意一点O ,作OA →=a ,OB →

=b ,则∠AOB 叫做向量a 与向量b 的夹角.记法:向量a 与向量b 的夹角,记作〈a ,b 〉, a ,b 的范围是[0,π],如果〈a ,b 〉=π

2

,则称a 与b 互相垂直,记作a ⊥b .

设a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.

我们规定:零向量与任一向量的数量积为0. cos a ,b =a·b |a ||b |(a ,b 是两个非零向量).

a ⊥

b ?a·b =0(a ,b 是两个非零向量). |a |2=a·a =a 2.

与平面向量一样,空间向量的数量积也满足如下的运算律: (1)a·b =b·a ;

(2)(λa )·b =λ(a·b )(λ∈R ); (3)a ·(b +c )=a·b +a·c .

若111222(1)a ·b =x 1x 2+y 1y 2+z 1z 2.

(2)a ⊥b ?a ·b =0?x 1x 2+y 1y 2+z 1z 2=0(a ≠0,b ≠0).

(3)|a |=a ·a =x 21+y 21+z 21.

(4)cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2

x 21+y 21+z 21·x 22+y 22+z 2

2

(a ≠0,b ≠0).

A (x 1

y 1

z 1),B (x 2

y 2

z 2),则AB =(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2

.

11111AB 1的中心,

F 为A 1D 1的中点.试计算:

(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→.

【思路探究】 思路一,按基向量法,利用定义计算数量积;思路二,按坐标法,利用坐标运算求数量积.

【自主解答】 法一 如图所示,设AB →=a ,AD →=b ,AA 1→

=c ,则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.

(1)BC →·ED 1→=b ·[12(c -a )+b ]=|b |2=42=16.

(2)BF →·AB 1→=(c -a +12b )·(a +c )

=|c |2-|a |2=22-22=0.

(3)EF →·FC 1→=[12(c -a )+12b ]·(12b +a )

=12(-a +b +c )·(1

2b +a ) =-12|a |2+1

4

|b |2=2.

法二 以A 为原点,AB ,AD ,AA 1为x 轴、y 轴、z 轴,建立空间直角坐标系, 则(1)∵B (2,0,0),C (2,4,0),E (1,0,1),D 1(0,4,2) ∴BC →=(0,4,0),ED 1→

=(-1,4,1), ∴BC →·ED 1→=0×(-1)+4×4+0×1=16. (2)∵B (2,0,0),F (0,2,2),A (0,0,0),B 1(2,0,2), ∴BF →=(-2,2,2),AB 1→

=(2,0,2),

∴BF →·AB 1→=-2×2+2×0+2×2=0. (3)∵E (1,0,1),F (0,2,2),C 1(2,4,2), ∴EF →=(-1,2,1),FC 1→

=(2,2,0), ∴EF →·FC 1→=-1×2+2×2+1×0=2.

1.利用定义求向量数量积的步骤:

(1)选定基底,用基向量表示要求数量积的两个向量; (2)利用数量积运算法则,进行数量积运算. 2.利用坐标法求向量数量积的步骤: (1)恰当建立坐标系,求点的坐标; (2)求向量坐标;

(3)利用数量积的坐标运算求数量积.

图3-1-16

已知空间四边形ABCD 的每条边和对角线都等于a ,如图3-1-16所示,点E ,F ,G 分别是AB ,AD ,CD 的中点,求下列向量的数量积:

(1)AB →·AC →;(2)AD →·BC →; (3)GF →·AC →;(4)EF →·BC →.

【解】 (1)AB →·AC →=|AB →||AC →|cos AB →,AC → =a ×a ×12=a 22.

(2)∵BC →=AC →-AB →, ∴AD →·BC →=AD →·(AC →-AB →) =AD →·AC →-AD →·AB →.

又∵|AD →|=|BC →|=a , AD →,AC → = AD →,AB →

=60°,

∴AD →·BC →=a 22-a 22

=0.

(3)∵G ,F 分别为CD ,AD 的中点, ∴GF →=12CA →=-12AC →.

∴GF →·AC →=-12

AC 2

→.

∵AC 2→=a 2,∴GF →·AC →=-12a 2.

(4)∵E ,F 分别为AB ,AD 的中点, ∴EF →=12

BD →.

∴EF →·BC →=12BD →·BC →=12×a ×a ×12=a 24.

如图3-1-17,在正方体ABCD -A 1B 1C 1D 1中,求向量BC 1与AC 的夹角的大小.

图3-1-17

【思路探究】 思路一,利用基向量;思路二,利用坐标法.

【自主解答】 法一 基向量法 设正方体的棱长为1.

BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)

=AD →·AB →+|AD →|2+AA 1→·AB →+AA 1→·AD →

=0+|AD →|2

+0+0 =|AD →|2

=1,

又|BC 1→|=2,|AC →

|=2,

∴cos BC 1→,AC → =BC 1→·AC →

|BC 1→||AC →|=12·2=1

2.

∵ BC 1→,AC →

∈[0°,180°], ∴ BC 1→,AC →

=60°,

即向量BC 1→与AC →

的夹角的大小为60°. 法二 坐标法

如图,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设正方体棱长为1,

∵A (0,0,0),C (1,1,0),B (1,0,0),C 1(1,1,1), ∴AC →=(1,1,0),BC 1→

=(0,1,1),

∴cos BC 1→,AC → =(1,1,0)·(0,1,1)2×2=1

2.

∴ BC 1→,AC →

=60°.

1.通过以上两法可以看出,如果较易建立空间直角坐标系,坐标法优于基向量法,计算更快捷,叙述过程更简洁.

2.两向量夹角的范围是[0,π],利用夹角公式求出余弦值为正值时(不为1),夹角为锐角;余弦值为负值时(不为-1),夹角为钝角;余弦值为-1时,夹角为180°;余弦值为1时,夹角为0°.

图3-1-18

如图3-1-18所示,在正方体ABCD -A 1B 1C 1D 1中,E 1,F 1分别是A 1B 1,C 1D 1的一个

四等分点,求BE 1→,DF 1→

夹角的余弦值.

【解】 如图所示,不妨设正方体的棱长为1,以DA →,DC →,DD 1→

为单位正交基底,建立空间直角坐标系D -xyz ,则D (0,0,0),B (1,1,0),E 1(1,34,1),F 1(0,1

4

,1).

所以BE 1→=(1,34,1)-(1,1,0)=(0,-14,1),DF 1→=(0,14,1)-(0,0,0)=(0,1

4,1),则|BE 1

→|=

02

+(-14)2+12=17

4

,|DF 1→|=

02

+(14)2+12

=174,BE 1→·DF 1→=(0,-14,1)·(0,14

1)=0×0-14×14+1×1=15

16

.

所以cos BE 1→,DF 1→ =BE 1→·DF 1→

|BE 1→||DF 1→|=1516174×174=15

17

.

因此,BE 1→与DF 1→夹角的余弦值是15

17.

=90°,沿

着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.

图3-1-19

【思路探究】 求B ,D 间的距离可以转化为求向量BD →的模,但向量BD →

的模直接求解较难,可以转化为其他向量,注意到折起后AB 与AC ,CD 与AC 的垂直关系没有发生改变,从而可以充分利用这种关系求解.

【自主解答】 ∵∠ACD =90°,∴AC →·CD →=0.同理可得AC →·BA →

=0. ∵AB 与CD 成60°角,∴ BA →,CD → =60°或 BA →,CD → =120°,

人教A版高中数学《平面向量的线性运算》教学设计

2.2《平面向量的线性运算》教学设计 【教学目标】 1.掌握向量的加、减法运算,并理解其几何意义; 2.会用向量加、减的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 4.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算; 5.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行; 6.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想. 【导入新课】 设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为AB ,水速为,则两速度和:AC =+ 新授课阶段 一、向量的加法 A B C A C A B C

O A a a a b b b 1.向量的加法:求两个向量和的运算,叫做向量的加法. 2.三角形法则(“首尾相接,首尾 连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a. 探究:(1)两相向量的和仍是一个向量; (2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且 |a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加. 例1 已知向量a 、b ,求作向量a +b . 作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应); A B C a +b a +b a a b b a b b aa

平面向量的数量积教案

§2.4.1 平面向量数量积的物理背景及其含义 博白县龙潭中学 庞映舟 一、教学重难点: 1、重点:平面向量数量积的概念、性质的发现论证; 2、难点:平面向量数量积、向量投影的理解; 二、教学过程: (一)创设问题情景,引出新课 问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运 算的结果是什么? 新课引入:本节课我们来研 究学习向量的另外一种运算:平面向量的数量积的 物理背景及其含义 (二)新课: 1、探究一:数量积的概念 展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型 背景的第一次分析: 问题:真正使汽车前进的力是什么?它的大小是多少? 答:实际上是力→F 在位移方向上的分力,即θCOS F → ,在数学中我们给它一个名字叫投影。 “投影”的概念:作图

定义:|→b |cos 叫做向量→b 在→ a 方向上的投影.投影也是一个数量,不是向量; 2、背景的第二次分析: 问题:你能用文字语言表述“功的计算公式”吗? 分析:θCOS S F w →→=用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢? 平面向量数量积(内积)的定义:已知两个非零向量→a 与→b ,它们的夹角是θ,则数量|→a ||→b |θcos 叫→a 与→b 的数量积,记作→a ·→b ,即有→a ·→b = |→a ||→b |θcos (0≤θ≤π).并规定→0与任何向量的数量积为0. 注:两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定. 3、向量的数量积的几何意义: 数量积→a ·→b 等于→a 的长度与→b 在→a 方向上投影|→b |cos θ的乘积. 三、例题讲解: 例1 已知|→a |=5,|→b |=4,→a 与→b 的夹角θ=O 60,求→a ·→b 解:由向量的数量积公式得:(先复习特殊角度的余弦值) →a ·→b =|→a ||→ b |cos θ=5×4×cos O 60=5×4×21=10 练习1已知|→a |=8,|→b |=6,①→a 与→b 的夹角为O 60,②→a 与→b 的夹 角θ=00,求→a ·→ b ;

人教A版高中数学必修四 2.4 《平面向量的数量积》教案

§2.4平面向量的数量积 教学目的: 1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 教 具:多媒体、实物投影仪 内容分析: 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生 推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识 点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积 的运算律. 教学过程: 一、复习引入: 1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ, 使b =λa . 2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e 3.平面向量的坐标表示 分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面 向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

向量数量积的运算律

向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定能推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:|a |=3,|b |=1,|c |=3,< a ,b >=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),这是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=22||2||b b a a +?+; (2)(a +b )·(a -b )=22||||-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:

(完整版)《平面向量的数量积》教学设计及反思

《平面向量的数量积》教学设计及反思 交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。 一、总体设想: 本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。 二、教学目标: 1. 了解向量的数量积的抽象根源。 2. 了解平面的数量积的概念、向量的夹角 3. 数量积与向量投影的关系及数量积的几何意义 4. 理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算 三、重、难点: 【重点】1.平面向量数量积的概念和性质 2.平面向量数量积的运算律的探究和应用 【难点】平面向量数量积的应用 四、课时安排:

2课时 五、教学方案及其设计意图:1.平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F 的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为W F s cos ,这里的是矢量F 和s 的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b 的数量积的概念。 2.平面向量数量积(内积)的定义 已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos 叫a与b的数量积,记作a b,即有a b = |a||b|cos ,(0≤θ≤π). 并规定0 与任何向量的数量积为0. 零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积 的定义a b = |a||b|cos 无法得到,因此另外进行了规定。 3. 两个非零向量夹角的概念 已知非零向量a与b,作OA=a,OB =b,则∠AOB=θ(0 ≤θ≤π)

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学教案:2.1.1 向量的概念

课 时 教 案 第 二 单元 第 1 案 总第 18 案 课题 2.1.1向量的概念 2011年 5月17日 教学目标 理解向量、零向量、单位向量、模的意义和向量的几何表示,会用字母表示向量 培养学生的唯物辩证思想和分析辨别能力 了解平行向量、共线向量和相等向量的意义,会判断向量间共线、相等的关系 教学重点 理解向量、零向量、单位向量、向量的模的意义 了解平行向量、共线向量和相等向量的意义 使学生对现实生活的向量和数量有一个清楚的认识 教学难点 理解向量的几何表示,会用字母表示向量 了解平行向量、共线向量和相等向量的意义 高考考点 理解向量、零向量、单位向量、向量的模的意义 理解向量的几何表示,会用字母表示向量 课 型 新授课 教 具 多媒体、三角板、投影仪 教 法 讲练结合 教 学 过 程 教师活动预设 学生活动预设 复习引入 在物理中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们所学习的力、位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量 师:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标? 不能,因为没有给定发射的方向 现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向? 力、速度、加速度等有大小也有方向, 温度和长度只有大小没有方向. 讲解新课 向量的概念:我们把既有大小又有方向的量叫向量 注意:数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 说明:1.有向线段是向量最好的模型 2.向量不能比较大小 有向线段的三要素:起点、方向、长度 以A 为起点、B 为终点的有向线段记作 向量的表示方法:几何方法 代数符号 ①用有向线段表示; ②用字母,a b r r 等表示; ③用有向线段的起点与终点字母:AB u u u r ; ④向量AB 的大小(长度)称为向量的模,记作|AB u u u r |.

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线. 1.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

最新人教版高中数学《平面向量》全部教案

人教版高中数学《平面向量》全部教案

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与 已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、提出课题:平面向量 1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量 等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体 系,用以研究空间性质。 2.向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 A B A(起点) B (终 a

记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3.模的概念:向量AB 的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意0与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? 答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:a ∥b ∥c 规定:0与任一向量平行 2.相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= a b c

12022-向量数量积的运算律

向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+

典例剖析: 例1、已知a =6,b =4,a 与b 的夹角为060, 求:(1)b 在a 方向上的投影; (2)a 在b 方向上的投影; (3) 例2、已知a 与b 的夹角为0120,a =2,b =3,求: ()() b a b a 32-?+) ())(;();()(b a b a b a b a 32321 22+?-- ?(-+5 4取何值,问夹角为与t t b a -==0 120,1

例 3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直? 变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角. 练习题:求证菱形的对角线互相垂直. 例 4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.

向量数量积教案

公开课教案 课 题:6.8 向量的数量积 教学目标:1)向量的数量积 2)使学生理解向量的数量积和运算法则 3)使学生能初步利用向量的数量积的概念。 教学重点:理解向量的数量积 教学难点::理解向量的数量积 教学方法:讲授法,启发引导教学 课堂类型:新授课 教学步骤: (一)复习巩固 1、提问:向量的线性运算都包括哪些运算? 2、举两个向量的线性运算的例子,并计算出结果。 3、提问:向量的线性运算,其结果有什么特点? (二)引入新课: 我们学过向量的线性运算,知道其计算结果都是向量,那么有没有一些向量的运算其计算结果不是向量呢?我们先来看一个物理上的知识,关于力做功的的 问题,功W=|F |·|S |cos θ这是一个由两个向量的模和它们的夹角余弦的乘积确定的,这节课我们就来学习这个内容。 (三)讲授新课 1、关于向量的规定: 1)、两个向量的夹角θ,记<a ,b >。 0≤<a ,b >≤π,<a ,b >=<b ,a >。 2)、规定:a ·b =|a | |b |(0≤θ≤π) 或者表示成:a ·b =|a | |b |cos <a ,b >(0≤<a ,b >≤π) a ·b 表示向量a 与b 的数量积。 3)、思考:如果a 与b 是两个非零向量,那么在什么条件下 ①a ·b >0 ②a ·b <0 ③a ·b =0 4)、练一练 1)如果|a |=3,|b |=2,cos θ= - 2 1,那么a ·b = 。 2)|a |=21,|b |=4,θ=3 ,那么a ·b = 。 2、例题讲解 例1、根据下列条件分别求出<a ,b >: 1)|a |=3,|b |=4,a ·b =6; 2)|a |=|b |=2,a ·b = -2。 例2:已知|a |=4,|b |=3,<a ,b >=3 ,计算: 1)(a +b )2 ; 2)(2a - b )·(3a +2b )。 3、向量的数量积运算的运算律 1)满足交换律及分配律 ①a ·b = b ·a ;②a ·(b +c )=a ·b +a ·c 2)不满足结合律 (a ·b )·c ≠a ·(b ·c ) 3)实数与向量相乘时,满足结合律 (k a )·b =k ( a ·b ) 课堂练习: 书P93 1~3 课堂小结:1、向量的数量积定义; 2、向量数量积运算的运算律; 3、向量数量积的运算的特点:结果是一个实数。 课后作业:书P93 4 板书设计 6.8 向量的数量积 1、规定:1)、两个向量的夹角 2、例题讲解 2)、规定:两个向量的数量积 3、运算律

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

人教版高中数学《平面向量》全部教案

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、 提出课题:平面向量 1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量 等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大 小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学 体系,用以研究空间性质。 2. 向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3. 模的概念:向量 记作:|| 模是可以比较大小的 4. 两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? A B A(起点) B (终点) a

答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、 向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 = = = 例:(P95)略 变式一:与向量长度相等的向量有多少个?(11个) 变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?(,,) 四、 小结: 五、 作业:P96 练习 习题5.1 第二教时 教材:向量的加法 目的:要求学生掌握向量加法的意义,并能运用三角形法则和平行四边形法则作 几个向量的和向量。能表述向量加法的交换律和结合律,并运用它进行向 量计算。 过程: 六、复习:向量的定义以及有关概念 强调:1?向量是既有大小又有方向的量。长度相等、方向相同的向量相等。 2?正因为如此,我们研究的向量是与起点无关的自由向量,即任何 向量可以在不改变它的方向和大小的前提下,移到任何位置。 七、 提出课题:向量是否能进行运算? 5.某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ a b c A B C

第二课时向量数量积的运算律(可编辑修改word版)

= = AC ? ?? ? 2.3.2 向量数量积的运算律 类型二、运用向量数量积的运算律求向量的模 【学习目标】: 熟练掌握平面向量数量积的运算律,并会应用。 【自主学习】: 向量数量积的运算律: (1) 交换律: 例 2、已知 a = b = 5, 向量 a 与b 的夹角为 ,求 a - b , a + b 。 3 (2) 数乘 向量的数量积 结合律: 那么分配律是否成立呢? 【合作探究】 分配律: 变式: 在三角形 ABC 中,已知 AB 3, BC 5, ∠ABC = 600 , 求 。 【课堂互动】 类型一、运用向量数量积的运算律计算例 1、求证: 类型二、运用向量数量积的运算律解决有关垂直问题例 2、求证:菱形的两条对角线互相垂直: 已知: ABCD 是菱形, AC 和 BD 是它的两条对角线。 (1) (a + b ) 2 = 2 + 2a ? b + 2 → → → → ;(2) a + b ?? a - b ? = ? ?? ? → 2 → 2 a - b ; 求证: AC ⊥ BD . 证明: → → → → 变式:已知 a = 3, b = 4, ?a , b ? = 60 , 求(a + 2b ) (a - 3b ) . 总结: a ⊥ b ? 。 a b

a b a ⊥ 变式: 已 知 a = 3, b = 4 ,且(a + kb ) ⊥ (a - kb ), 求 k 的值。 2 【合作探究】 1 、 若 a,b( b ≠ 0 ) 为 实 数 , 则 a ? b = a ? b 成 立 , 对 于 向 量 3、已知 e 1 , e 2 是夹角为 3 的两个单位向量, a = e 1 - 2e 2 , b = ke 1 + e 2 , 若 a ? b = 0 ,则 k 的值为 。 a , b , a ? b = ? 成立吗? 2、若 a,b,c( b ≠ 0 )为实数,则 ab = bc ? a = c ; 但对于向量, ab = bc ? a = c 还成立吗? 4、证明平行四边形中, AC 2 + BD 2 = 2 AB 2 + 2 AD 2. 3、 向量的数量积满足结合律吗,即(a ? b )? c = a ? (b ? c )成立吗? (a ? b ) ? c 表 示什么意义? a ? (b ? c ) 表示什么意义? 【当堂检测】 → → < >= 1200 , = = 5, (2a - b )? a = 1 、 已 知 向 量 a , b 且 a 2, b 则 (选做)5、设 a b , 且 = 2, b = 1, k,t 是两个不同时为零的实数。 。 (1) 若 x = a + (t - 3)b 与 y = -ka + tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2) 求出函数 k=f(t)的最小值。 → → → → 2 2 、 a = 6, b = 8, ?a , b ? = 120 , 求 a + b , a + b .

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

相关主题
文本预览
相关文档 最新文档