当前位置:文档之家› Active Sites in Ni2PUSY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran

Active Sites in Ni2PUSY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran

Active Sites in Ni2PUSY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran
Active Sites in Ni2PUSY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran

ORIGINAL PAPER

Active Sites in Ni 2P/USY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran

Ara Cho ?Atsushi Takagaki ?Ryuji Kikuchi ?

S.Ted Oyama

Published online:3March 2015

óSpringer Science+Business Media New York 2015

Abstract A series of nickel phosphide catalysts supported on ultrastable Y zeolites USY (Si/Al =40)with mi-croporous/mesoporous structure were prepared by impreg-nation and temperature-programmed reduction and were studied for the hydrodeoxygenation (HDO)of 2-methylte-trahydrofuran (2-MTHF).The loading of the active phase was varied from 0.58,1.16,and 1.74to 2.3mmol (g sup-port)-1and the corresponding samples were denoted as 0.5,1.0,1.5,and 2.0Ni 2P/USY.The two lowest loading supports did not show X-ray diffraction (XRD)lines,but X-ray ab-sorption ?ne-structure spectroscopy (XAFS)indicated the formation of a Ni 2P phase,with low Ni–Ni coordination,consistent with high dispersion.The two highest loading supports showed XRD patterns typical of Ni 2P,and XAFS indicated similar bond distances to bulk Ni 2P and high Ni–Ni coordination.Furthermore,the XAFS data indicated that the low-loading samples had shorter bond distances and more Ni in square-pyramidal coordination compared to the high loading samples and the reference Ni 2P material,suggesting that there were differences in structural properties in the

samples.This likely was due to preferred termination of the small crystallites with pyramidal Ni sites.The HDO of 2-MTHF was studied at 0.5MPa and 513–593K and the main products were n -pentane and n -butane for all catalysts.The low-loading samples showed higher turnover frequency (based on sites titrated by CO chemisorption),and this was attributed to the higher intrinsic activity of the pyramidal Ni sites.In addition,the low-loading samples showed higher selectivity to n -pentane,and this was attributed to lower C–C hydrogenolysis type reactions,which are favored by metallic ensembles as found in the high-loading samples.Keywords Hydrodeoxygenation á

2-methyltetrahydrofuran áNi 2P áUSY support

1Introduction

Biomass conversion and utilization have received increas-ing attention in recent years due to the diminishing avail-ability of fossil fuels and the growing demand for clean and renewable energy to meet stringent environmental regula-tions [1–7].Fast pyrolysis is an effective process to convert renewable biomass to liquid oil (bio-oil)in yields of up to 70–80%on a dry biomass weight [8–10].Wood-derived pyrolysis bio-oil contains 35–40wt%of oxygen in the form of oxygenated hydrocarbons such as aldehydes,ke-tones,sugars,carboxylic acids,phenols,guaiacols,and furans.The highly oxygenated nature of bio-oil,causes low thermal and chemical stability,low miscibility with hy-drocarbon liquids,low heating value,high viscosity,and high corrosion properties [8,11–14],so the removal of oxygen from bio-oil is necessary for practical use.Phos-phides are a promising catalyst class for this application [15].

Electronic supplementary material The online version of this article (doi:10.1007/s11244-015-0363-3)contains supplementary material,which is available to authorized users.

A.Cho áA.Takagaki áR.Kikuchi áS.Ted Oyama (&)

Department of Chemical Systems Engineering,The University of Tokyo,7-3-1Hongo,Bunkyo-ku,Tokyo 113-8656,Japan e-mail:oyama@https://www.doczj.com/doc/a010796092.html,;ted_oyama@chemsys.t.u-tokyo.ac.jp Present Address:A.Cho

Corporate R&D,LG Chem Research Park,188,Munji-ro,Yuseong-gu,Daejeon 305-738,Republic of Korea S.Ted Oyama

Department of Chemical Engineering,Virginia Tech,Blacksburg,VA 24061,USA

Top Catal (2015)58:219–231DOI 10.1007/s11244-015-0363-3

Catalytic hydrodeoxygenation(HDO),a process similar to traditional hydrodesulfurization(HDS)and hydro-denitrogenation(HDN)of petroleum feed stocks,is one possible solution to upgrade bio-oil[8,14].Numerous studies over transition metal sul?de catalysts used in hy-drotreating processes have reported on their reactivity for the HDO of aliphatic esters[16–18],phenol[19],and guaiacol[20].However,in the course of reaction sulfur was stripped from the catalysts leading to deactivation[8, 16].Other studies using noble metal[21,22]or partially oxidized transition metal catalysts[23–25]have shown limited activity in HDO reactions.Transition metal phos-phides are novel catalysts for HDS and HDN which have strong hydrogenation ability[26–31],with Ni2P having exceptional activity,higher than that of a commercial NiMoS catalyst.The isotropic structure of Ni2P permits higher dispersion of the active phase in comparison to the layered structure of many sul?des.Recently,it has been reported that metal phosphides show high performance in the HDO of biomass-derived compounds such as guaiacol [32],methylphenol[33],methyl oleate[34],and phenol [35].

Ultra stable Y(USY)zeolite which is dealuminated by hydrothermal treatment and acid leaching of a zeolite precursor is widely used for isomerization,catalytic cracking,and hydrocracking reactions in the petroleum industry as it has a mesoporous structure,enhanced sta-bility and acidity[29].It has been reported that transition metals supported on USY catalysts have high activity for HDO[36].Also,nickel phosphide supported on potassium ion-exchanged USY showed high performance for the HDS of4,6-DMDBT[29,37].

In this study the vapor-phase HDO of2-methyltetrahy-drofuran(2-MTHF)was investigated over Ni2P catalysts supported on USY with different Ni2P loading to understand the reaction pathway and the effect of Ni2P content on the activity and selectivity of the reaction.The reactant2-MTHF has been used as a model compound in previous HDO studies [38–40].Synthesized catalysts were characterized by CO chemisorption,X-ray diffraction,and extended X-ray ab-sorption?ne structure spectroscopy(EXAFS).The effects of metal loading,reaction temperature,site time and partial pressure of reactant on the activity and selectivity for the 2-MTHF HDO are discussed.

2Experimental

2.1Catalyst Synthesis

An ultra-stable Y-zeolite(USY)support was used as re-ceived(Si/Al=40,CBV780,Zeolyst international). Nickel phosphide catalysts with a wide range of loadings were synthesized by incipient wetness impregnation fol-lowed by a temperature programmed reduction(TPR) method as described elsewhere.[29,30,41]The USY support was impregnated with aqueous solutions of Ni(NO3)2á6H2O and(NH4)2HPO4,followed by drying at 383K for12h and calcination at673K for6h in static air.The initial Ni/P ratio in the impregnating solution was kept at1/2.The calcined precursors were pelletized and sieved to particles of650–1180l m diameter.The resulting particles were reduced to phosphide by a TPR method in a ?ow of1L/min(NTP)of hydrogen.The temperature was increased at a rate of3K min-1from room temperature to the?nal temperature which was determined by TPR of the samples and the temperature was maintained at the?nal state for2h.After cooling to room temperature in He?ow, the surface of the reduced samples was passivated in0.5% O2/He mixture at room temperature for2h before being taken out from the TPR reactor to prevent oxidation of the bulk when exposed to the air.The nominal levels of Ni loading in the Ni2P/USY catalysts were0.58,1.16,1.74, and2.32mmol(g support)-1and the corresponding sam-ples were denoted as0.5,1.0,1.5,and2.0Ni2P/USY. 2.2Characterization

Temperature-programmed reduction(TPR)experiments were performed using a commercial surface analyzer (Multitask TPD,BEL JAPAN,Inc.)equipped with a mass spectrometer.Amounts of0.1g of calcined precursors were placed in a quartz reactor and the temperature was ramped linearly from room temperature to1123K at a rate of3K min-1in a?ow of100ml min-1of hydrogen.The exit stream passed to the mass spectrometer and the water signal(m/z=18)was monitored during the TPR.

Carbon monoxide(CO)uptakes on the samples were measured by a pulse injection method using a catalyst analyzer(CHEMBET-3000,Quantachrome Instruments) equipped with a thermal conductivity detector to estimate the dispersion of active sites on the catalysts.Quantities of 0.3g of passivated samples were placed in a quartz reactor and were re-reduced with hydrogen at723K for2h and then cooled to303K in helium?ow.Pulses of10%CO/ He gas of volume of250l l were injected into a carrier stream of100ml min-1of helium and were passed over the catalyst at303K until saturation of the sample surface with CO was achieved.

The BET surface area and pore volume of the USY support and passivated samples of Ni2P/USY were deter-mined by adsorption–desorption isotherms of nitrogen at 77K using a volumetric apparatus(BELSORP-mini,BEL JAPAN,Inc.).All the samples were evacuated and dried at 453K for1h prior to the measurements.The linear range of BET plot(0.001\P/P0\0.1)was applied to calculate

the speci?c surface area of a microporous material.The micropore volume was obtained from the t-plot and the mesopore volume was estimated from the difference be-tween single point total pore volume at P/P0=0.97and the micropore volume.

X-ray diffraction(XRD)patterns of the passivated samples of Ni2P/USY were obtained with a diffractometer (Rigaku RINT-2400)using a Cu K a radiation (k=1.5418A?)operated at40kV and100mA.The diffraction intensity was recorded in the2h range of10–80°with step size of0.04°at a scan speed of1°min-1.Ni2P and USY support phases were identi?ed by comparison with the XRD patterns of the bulk Ni2P and USY support.

Ammonia temperature-programmed desorption(TPD) analysis was carried out using a commercial surface analyzer(Multitask TPD,BEL JAPAN,Inc.)to determine the amounts and strengths of acidic sites over the USY and Ni2P/USY samples.Prior to the measurement,0.1g of each sample was pretreated at723K for2h in helium?ow for USY or in hydrogen?ow for passivated Ni2P/USY. After cooling to373K,ammonia was dosed to the samples using30ml min-1of10%NH3/He for0.5h and then physisorbed ammonia was removed in a helium stream at 373K for2h.The NH3-TPD was conducted by heating from373to1123K at a rate of10K min-1.The ammonia signal(m/z=17)was monitored during the TPD.

Ni K-edge(8332eV)extended X-ray absorption?ne structure(EXAFS)spectra of the bulk Ni2P and Ni2P/USY samples were measured at the Photon Factory of the In-stitute of Material Structure Science(KEK,Japan),using beamline BL-7C equipped with an Si(111)double-crystal monochromator.The storage ring was operating at 2.5GeV with a maximum beam current of300mA.For the EXAFS measurements,the samples were prepared in the form of disks(/=1cm)with60mg of calcined Ni2P/ USY samples except for the0.5Ni2P/USY,which used 80mg.A mixture of bulk Ni2P(6mg)and BN(36mg) was used as reference.The disks were uniform and dense and did not exhibit any visible pinholes.The disk samples were reduced in a quartz reactor in the same manner as the pretreatment of the catalyst before CO adsorption or re-action.After reduction,the reactor containing the sample was carefully moved into a glove box without exposing the contents to air and the sample was taken out and taped on both sides of the pellet with polyamide tape.The mea-surements were performed at room temperature in trans-mission mode.The EXAFS spectra were analyzed using WinXAS3.1.Polynomials were used for background sub-traction of the spectra.The pre-edge background was re-moved by a1st degree of polynomial and the post-edge background was subtracted by a3rd degree of polynomial. The EXAFS spectra were analyzed using a k range of 2.8–14A?-1.Theoretical scattering amplitudes and phase shifts for the Ni2P were calculated by FEFF8code[42]. Curve?tting was conducted using the three dominant shells(2Ni–P,4Ni–P and4-Ni–Ni)[43]and the reducing factor(S o2)was?xed as0.8,which was derived from the Ni–Ni contribution of a Ni foil.

2.3Reaction

The catalytic activities of the samples for the HDO of 2-MTHF were tested in a?xed-bed?ow reactor in gas phase at a temperature range of513–593K under a total pressure of 0.5MPa.Prior to the reaction,0.3g of passivated catalysts were re-reduced with hydrogen at723K for2h at atmo-spheric pressure.The reactant containing5vol%of n-hep-tane as an internal standard was delivered at a rate of 3l mol s-1using a liquid pump.The liquid was vaporized before injection into the reactor and a molar ratio of H2/2-MTHF of97/3was used.During the reaction,products were sampled every1h and were analyzed on-line using a Shi-madzu10A gas chromatograph(GC)equipped with a sili-cone capillary column and?ame ionization detector(FID). Reaction was started at593K and the temperature was varied downward and upward after stabilization of the cat-alyst was achieved at each temperature.

The effect of site contact time on the conversion and selectivity was studied at573K over the0.05g of Ni2P/ USY catalyst.Site contact time was changed in the range of0.17–1.95s while keeping the inlet molar ratio of H2to 2-MTHF constant at19.

The effect of partial pressure of reactants,2-MTHF and H2on the reaction rate and the product selectivity were studied at573K.The partial pressure of2-MTHF and H2 was varied in the range of6–39and47–451kPa,respec-tively,and the total pressure of the system was maintained at500kPa using N2as a balance gas.The loading amount of the1.0Ni2P/USY catalyst for this measurement was 0.05g and the2-MTHF conversion was kept below25% under these reaction conditions.

3Results and Discussion

3.1Characteristics of the Catalysts

Figure1shows TPR pro?les in H2?ow of the nickel phosphates supported on USY where the mass signal(m/ z=18)was recorded with increasing temperature.Main reduction peaks are observed at around760–900K for all the samples.This agrees with previous reports of reduction of Ni2P on KUSY[29].The peak maximum shifted to higher temperature as the amount of Ni2P loaded was in-creased.A larger particle size may result in a longer dif-fusion path for the reduction of the oxide.The reduction

temperature for each sample was determined to be847, 864,862,and873K for0.5,1.0,1.5,and2.0Ni2P/USY, respectively.

Table1summarizes the quantities of the Ni2P loading and physical properties of the fresh catalysts.The speci?c surface area of the USY was852m2g-1and it decreased gradually with increasing NiP loading from758(0.5Ni2P/ USY)to408m2g-1(2.0Ni2P/USY).Modi?ed speci?c surface areas were calculated by subtracting the amounts of Ni2P from the weight of Ni2P/USY samples and consid-ering only the USY content in the Ni2P/USY.Because we did not analyze the actual Ni2P loading we estimated the reduced Ni2P content by assuming all the nickel species existed in the form of Ni2P and excess phosphorous was removed.Modi?ed surface areas of0.5and1.0Ni2P/USY were maintained well even after introduction of Ni2P onto the USY support but a signi?cant loss of surface area were observed in the samples of1.5and2.0Ni2P/USY.The pores in the USY samples are composed of many small cavities separated by thin walls[44].It seems that some of pores were blocked and the thin walls were destroyed when large amounts of Ni2P were added,which caused decreases in the surface areas.In all samples both micropores and mesopores were observed with decreasing total pore vol-ume compared to the bare USY support.Increase in the volume of mesopores in the high Ni2P loading sample,2.0 Ni2P/USY,seems to be caused by destruction of mi-cropores when impregnating the USY support with a large amount of Ni2P species.

Figure2shows XRD patterns for the bulk Ni2P reference, 2.0,1.5,1.0,0.5Ni2P/USY and bare USY.In all catalyst samples sharp peaks were observed in the range from10to 35°corresponding to the USY framework structure,which indicates that the crystalline structure of the USY zeolite was maintained after impregnation with the precursor solutions, calcination,and reduction.However,for the1.5and2.0 Ni2P/USY samples the sharpness of the peaks was somewhat reduced and a broad feature was detected as a background at the same position characteristic of amorphous silica (2h*23°).In line with the surface area and pore volume decrease some of the USY crystallinity seemed to have been lost in the case of the high Ni2P loading samples,but with retention of the USY structure.

Diffraction patterns for the Ni2P crystallites were de-tected in the higher Ni2P loading samples,1.5and2.0 Ni2P/USY,whereas in the lower Ni2P loading samples,0.5 and1.0Ni2P/USY,peaks for the Ni2P crystallite were not observed,which implies that the Ni2P species in those samples are highly dispersed on the USY supports and the crystallite size is smaller than the detection limit in XRD measurements,*0.4nm.Formation of the Ni2P species on those samples could be con?rmed by EXAFS analyses as described in the following section.

The crystallite size(D hkl)of the Ni2P in bulk Ni2P refer-ence,1.5and2.0Ni2P/USY samples could be estimated using the Scherrer equation,D hkl=K k/b hkl cos h,where K is

Table1Ni2P content and physical properties of the fresh USY and USY-supported Ni2P catalysts

Sample Ni content

(mmol/g support)Ni2P content(wt%)S BET(m2g-1)Pore volume(cm3g-1) Before

reduction a

After

reduction b

Measured Modi?ed c V micro

d V

meso

e V

total

2.0Ni2P/USY 2.32(2.0)21.814.6408478(0.56)0.160.270.43 1.5Ni2P/USY 1.74(1.5)17.311.4483545(0.64)0.210.190.40 1.0Ni2P/USY 1.16(1.0)12.27.9760825(0.97)0.310.120.43 0.5Ni2P/USY0.58(0.5) 6.5 4.1758790(0.93)0.290.170.46 USY–––852852(1.00)0.330.180.51

a Nominal NiP contents as added

b Estimated NiP contents after reduction if all the nickel species exist in the form of Ni

2

P and excess phosphorous is removed

c Calculate

d BET area by using th

e content o

f only USY in the Ni

2

P/USY ignoring the amounts of Ni2P(ex.1.0Ni2P/USY:760/[(100-7.9)/ 100]=825,825/852=0.97)

d Micropor

e volume from t-plot

e V

total

-V micro

the Scherrer constant assumed as0.9,k is the wavelength of the Cu K a radiation(k=0.15418nm),b hkl is the peak width at half maximum intensity of an(hkl)plane in radians corrected for instrumental broadening of0.2degree,and h is the diffraction angle.Table2summarizes the crystallite sizes obtained using the(111),(201),and(210)planes in each sample.Isotropy in the three lattice planes means that the Ni2P crystallites had a spherical structure.The average crystallite size of Ni2P was17nm for the bulk phosphide and were11and12nm for1.5and2.0Ni2P/USY,respectively. The surface metal sites could be calculated from the crys-tallite size from the following equation

Surface metal sites?S gá"náfe1Twhere S g is the speci?c surface area calculated from the equation S g?6=q D c(D c:crystallite size,q:bulk density taken as7.09gcm-3for Ni2P),"n is the areal density taken as 1.0191015atoms cm-2derived from the surface area per metal atom of the low index planes,and f is the fractional weight loading of the Ni2P assuming that Ni2P is a uniform spherical particle[45,46].The results are listed in Table3.

Table2also reports the results of CO uptake measure-ments and the dispersion of nickel species.Based on the same weight of samples,the amount of CO uptakes was a maximum for the1.0Ni2P/USY sample and decreased as the Ni2P loading level increased.Nickel dispersions in all the samples were in the range of3–12%,and decreased uniformly with increasing Ni2P loading.However,the amounts of active sites titrated by CO uptake were smaller than the theoretical surface metal sites calculated using crystallite sizes.This could be due to crystallite agglom-eration or blockage of sites by phosphorus,resulting in lower CO uptakes.

Figure3compares Fourier transforms for the k3-weighted Ni K-edge EXAFS spectra obtained using the bulk Ni2P reference and Ni2P/USY samples containing various amounts of Ni2P species.EXAFS measurements were suitable to study the local structure of supported Ni2P samples which could not be detected by XRD analysis due to the detection limit of the technique.Bulk Ni2P reference gave two distinctive peaks centered at0.177and0.227nm. All EXAFS spectra for the Ni2P/USY samples also showed two peaks and the peak positions in each spectrum were almost the same as those for bulk Ni2P,whereas the rela-tive peak intensity was quite different.That is,for the1.5 and2.0Ni2P/USY samples the peak positions and inten-sities were comparable to those of the bulk Ni2P reference. However,the intensity of the peaks appeared at longer distance and were weaker in the1.0Ni2P/USY sample and decreased even more in the0.5Ni2P/USY sample.The second peak in the lower Ni2P loading samples was broader in comparison to the higher Ni2P loading

samples. Table2Crystallite sizes,CO uptakes and metal dispersion of the bulk Ni2P and Ni2P/USY catalyst samples

Sample Ni content

(wt%)Direction Crystallite size(nm)Surface metal sites a

(l mol g-1)

CO uptake

(l mol g-1)

Dispersion b(%)

D hkl D c,average

Bulk Ni2P–(111)18.517––

(201)17.6

(210)15.4

2.0Ni2P/USY11.5(111)11.912174563

(201)10.9

(210)12.9

1.5Ni2P/USY9.0(111)11.411146574

(201)10.3

(210)11.4

1.0Ni2P/USY 6.2––757

0.5Ni2P/USY 3.2––6812

a Theoretical surface metal sites calculated from Eq.(1)

b(amount of CO uptakes)/(total amount of Ni species)9100

These trends in peak intensity,location and breadth indicate that there were differences in the structure of the samples,even though the essential features of Ni2P were retained.Table3summarizes the selected crystallographic Ni2P standard data which was used in the curve-?tting and the resulting structural parameters[coordination number (CN),bond distance(R),and Debye–Waller factor(r2)]of the EXAFS spectra for the bulk Ni2P reference and the Ni2P/USY samples.The curve-?tting was conducted in the range of k=0.28–1.4nm-1.Ni2P adopts a hexagonal structure(Space group:P"62m)which has two types of Ni and P sites in the unit cell with a number of Ni–P and Ni–Ni subshells[43].In previous studies,it was con?rmed that a three-shell analysis is effective for curve-?tting of EXAFS data to determine the structural parameters of the bulk and supported Ni2P samples[43].The?rst and the second shells correspond to two different Ni–P bonds and the third shell corresponds to a Ni–Ni bond.The?rst and the second shells correspond respectively to Ni in tetrahedral and in pyramidal coordination.The Ni site in pyramidal coordi-nation is surrounded by5P atoms(1P at0.2369nm and 4P at0.2456nm).The EXAFS spectrum is an average over these two different Ni–P bonds so the coordination number for the second Ni–P shell is lowered[30].For the Ni2P/USY samples in the?rst shell the coordination number was almost the same as that of bulk Ni2P whereas the coordination number in the second shell appeared larger and in the third shells appeared smaller in compar-ison to those of bulk Ni2P.

It has been reported that smaller Ni2P crystallites have stronger Ni–P interactions and are decorated with phos-phorus on the surface resulting in larger coordination numbers in the second shell(Ni–P).It was also suggested that the decrease in the coordination number in the third shell(Ni–Ni)may due to extra phosphorus inducing a decrease in Ni–Ni coordination.The EXAFS analysis re-sults con?rm that highly dispersed Ni2P was formed on the USY supports,which is consistent with the results of XRD (Fig.2)and CO uptake experiments(Table2).

3.1.12-MTHF HDO over the Ni2P/USY

Figure4shows the2-MTHF conversion and turnover fre-quency(TOF,de?ned as the number of converted2-MTHF molecules per second per exposed Ni site as titrated by CO uptake)for the Ni2P/USY and USY catalysts as a function of reaction temperature at0.5MPa H2.The conversion of 2-MTHF increased signi?cantly as the reaction tem-perature increased from513to593K over all the Ni2P/ USY samples.

It was veri?ed that no diffusion limitation are present for the data below80%conversion by verifying that the Weisz-Prater criterion is obeyed(C WP\1).

C WP?

Actual reaction rate

A diffusion rate

?

àr0

AeobsT

q c R2

D e C As

Table3EXAFS parameters for Ni2P/USY containing various amount of Ni2P

Ni–P(I)Ni–P(II)Ni–Ni R-factor(%) Reference

CN244

R(nm)0.22660.24570.2678

Bulk Ni2P0.74

CN 1.8 1.2 3.9

R(nm)0.22400.23480.2611

r2(10-5nm2) 1.890.267.52

2.0Ni2P/USY0.61

CN 2.0 1.99 4.1

R(nm)0.22280.23510.2617

r2(10-5nm2) 1.060.68 6.83

1.5Ni2P/USY0.82

CN 1.8 2.5 3.65

R(nm)0.22330.23760.2630

r2(10-5nm2) 2.28 3.277.66

1.0Ni2P/USY0.84

CN 2.0 2.6 2.2

R(nm)0.22140.23360.2612

r2(10-5nm2)0.400.72 4.88

0.5Ni2P/USY 1.04

CN 1.8 2.8 2.0

R(nm)0.21960.23140.2595

r2(10-5nm2)0.93 1.84 5.70

In this equation àr 0

A eobs Tis the observed rate in mol g -1s -1,q c is the catalyst density in g cm -3,R is the catalyst particle size 650–1180l m (ave 0.09cm),D e is the diffusivity in cm 2s -1,C AS is the concentration at the sur-face in mol cm -3.Details are in the Supplementary In-formation section.

The overall conversion and TOF on 2-MTHF HDO were affected by the Ni 2P dispersion which decreased with in-creasing Ni 2P loading.The 1.5Ni 2P and 2.0Ni 2P samples showed similar CO adsorption capability and exhibited almost the same activity for the 2-MTHF HDO.In contrast to these samples,the lower loading 0.5Ni 2P and 1.0Ni 2P samples showed superior conversion and TOF in the range of temperature from 513to 553K.The apparent activation energies (Ea)estimated from temperature variation ex-periments were 68,71,83and 119kJ mol -1over the 0.5,1.0,1.5and 2.0Ni 2P/USY catalysts,respectively.It was earlier established from alloying studies of NiFeP samples that the 2-MTHF HDO reaction at these conditions is structure-insensitive,and that the rate-determining step which produces 2-pentoxide and 1-pentoxide intermediates involves a single surface Ni atom [39,47].The results here indicate that there is a particle-size effect,The ?tting

spectra discussed in the previous coordination remains con-coordination increases with de-can be interpreted as due to an particles by pyramidal sites with vs.fourfold coordination)for result was found for Ni 2P of different surface areas were found to have more may involve a single Ni atom sites are more active than tetra-in Fig.4b).

over the Ni 2P/USY catalysts is 2-MTHF was mainly converted oxygenates (C 5H x O,x =10or pentanone and pentanol.Trace also detected in the product 5,pentane and butane were the HDO in the high tem-whereas at lower temperatures It is interesting that with increases in Ni 2P load-cleavage producing CO (decar-over the high loading samples.requires adjacent in catalysts with larger particle tested for the HDO of 2-MTHF condition which were used for the Ni 2P/USY catalysts (Fig.4a).It is known that acidic sites in Y zeolites facilitate alkane cracking and dehy-drogenation and dehydration of alcohol species.Even though USY contains a high density of acid sites,around 5%conversion was achieved for the 2-MTHF HDO at 593K where Ni 2P/USY showed 100%conversion.Main species observed in the products of 2-MTHF HDO over USY were oxygenates and pentene rather than pentane which is formed by hydrogenation of pentene (Fig.5e).This result shows that 2-MTHF is inactive over the bare USY and Ni 2P sites in the Ni 2P/USY sample are mainly involved in the rate-determining step for the 2-MTHF conversion.Possibly,hydride transfer on the USY surface itself is not enough to induce HDO of 2-MTHF so the effect of acidic sites in USY on the 2-MTHF HDO is negligible.

3.2Reaction Network for 2-MTHF Conversion Over

the Ni 2P/USY Figure 6compares the conversion and selectivity of prod-ucts for the HDO of 2-MTHF over the 1.0Ni 2P/USY catalyst as a function of site contact time obtained from the following equation.

550

Pyr

Ni P

Tet

Contact time seT

?Quantity of sitesel mol=gT?Catalyst weight geT2àMTHF flow rateel mol=sT

Site contact time was varied in the range from0.17to 1.95s while keeping the inlet molar ratio of H2to2-MTHF constant at19.An increase in contact time signi?cantly raised conversion especially at593K.This increase in conversion was accompanied by a higher selectivity to pentane(Fig.6b)and butane(Fig.6d)which is consistent with the results of the activity tests shown in Fig.5.The selectivity to1-pentanol(Fig.6c)increased and then de-creased as the site time increased.As stated before,pen-tanol formation was favored at lower temperature.The selectivity to the other products,2-pentene(Fig.6e), 2-pentanone(Fig.6f),pentanal(Fig.6g)and1-pentene (Fig.6h),continuously decreased with increasing contact time.At the same conversion,butane,pentanal,1-pentene, 2-pentene and2-pentanone selectivity increased as the re-action temperature increased(S1).The results of the effect of site contact time on the product selectivity indicate that the overall HDO of2-MTHF over the Ni2P/USY in the given reaction condition occurs sequentially with2-pen-tanone,pentene and pentanal as the primary products, pentanol as the secondary product and pentane and butane as the?nal products.This is similar to what was obtained earlier on Ni2P/SiO2[38,47].Athough not shown here,an additional experiment with2-pentanone as a reactant over the Ni2P/SiO2catalyst was conducted and it was found that 2-pentanone is not the reaction intermediate for the pro-duction of1-pentanol and butane.Signi?cant quantities of pentane(95.4%)and2-pentanol(4.1%)were observed as the reaction products at a conversion of46%.

Based on these results,a reaction pathway with two branches for the2-MTHF HDO over Ni2P/USY can be proposed as shown in Fig.7.Initially,2-MTHF is adsorbed on the catalyst surface and the5-membered ring is opened through hydrogenolysis which produces pentoxide inter-mediates.The two branches occur because ring opening can occur on either side of the oxygen atom(with and

without a methyl group)to give different products.In the upper branch,a2-pentoxide intermediate is formed,which converts to2-pentanone via a-H-elimination or undergoes hydrogenation to2-pentanol,an intermediate which is consumed rapidly to produce pentane through hydrogena-tion and dehydration.In the lower branch,a1-pentoxide intermediate is formed,which is deoxygenated through a similar pathway as the2-pentoxide.The1-pentoxide con-verts to n-pentanal via a-H-elimination or undergoes hy-drogenation to1-pentanol,which is consumed rapidly to produce pentane through hydrogenation and dehydration. In addition,there is another pathway for the1-pentoxide,

namely when the n -pentanal is formed,instead of des-orbing,it can undergo decarbonylation to CO and n -butane.Product selectivity depends on the relative rate of surface reaction and desorption,which is strongly affected by re-action temperature.In addition,C–C bond cleavage which produces butane is also in?uenced by the particle size of active phase.Figure 8shows possible molecular steps for the butane production from the 1-pentoxide intermediate.In the scheme,a -H elimination from the pentoxide pro-duces an g 2(C,O)species,and this is followed by

an

Fig.7Proposed reaction pathway for the 2-MTHF HDO over the Ni 2

P/USY

Fig.8Subsequent reaction of the 1-pentoxide intermediate for the C–C cleavage to produce butane

additional a-H elimination to produce an g1(C)acyl in-termediate which is known as a reaction intermediate for C–C bond cleavage from the oxygenated hydrocarbon.A neighboring Ni site is necessary to accomplish the con-version of the acyl intermediate to n-butane.As shown in Table3,the Ni–Ni coordination numbers are the largest for the higher loading samples,as expected for larger particle sizes.Moving in the opposite direction,the Ni–P(II)co-ordination,which is associated with pyramidal sites,is smallest in the largest Ni2P particles,indicating that such pyramidal sites are relatively less plentiful than tetrahedral sites in the large particles.The larger amounts of the te-trahedral sites are likely due to termination of the particles,so the larger particles have more tetrahedral sites on the surface.These have lower amounts of P,and this may enhance H removal and subsequent C–C bond cleavage from the1-pentoxide https://www.doczj.com/doc/a010796092.html,rger Ni2P particles have more adjacent Ni atoms and this favors butane for-mation because the decarbonylation reaction requires ad-jacent Ni atoms.A possible reaction network is shown in Fig.7and the details of the decarbonylation steps are given in Fig.8.

Figure9shows that the selectivity ratio of pentane to butane gradually decreases with increasing reaction tem-perature because the formation of butane is more sensitive to temperature than that of pentane as shown in Fig.8.The Ni2P/USY containing lower amounts of Ni2P,0.5and1.0 Ni2P/USY,produced comparatively less butane than the higher loading catalysts and the selectivity ratio decreased as the loading amounts of Ni2P in the Ni2P/USY increased. This indicates that butane production is favored on the large catalyst particles rather than the small particles which have lower Ni–Ni coordination(Table3).This is reason-able since C–C bond cleavage is structure-sensitive and generally occurs on ensembles of metal sites[48].It could be considered that the g2(C,O)intermediate which is converted to an g1(C)acyl intermediate is stabilized well on the large particles,so selectivity toward C–C bond cleavage is relatively enhanced on the high loading sam-ples.It is also possible that acidic sites on the USY support, which are exposed more on the lower loading Ni2P/USY, catalyze dehydration of pentanol and enhance the pentane production.

3.3Effect of Reactant Partial Pressure

on the Conversion and Selectivity Over the Ni2P/

USY

Figure10shows the effect of hydrogen and2-MTHF partial pressure on the conversion and selectivity of the products and reaction rate for the2-MTHF HDO at573K. Conversion(Fig.10a)and selectivity(Fig.10b,c)were sensitive to H2partial pressure.As the H2partial pressure increased,the total conversion of the2-MTHF improved and the product selectivity to1-pentanol and pentane in-creased while selectivity to the other products declined. The results are consistent with the reaction scheme pro-posed in Fig.7.That is,selectivity to products such as pentane and1-pentanol which are produced via hydro-genation increased,whereas selectivity to products which are produced through dehydrogenation decreased with an increase in H2partial pressure.Again,as H2partial pres-sure increased,the total conversion of the reaction was enhanced because the rate-determining ring-opening steps involve hydrogenation.

4Conclusions

In this study,Ni2P catalysts supported on USY were syn-thesized by temperature-programmed reduction with dif-ferent Ni2P loading and were evaluated for the vapor-phase HDO of2-MTHF.Metal dispersion decreased in the range of3–12%with increasing loading of Ni2P and X-ray ab-sorption spectroscopy showed that low loading catalysts have strong Ni–P interactions and reduced Ni–Ni coordi-nation.Conversion and selectivity for the2-MTHF HDO depended on metal dispersion and this was ascribed to structural changes in the Ni2P particles as indicated by X-ray absorption spectroscopy.Speci?cally,more highly dispersed Ni2P particles of smaller size have excess square pyramidal sites on their surface,while larger Ni2P particles have more tetrahedral sites.The activity for the2-MTHF HDO increased with enhanced dispersion of Ni2P and the major products were pentane and butane over all catalysts. High loading samples were more effective than low load-ing samples for C–C bond cleavage which occured on the metallic sites.The HDO of2-MTHF over the Ni2P/USY was found to commence with ring-opening to produce1-or 2-pentoxide intermediates followed by dehydrogenation to produce oxygenate intermediates such as2-pentanone and n-pentanal,with subsequent hydrogenation to form n-pen-tane as a?nal product via pentanol intermediates.As the H2partial pressure increased,the total conversion of the 2-MTHF rose and the selectivity of products which are produced via hydrogenation increased.Pentanol formation was favored at low temperature,whereas pentane formation through hydrogenation/dehydration and butane formation via C–C bond cleavage were enhanced at high temperature.

Acknowledgments This work was supported by Development of Next-generation Technology for Strategic Utilization of Biomass Energy of New Energy and Industrial Technology Development Or-ganization(NEDO),Japan and JSPS KAKENHI Grant Number 26289301,the National Science Foundation under Grant CHE-1361842and the US Department of Energy under Grant DE-FG02-96ER14669.The XAFS experiments were conducted under approval of PF-PAC(Project No.2012G655).

References

1.Ruddy DA,Schaide JA,Ferrell JR III,Wang J,Moen L,Hensley

JE(2014)Recent advances in heterogeneous catalysts for bio-oil upgrading via‘‘ex situ catalytic fast pyrolysis’’:catalyst devel-opment through the study of model compounds.Green Chem 16:454–490

2.Moon J-S,Kim E-G,Lee Y-K(2014)Active sites of Ni2P/SiO2

catalyst for hydrodeoxygenation of guaiacol:a joint XAFS and DFT study.J Catal311:144–152

3.Serrano-Ruiz JC,Dumesic JA(2011)Catalytic routes for the

conversion of biomass into liquid hydrocarbon transportation fuels.Energy Environ Sci4:83–99

4.Bulushev DA,Ross JRH(2011)Catalysis for conversion of

biomass to fuels via pyrolysis and gasi?cation:a review.Catal Today171:1–13

5.Chang J,Danuthai T,Dewiyanti S,Wang C,Borgna A(2013)

Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts.Chem Cat Chem5:3041–3049

6.Furimsky E(2013)Hydroprocessing challenges in biofuels pro-

duction.Catal Today217:13–56

7.Panwar NL,Kothari R,Tyagi VV(2012)Themo chemical con-

version of biomass-Eco friendly energy routes.Renew Sustain Energy Rev16:1801–1813

8.Bridgwater AV(2012)Review of fast pyrolysis of biomass and

product upgrading.Biomass Bioenergy38:68–94

9.Czernik S,Bridgwater AV(2004)Overview of applications of

biomass fast pyrolysis oil.Energy Fuels18:590–598

10.Mohan D,Pittman CU Jr,Steele PH(2006)Pyrolysis of wood/

biomass for bio-oil:a critical review.Energy Fuels20:848–889 11.Custodis YBF,Hemberger P,Ma Z,van Bokhoven JA(2014)

Mechanism of fast pyrolysis of lignin:studying model com-pounds.J Phys Chem B118:8524–8531

12.Moraes MSA,Migliorini MV,Damasceno FC,Georges F,

Almeida S,Zini CA,Jacques RA,Carama?o EBJ(2012) Qualitative analysis of bio oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time-of-?ight mass spectrometric detector.

J Anal Appl Pyrol98:51–64

13.Zhang Q,Chang J,Wang T,Xu Y(2007)Review of biomass

pyrolysis oil properties and upgrading research.Energy Convers Manage48:87–92

14.Mortensen PM,Grunwaldt J-D,Jensen PA,Knudsen KG,Jensen

AD(2011)A review of catalytic upgrading of bio-oil to engine fuels.Appl Catal A407:1–19

15.Boullosa-Eiras S,L?deng R,Bergem H,Sto¨cker M,Hannevold

L,Blekkan EA(2014)In:Spivey JJ,Han YF,Dooley KM(eds) Potential for metal-carbide,-nitride,and-phosphide as future hydrotreating(HT)catalysts for processing of bio-oils.Catalysis,

A Specialist Periodical Report,vol2.Royal Society of Chem-

istry,London

16.S?enol OI˙,Viljava T-R,Krause AOI(2007)Effect of sulphiding

agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts.Appl Catal A326:236–244

17.S?enol OI˙,Ryymin E-M,Viljava TR,Krause AOI(2007)Reac-

tions of methyl heptanoate hydrodeoxygenation on sulphided catalysts.J Mol Catal A268:1–8

18.Ryymin E-M,Honkela ML,Viljava TR,Krause AOI(2009)In-

sight to sulfur species in the hydrodeoxygenation of aliphatic esters over sul?ded NiMo/c-Al2O3catalyst.Appl Catal A 358:42–48

19.Romero Y,Richard F,Brunet D(2010)Hydrodeoxygenation of

2-ethylphenol as a model compound of bio-crude over sul?ded Mo-based catalysts:promoting effect and reaction mechanism.

Appl Catal B98:213–223

20.Bui VN,Laurenti D,Afanasiev P,Geantet C(2011)Hy-

drodeoxygenation of guaiacol with CoMo catalysts.Part I:pro-moting effect of cobalt on HDO selectivity and activity.Appl Catal B101:239–245

21.Gutierrez A,Kaila RK,Honkela ML,Slioor R,Krause AOI

(2009)Hydrodeoxygenation of guaiacol on noble metal catalysts.

Catal Today147:239–246

22.Chen L,Zhu Y,Zheng H,Zhang C,Zhang B,Li Y(2011)

Aqueous-phase hydrodeoxygenation of carboxylic acids to alco-hols or alkanes over supported Ru catalysts.J Mol Catal A 351:239–252

23.Bunch AY,Wang X,Ozkan US(2007)Hydrodeoxygenation of

benzofuran over sul?ded and reduced Ni–Mo/c-Al2O3catalysts: effect of H2S.J Mol Catal A270:264–272

24.Yakovlev VA,Khromova SA,Sherstyuk OV,Dundich VO,Er-

makov DY,Novopashina VM,Lebedev MY,Bulavchenko O, Parmon VN(2009)Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel.

Catal Today144:362–366

25.Echeandia S,Arias PL,Barrio VL,Pawelec B,Fierro JLG(2010)

Synergy effect in the HDO of phenol over Ni–W catalysts sup-ported on active carbon:effect of tungsten precursors.Appl Catal B101:1–12

26.Oyama ST(2003)Novel catalysts for advanced hydroprocessing:

transition metal phosphides.J Catal216:343–352

27.Kora′nyi TI(2003)Phosphorus promotion of Ni(Co)-containing

Mo-free catalysts in thiophene hydrodesulfurization.Appl Catal A239:253–267

28.Sawhill SJ,Layman KA,Van Wyk DR,Engelhard MH,Wang C,

Bussell ME(2005)Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support.J Catal231:300–313

29.Lee Y-K,Shu Y,Oyama ST(2007)Active phase of a nickel

phosphide(Ni2P)catalyst supported on KUSY zeolite for the hydrodesulfurization of4,6-DMDBT.Appl Catal A322:191–201 30.Oyama ST,Lee Y-K(2008)The active site of nickel phosphide

catalysts for the hydrodesulfurization of4,6-DMDBT.J Catal 258:393–400

31.Oyama ST,Gott T,Zhao H,Lee Y-K(2009)Transition metal

phosphide hydroprocessing catalysts:a review.Catal Today 143:94–10732.Zhao HY,Li D,Bui P,Oyama ST(2011)Hydrodeoxygenation of

guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts.Appl Catal A391:305–310 33.Whiffen VML,Smith KJ,Straus SK(2012)The in?uence of

citric acid on the synthesis and activity of high surface area MoP for the hydrodeoxygenation of4-methylphenol.Appl Catal A 419:111–121

34.Yang Y,Ochoa-Herna′ndez C,O’Shea VAP,Coronado JM,Ser-

rano DP(2012)Ni2P/SBA-15as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane.ACS Catal2:592–598

35.Eiras SB,L?deng R,Bergem H,Sto¨cker MW,Hannevold L,

Blekkan EA(2014)Catalytic hydrodeoxygenation(HDO)of phenol over supported molybdenum carbide,nitride,phosphide and oxide catalysts.Catal Today223:44–53

36.Echeandia S,Pawalec B,Barrio VL,Arias PL,Cambra JF,

Loricera CV,Fierro JLG(2014)Enhancement of phenol hy-drodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3,An approach to O-removal from bio-oils.Fuel 117:1061–1073

37.Bando KK,Koike Y,Kawai T,Tateno G,Oyama ST,Inada Y,

Nomura M,Asakura K(2011)Quick X-ray absorption?ne structure studies on the activation process of Ni2P supported on K-USY.J Phys Chem C115:7466–7471

38.Iino A,Cho A,Takagaki A,Kikuchi R,Oyama ST(2014)Kinetic

studies of hydrodeoxygenation of2-methyltetrahydrofuran on a Ni–2P/SiO2catalyst at medium pressure.J Catal311:17–27 39.Shin J,Cho A,Takagaki A,Kikuchi R,Oyama ST(2012)Ligand

and ensemble effects in bimetallic NiFe phosphide catalysts for the hydrodeoxygenation of2-methyltetrahydrofuran.Top Catal 55:969–980

40.Bui P,Cecilia JA,Oyama ST,Takagaki A,Infantes-Molina A,

Zhao H,Li D,Rodr?′guez-Castello′n E,Jime′nez Lo′pez A(2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound.

J Catal294:184–198

41.Li W,Dhandapani B,Oyama ST(1998)Molybdenum phosphide:

a novel catalyst for hydrodenitrogenation.Chem Lett3:207–208

42.Ankudinov AL,Ravel B,Rehr JJ,Conradson SD(1998)Real-

space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure.Phys Rev B58:7565–7576 43.Lee Y-K,Oyama ST(2006)Bifunctional nature of a SiO2-sup-

ported Ni2P catalyst for hydrotreating:eXAFS and FTIR studies.

J Catal239:376–389

44.Janssen AH,Koster AJ,Jong KP(2001)Three-Dimensional

Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y.Angew Chem Int Ed40:1102–1104 45.Rundqvist S(1962)X-Ray investigations of Mn3P,Mn2P,and

Ni2P.Acta Chem Scand16:992–998

46.Wang X,Clark P,Oyama ST(2002)Synthesis,characterization,

and hydrotreating activity of several iron group transition metal phosphides.J Catal208:321–331

47.Cho A,Kim H,Iino A,Takagaki A,Oyama ST(2014)Kinetic

and FTIR studies of2-methyltetrahydrofuran hydrodeoxygena-tion on Ni2P/SiO2.J Catal318:151–161

48.Boudart M(1969)Catalysis by metals.Adv Catal Rel Subj

20:153–166

数字电子技术课程标准

《数字电子技术》课程标准 一、课程简介 (一)课程性质 《数字电子技术》基础课程是电气工程及其自动化专业本科生在电子技术方面入门性质的技术基础课,具有自身的体系和很强的实践性。本课程通过对常用电子器件、数字电路及其系统的分析和设计的学习,使学生获得数字电子技术方面的基本知识、基本理论和基本技能,为深入学习数字电子技术及其在专业中的应用打好基础。本课程在第三学期开设,其前导课程是《高等数学》、《电路原理》、《模拟电子技术》,后续课程是《单片机接口技术》、《电气控制与PLC》等。 (二)课程任务 本课程的主要任务是使学生掌握数字电路与系统的工作原理和分析设计方法;学会使用标准的集成电路和高密度可编程逻辑器件,掌握数字系统的基本设计方法,为进一步学习各种超大规模集成电路的系统设计打下基础。 二、课程目标和能力培养 (一)总体目标

使学生掌握数字电子技术的基本原理、基本理论、基本知识,具有较强的实验技能,对学生进行电子设计能力训练,为学习后续专业课程准备必要的知识,并为今后从事有关实际工作奠定必要的基础。在学习中认识电子技术对现代科学技术重大影响和各种应用,了解并适当涉及正在发展的学科前沿。 (二)具体目标 1.知识目标 掌握常用计数进制和常用BCD码; 掌握逻辑函数及其化简; 掌握TTL门电路、CMOS门电路的特点和常用参数; 理解常用组合逻辑电路的原理,掌握其功能; 理解JK触发器和D触发器的工作原理,掌握其逻辑功能; 理解常用时序逻辑电路的原理,掌握其功能; 掌握555集成定时器的工作原理和逻辑功能。 2.能力目标 能正确使用各种类型的集成门电路,并能利用集成门电路制作 成一定功能的组合逻辑电路; 能正确使用常用的中规模组合逻辑电路; 会使用触发器、寄存器、移位寄存器和常用的中规模集成计数 器; 能借助于仪器仪表,对小型数字系统的故障进行检测和维修; 3.素质目标

《数字电路》课程标准

精品课程 课程标准

《数字电路》课程标准 一、课程名称 数字电路 二、适用对象 三年制中职电子技术应用专业学生 三、课时 72 四、学分 4 五、课程性质 本课程是中等职业学校电子技术应用专业的一门专业基础教学与训练项目课程。其任务是:使学生掌握后续学校和工作中必须的数字电路知识,培养学生解决数字电路实际问题的能力,为学生从事相关职业岗位工作打下专业技能基础;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。 六、设计思路 该课程重点是培养学生的实际分析和设计能力,着重对学生分析问题能力的塑造。课程实施的主要依据是根据后续工作和学习来进行教学过程设计;“以职业能力为重点”进行教学目标确定。其总体设计思路是让学生在实验过程中推导新知识,并构建相关理论知识,发展职业能力。课程内容突出对学生基础能力的训练,以巩固和强化为主。

七、课程目标 本课程培养学生对于数字电路的基本理论和基本知识的掌握;理解组合逻辑电路的基本原理和电路的设计;掌握简单组合逻辑电路、集成逻辑门电路、触发器、时序逻辑电路、脉冲波形的产生电路。在分析设计过程中,可以对电路仿真,同时可培养学生的实用技能软件使用能力,电工焊接等技能,提高学生的理论和实践能力,为以后的实验、实训课程打下坚实的基础。 根据课程性质和任务,本课程突出以下知识和态度的培养: 1.知识目标 (1)掌握数制的相互转换和常用编码; (2)熟悉基本的逻辑门电路和集成逻辑门电路的应用; (3)熟悉组合逻辑电路的应用; (4)掌握基本RS触发器和常用集成触发器的应用和工作特点; (5)熟悉计数器和寄存器的结构,工作特点和应用; (6)熟悉555集成块的机构特点和工作过程,了解施密特触发器、多谐振荡器、单稳态触发器的特点。 (7)能够根据要求对数字应用电路进行设计和软件仿真。 2.素质目标 (1)严格遵守行业职业道德; (2)具有艰苦奋斗,自主创业、开拓创新精神; (3)掌握数字电子技术基础知识; (4)具有较强的学习能力、信息处理能力和应变能力; (5)树立良好的安全文明生产意识和爱护设备设施的责任意识; (6)培养学生爱岗敬业,认真负责,精益求精的职业道德情操; (7)具有发现问题、分析问题和归纳总结问题的能力,运用各种多媒体进行自学,发现和获取新知识的能力,能针对具体情况提出独到的见解。

数字电子技术课程简介

《数字电子技术实验》课程简介 一、课程基本信息 课程代码:0807234002 课程名称:数字电子技术实验 英文名称:Experiment of Digital Electronic Technique 学分:1 总学时:1周 讲课学时:0 实验学时:0 上机学时:0 课外学时:0 适用对象:电气工程及其自动化、自动化、测控技术与仪器、机械电子工程、建筑电气与智能化、能源与动力工程、车辆工程等专业 先修课程:电路原理、数字电子技术 开课单位:工业中心 二、课程内容与教学目标 《数字电子技术实验》课程的主要实验内容为:门电路逻辑功能测试及其EDA软件;一位大小比较器、全加器的设计;数据选择器和译码器的应用;集成计数器的设计及EDA 实现;集成移位寄存器译码显示综合设计;脉冲产生、计数、显示综合电路。通过本课程应达到以下基本要求: 要求学生熟练地使用数字电路中的各种测量仪器仪表和实验设备,掌握数字电路中常用集成芯片的测试方法及实验数据数据分析方法,加深和巩固对所学理论知识的认识和理解,熟悉仿真软件的使用。 在基本技能具备的前提下,完成数字电路的设计性实验。学生自己根据所学知识及设计性实验要求,根据实验室现有元器件确定实验方案,设计实验线路,选择实验方法和步骤,选用仪器设备,提出实验预案,独立操作完成设计性实验。设计性实验主要培养学生查阅文献、确定实验方法、选择仪器设备等方面的能力。 三、对教学方式、实践环节、学生自主学习的基本要求 《数字电子技术实验》课程采用教师讲解、演示和现场指导等方式进行实验教学。 学生自主学习时数应不少于10学时,基本要求: 1、认真阅读实验指导书,做好预习。 2、掌握常用实验仪器设备、仪表的操作方法。 3、掌握实验原理、步骤和方法。

数字电子技术基础课程教学大纲简介

数字电子技术基础课程教学大纲 英文名称:Digital Electronic Technology Fundamentals 课程编码:04119630 学时:64/12 学分:4 课程性质:专业基础课课程类别:理论课 先修课程:高等数学、普通物理、电路理论、模拟电子技术基础 开课学期:第4学期 适用专业:自动化、电气工程及其自动化、工业自动化仪表 一、课程教学目标 通过本课程的理论教学和实验训练,能够运用数字电子技术的基本概念、基本理论与分析方法和设计方法,解决较复杂的数字电路系统相关的工程问题,使学生具备下列能力: 1、使用逻辑代数解决逻辑问题; 2、正确使用数字集成电路; 3、分析和设计数字逻辑电路; 4、正确使用数字逻辑电路系统的辅助电路。 二、课程教学目标与毕业要求的对应关系 三、课程的基本内容 3.1 理论教学 1、数字逻辑基础(支撑教学目标1) 教学目标:使学生掌握逻辑代数的三种基本运算、三项基本定理、基本公式和常用公式。了解二进制的算术运算与逻辑运算的不同之处。掌握逻辑函数的四种表示方法(真值表法、逻辑式法、卡诺图法及逻辑图法)及其相互之间的转换。理解最小项的概念及其在逻辑函数表示中的应用。掌握逻辑函数的公式化简法和图形化简法。掌握约束项的概念及其在逻辑函数化简中的应用。

本章主要内容: (1)数字信号与数字电路 (2)逻辑代数 (3)逻辑函数及其表示方法 (4)逻辑函数的化简 2、逻辑门电路(支撑教学目标2) 教学目标:使学生了解门电路的定义及分类方法。二极管、三极管的开关特性,及分立元件组成的与、或、非门的工作原理。理解TTL反相器的工作原理,掌握其静态特性,了解动态特性。了解其它类型TTL门的工作原理及TTL集成门的系列分类。 本章主要内容: (1)半导体二极管门电路 (2)半导体三极管门电路 (3)TTL集成门电路 3、组合逻辑电路(支撑教学目标3) 教学目标:使学生掌握组合逻辑电路的设计与分析方法。理解常用组合逻辑电路,即编码器、译码器和数据选择器的基本概念、工作原理及应用。掌握译码器和数据选择器在组合电路设计中的应用。 本章主要内容: (1)概述 (2)组合逻辑电路的分析与设计 (3)常用组合逻辑电路 (4)用中规模集成电路设计组合逻辑电路 4、触发器(支撑教学目标3) 教学目标:使学生理解触发器的定义。掌握基本SR触发器、同步触发器、主从触发器、边沿触发的触发器的动作特点。掌握触发器的各种逻辑功能(DFF,JKFF,SRFF,TFF,T’FF)。掌握触发器逻辑功能与触发方式的区别。掌握画触发器工作波形的方法。 本章主要内容: (1)概述 (2)基本SR触发器(SR锁存器)和同步触发器(电平触发) (3)主从触发器(脉冲触发)和边沿触发器(边沿触发) (4)触发器的逻辑功能及描述方法 5、时序逻辑电路(支撑教学目标3) 教学目标:使学生掌握时序逻辑电路的定义及同步时序电路的分析与设计方法。了解异步时序电路的概念。理解时序电路各方程组(输出方程组、驱动方程组、状态方程组),状态转换表、状态转换图及时序图在分析和设计时序电路中的重要作用。了解常用时序电路(计数器、移位寄存器)的组成及工作原理及其应用。 本章主要内容: (1)时序电路的基本概念

数字电子技术课程教学大纲

数字电子技术课程教学大纲(试行) 课程名称:数字电子技术 英文名称:Digital Electronic Technique 学时数:45 其中实验学时数:15 课外学时数:14 适用专业:2006级电气自动化技术 1.大纲制定参考依据 (1)教高[2006]16号关于全面提高高等职业教育教学质量的若干意见。 (2)科技学院《2006级电气自动化技术专业教学计划说明》。 (3)2006年科技学院关于编制与修订高职课程教学大纲的要求。 2. 课程的性质、目的和任务 数字电子技术是电气自动化技术专业的重要专业技术基础课。是培养硬件应用能力的工程类课程,是电气技术训练的基本入门课程,构建学生电子技术的基本理论、基本技能和培养学生应用与创新能力。一方面为后续专业知识技术的学习奠定基础,另一方面培养训练学生电子技术方面的实践技能。它直接涉及学生的专业培养质量和职业能力。既是学生在今后较长时间赖以吸收新知识和自我完善发展及接受终身教育的专业基础课程。又是培养技术技能型人才的专业技术基础课程。

在教学过程中要注重理论联系实际,加强实践环节,重视工程观点,着重于电子元器件和基本电子电路的实际应用能力训练。将理论教学与实践教学有机融为一体。改变传统的“一支粉笔,一本书,一块黑板,一讲到底”的理论教学模式。改革教学模式、教学方法,以培养学生能力为核心、为主线。处理好近期的专业“必需够用”和将来的发展“迁移可用”的关系, 通过本课程的教学,使学生获得必要的数字电子技术方面的基本理论、基本知识和基本技能。培养学生分析问题和解决问题的能力。锻炼学生的工程实践能力。 3. 课程教学容与知、技、能点及教学基本要求 针对专业需要优化整合教学容,建立“能力包”化的教学容模块。本课程体系按照能力模块划分为六个模块。

《数字电子技术基础》课程教学大纲

《数字电子技术基础》课程教学大纲 一、课程基本信息 二、课程的性质与和教学目的 数字电子技术基础课程是计算机科学与技术专业非常重要的专业基础课,具有自身的体系和很强的实践性,在专业教学计划中具有举足轻重的地位。对于网络工程专业的新生在入学伊始全面了解计算机的专业领域知识,了解计算机在各方面最新发展及应用会有很大的帮助。本课程的任务是:通过对常用电子器件、数字电路及其系统的分析和设计的学习,使学生获得数字电子技术方面的基本知识、基本理论和基本技能,为深入学习测控技术及其在专业中的应用打下基础。通过这门课程的学习,可以使计算机科学与技术专业的学生一进入大学就能够对自己今后要学习的主要知识、专业方向有一个基本了解,为后续课程构建一个基本知识框架,使学生对以后的专业学习能够做到心中有数,为以后学习和掌握专业知识提供必要的专业指导。 三、教学内容和基本要求 主要本课程包括:逻辑代数的基础知识、门电路、组合逻辑电路、触发器、时序逻辑电路、脉冲产生与整形电路、A/D与D/A转换电路等。 第一章绪论 1)了解数字电路及其常用芯片、对电子设计自动化技术进行简介。 2)了解数字电子技术基础课程。 第二章数制和码制 1)掌握二进制、十六进制数及其与十进制数的相互转换。 2)掌握8421编码,了解其他常用编码。 第三章逻辑代数基础 1)掌握逻辑代数中的基本定律和定理。 2)掌握逻辑关系的描述方法及其相互转换。 3)掌握逻辑函数的卡诺图化简方法。 第四章门电路 1)了解半导体二极管、晶体管和MOS管的开关特性。 2)了解TTL、CMOS门电路的组成和工作原理。 3)掌握典型TTL、CMOS门电路的逻辑功能、特性、主要参数和使用方法。 4)了解ECL等其它逻辑门电路的特点。 第五章组合逻辑电路

数字电子技术教学大纲

《数字电子技术》课程教学大纲 执笔人:张晓冬等编写日期:2012年12月 一、课程基本信息 1.课程编号:94L117Q 2.课程体系/类别:专业类/专业基础课,专业主干课 3.学时/学分:64/4 4.先修课程:电路、模拟电子技术 5.适用专业:电气工程及其自动化 二、课程教学目标及学生应达到的能力 本课程是电气信息类专业的主要技术基础理论课程之一,是该专业的主干课程。 本课程的教学目的是使学生掌握数字电子技术的基本工作原理、基本分析方法和基本应用技能,使学生能够对各种基本逻辑单元进行分析和设计,学会使用标准的集成电路和可编程逻辑器件,并初步具备根据实际要求应用这些单元和器件构成简单数字电子系统的能力,为后续专业课程的学习奠定坚实的基础。 三、课程教学内容和要求

四、课程教学安排 在教学方法上,采取课堂讲授、实验及上机操作、课堂讨论、课后自学、完成作业及研究性教学作品等多种形式。通过本课程各教学环节的有机结合,培养学生分析问题、解决问题和应用实践的能力。本课程理论与实践并重,在强调理论知识学习的同时,安排较多的学时用于实验与上机仿真,提高学生综合应用知识解决问题的能力。 (一)课堂讲授 在教学过程中,教师应注重加强基础,对数字电路基本单元的基本概念、基本原理、基本分析方法进行适当详细的讲解,并指出每章的重点和难点。讲授中应尽量结合数字技术的最新研究成果,注重理论联系实际,通过电子课件、上机实验等多种形式展示、讨论,启迪学生的思维,加深学生对有关概念、内容和方法的理解,使学生逐渐掌握一般数字电路系统的分析与设计方法。 (二)教学方法 本门课程已制作电子教案,可在适当章节或适当时间使用。采用多媒体与黑板相结合的手段进行教学,既重“量”又重“质”,既要注重内容的广泛性,又要突出重点。 号召学生参观大型电子科技展览和数字技术成果展,使学生了解数字技术的最新发展成果,拓宽其视野。 (三)课堂讨论和课后自学 为了培养学生的自学能力和分析、处理问题的能力,对各章的重点和难点问题,采用课堂讨论的形式,加深理解。在课堂讨论中,同学们还可以交流学习内容和体会,起到互相促进、共同进步的作用。 (四)实验 加强学生的动手能力的培养,学生在实验环节除完成教师安排的任务,还可以根据实际情况,自选一些题目进行设计。 1.实验目的:加深对课堂所学知识的理解,培养学生的实践能力。 2.实验前指导:实验前教师应做实验内容、要求方面的指导,并要求学生先做些实验前的预习准备工作,经过预习要达到: ①明确实验目的和要求; ②熟悉实验内容,完成实验电路设计; ③了解实验验收标准和具体考核方法。 3.实验项目:实验内容紧靠理论大纲。共7个实验,16学时。 五、课程的考核

数字电子技术课程标准

课程标准 课程名称:数字电子技术 课程代码:02018 适用专业:应用电子技术、通信技术学时:72 学分:4.5 制订人: 审核:

《数字电子技术》学习领域(课程)标准 一、学习领域(课程)综述 (一)学习领域定位 “数字电子技术”学习领域由岗位群的“电子产品技术支持岗位”行动领域转化而来,是构成应用电子技术和通信技术专业框架教学计划的专业学习领域之一,其定位见表一: (二)设计思路 本学习领域注重培养分析问题、解决问题的能力、强化学生动手实践能力,遵循学生认知规律,紧密结合应用电子及通信技术专业的发展需要,为将来从事电子产品的设计、检测奠定坚实的基础。将本课程的教学活动分析设计成若干项目或工作情景,以项目为单位组织教学、并以典型设备为载体,通过具体案例,按目实施的顺序逐步展开,让学生在掌握技能的同时,引出相关专业理论知识,使学生在技术训练过程中加深对专业知识、技能的理解和应用、培养学生的综合职业能力,满足学生职业生涯发展的需要。 本课程在内容组织形式上强调了学生的主体性学习,在每个项目实施前,先提出学习目标,再进行任务分析,学生针对项目的各项任务进行相关知识的学习,并通过多种实践活动实施项目以实现学习目标。最后根据多元化的评分标准进行自我评价。 (三)学习领域(课程)目标 1. 方法能力目标: ●能根据项目任务或工作,制订项目完成工作计划; ●学会自我学习、收集和检索信息、查阅技术资料; ●学会学习和工作的方法,勤于思考、做事认真的良好作风; ●培养学生一丝不苟、刻苦钻研的职业道德;

●学会在产品制作过程中进行技术指导、质量管理和成本核算方法。 2. 社会能力目标: ●建立团结协作的精神,能与人沟通和合作完成工作任务; ●养成勇于创新、敬业乐业的工作作风; ●形成清晰的逻辑思维意识,正确辨别事物的真假; ●了解电子行业技术应用的发展前景,拓宽产品开发的思路; ●掌握产品生产工艺要求,培养工作的质量意识、安全意识; ●具有较强的社会责任感,为祖国发展强大贡献力量的责任意识; ●积累丰富的工作经验。 3. 专业(职业)能力目标: ●能熟悉数字信号和数字电路的特点; ●能正确使用逻辑门电路; ●能正确分析组合逻辑电路的功能; ●能正确分析时序逻辑电路的功能; ●能熟练使用组合逻辑电路设计实际的电路; ●能熟练使用时序逻辑电路设计实际的电路。 二、学习领域(课程)描述 学习领域描述包括学习领域名称、学期、参考学时、学习任务和学习领域目标等,见表二: 表二学习领域的描述

《数字电子技术》课程标准

《数字电子技术》课程标准
课程代码 课程类型 课程学分 修读学期 020******* 理实一体课程 4.5 学分 第 3/3/3 学期 中国北车长春轨道客车股份有限公司 审核人 王屹 课程类别 课程性质 课程学时 适用专业 专业课程 必修课程 70 学时 应用电子技术/电气自动化技 术/城市轨道交通控制
合作开发企业 执笔人
裴蓓、李铁维
1.课程定位与设计思路 1.1 课程定位 本课程是应用电子技术专业、电气自动化技术专业、城市轨道交通控制专业三个专 业的专业基础课,是专业必修课程。其功能是通过数字电子技术的理论学习与技能训练 的方式、采取讲练结合的方法,培养学生数字集成芯片识别、功能表读解、数字电路的 分析设计、制作与调试等能力。本课程与前修课程《模拟电子技术》课程相衔接,共同 培养学生对电子电路分析和运算的能力;与后续专业课程相衔接,从而培养学生对电子 电路设计、分析、调试与检测的能力。 1.2 设计思路 通过对三个专业的工作岗位的分析,确定了课程的设计思路为:围绕工作岗位所需 职业技能要求,根据学生的认知规律和职业能力培养规律,选取典型的学习项目,通过 理论学习和实践训练,逐步培养学生的职业工作能力和自主学习能力。 本门课程总学时为 70 学时,达到本课程的能力培养目标可获 4.5 学分。 2.课程目标 通过本课程的学习,使三个专业的学生能够应用常用的中、小规模数字集成电路进 行逻辑电路设计, 初步具备阅读和分析典型数字电子电路原理图的能力和数字电子电路 调试与检测能力,同时为学习后续的专业课程打下坚实的基础,提高学生的岗位适应能 力和职业素质。
-1-

《数字电子技术》课程教学大纲

《数字电子技术》课程教学大纲 大纲执笔人:吴一帆大纲审核人:王创新 课程编号:0809000315 英文名称:Digital Electronic Technology 学分: 3 总学时:48 。其中,讲授 48 学时 适用专业: 自动化、测控技术与仪器、电子信息科学与技术、光信息科学与技术等 专业本科二年级或三年级学生。 先修课程:高等数学、电路分析、大学物理、模拟电子技术 一、课程性质与教学目的 《数字电子技术》是自动化、测控技术与仪器等专业本科生的一门主要技术基础课,是现代新兴技术如计算机技术、信息技术等的基础,是一门必修课。学习电子技术课程,对培养学生的科学思维能力,树立理论联系实际的工程观点和提高学生分析和解决问题的能力,具有极其重要的作用。 《数字电子技术》是电子技术基础系列课程中重要的组成部分。通过本课程的学习,应使学生掌握数字电子技术的基本概念、基本原理和基本分析方法,以及典型电路的设计方法和基本的实验技能, 能准确设计简单数字电路,能利用所学知识进行电子综合设计,为今后的学习和解决工程实践中所遇到的数字系统问题打下坚实的基础。 二、基本要求 通过本课程的学习应达到下列要求: 1、掌握逻辑代数的基本定律、规则和基本公式,掌握逻辑问题的描述方法和逻辑函数的化简方法。 2、掌握常用的半导体器件的开关特性和主要参数,了解数字集成电路结构和工作原理,掌握其性能和使用方法。掌握基本逻辑门电路的逻辑功能和特点和符号,了解逻辑门电路的结构、特性,能够根据应用正确选择数字逻辑器件。 3、掌握组合逻辑电路的一般分析和设计方法,掌握组合逻辑器件的功能极其描述方法。了解常用组合逻辑器件的逻辑功能及其特点,能够正确使用集成组合逻辑器件实现相关应用。

数字电子技术-课程标准(完整版)

《数字电子技术》课程标准 课程编码:课程类型:理论+实践 课程性质:必修课适用专业:应用电子技术/电气自动化技术 学时:68学时学分:4 课程负责人:汤怀 参编人员: 一、课程定位 (一)课程性质 数字电子技术课程,是高职应用电子技术的专业基础核心课程;采用理实一体化教学模式,边学边做,做学结合,通过实践巩固理论知识,同时培养学生的动手能力。该课程的功能在于让学生从整体上对应用电子技术所需知识和技能有一个初步认识,使学生具备电子技术电路分析、设计和制作的基础知识和相关的基本职业技能,为学生就业打下坚实基础;提高学生的专业素养,培养学生的创新能力,为后续专业课程的学习作好前期准备。(二)课程作用 针对电子产品加工和生产人员所从事的电子产品加工、元器件检测、电子产品维修与调试、产品质量检测、电子产品开发等到典型工作任务进行分析后,归纳总结出来其维修与调试所需求的数字电子产品生产、装配、调试、检测、维修等能力要求而设置的教学内容。对学生职业能力和职业素质的养成起到明显的支撑作用。其目标是使学生能够掌握电子专业必需的电子技术基础知识,学会基本数字电路元器件和基本数字单元电路的分析、计算和设计、制作和调试测试方法,具备各种数字功能电路的仿真分析、设计开发技能,具有提取问题、数字设计和解决问题的能力。 (三)前导、后续课程 本课程是应用电子技术专业的基础课程, 前导课程有英语基础、数学基础、电工基础、模拟电子技术、高频电子技术、,并为后续的《EDA技术与VHDL语言》、《微机原理与接口》、《单片机技术及应用》、《电子产品维修技术》和《电子产品工艺与管理》等专业课程的学习打下良好的技术基础。

数字电子技术课程教学大纲

数字电子技术课程教学大纲 一、课程性质: 1、数字电子技术课程是自学院建院以来就开设的重要的专业基 础课程,是理工类学科的必修课程。 2、数字电子技术课程是我院计算机学院、机械学院必修的重要 课程,文科类学院学生选修的重要课程,是职业教育类学生非常重要的实践技术课程。 二、课程基本要求: 1、掌握电路分析的基本原理和方法。 2、理解常用电工电器的工作原理和特性。 3、掌握数字电路和模拟电路分析的基本原理和方法。 三、课程基本内容: 第一章逻辑代数基础 学习目的和要求,基本内容: 1)掌握数制与编码。 2)理解基本概念、公式和定理。 3)理解逻辑函数的化简。 4)掌握逻辑函数的表示方法及相互转换。 本章重点内容: 数制与编码及基本概念、公式和定理,理解逻辑函数的化简。 掌握逻辑函数的表示方法及相互转换。 第二章集成逻辑门电路 学习目的和要求,基本内容: 1)掌握数字电路中的二极管与三极管概念。 2)掌握数字电路中的二极管与三极管概念。 3)掌握TTL逻辑门电路。 4)理解集成逻辑门电路的应用 本章重点: 1.数字电路中的二极管与三极管概念; 2.数字电路中的二极管与三极管概念。 第三章组合逻辑电路 学习目的和要求,基本内容:

1)掌握编码器和译码器。 2)掌握加法器和数值比较器。 3)掌握数据选择器。 4)掌握组合逻辑电路中的竞争冒险。学习要求: 掌握编码器和译码器。理解加法器和数值比较器的作用。对数据选择器的计算熟练掌握。 ※第四章触发器 学习目的和要求,基本内容: 1)了解基本触发器。 2)理解主从触发器的概念。 3)了解边沿触发器。 4)掌握集成触发器。学习要求: (1)理解基本触发器的物理意义; (2)掌握主从触发器,及边沿触发器集成触发器的分析方法。重点与难点 重点:基本触发器难点:主从触发器,及边沿触发器集成触发器 第五章时序逻辑电路 学习目的和要求,基本内容: 1)了解时序逻辑电路的分析方法概念和主要物理量。 2)了解计数器。 3)掌握寄存器 4)掌握时序逻辑电路的设计方法及计算。学习要求: (1)了解时序逻辑电路的磁性能以及磁路中几个基本物理量的意义和单位 ( 2)了解分析计数器的基本定律 (3)理解寄存器 (4)了解时序逻辑电路的设计方法及计算本章重点与难点 重点:时序逻辑电路难点:时序逻辑电路的设计方法及计算 第六章脉冲波形的产生与整形 学习目的和要求,基本内容: 1)了解多谐振荡器的基本结构和工作原理。 2)理解施密特触发器。 3)掌握单稳态触发器的技术指标和使用方法。基本要求 1.了解多谐振荡器的基本构造 2.掌握施密特触发器的基本原理和基本方法; 3.了解单稳态触发器基本原理和基本方法;第七章数/ 模与模/ 数转换电路学习目的和要求,基本内容: 1)了解D/A 转换器的基本结构和工作原理。 2)理解A/D 转换器的基本结构和工作原理。

数字电子技术教学大纲

《数字电子技术》教学大纲 课程代码: 一.课程基本信息 课程名称:《数字电子技术》 学分:4分 学时:48课时 课程目的:《数字电子技术》是计算机、电力、电子通信及自动化等专业的主要技术课,是进一步学习专业课及以后从事计算机、通信、信息技术及电气工程技术等工作的一门必修课。 本课程教学效果的主要衡量指标: 课程性质:①.理论;②.理论+实践;③.实践. 主要授课方式:①.讲授型;②.师生交互型;③.讨论型;④.技能培养型;⑤.其他型. 拟安排授课星期:1、2、3、4、5、6 预修课程:《电路分析》、《模拟电子技术》 并修课程:《模拟电子技术》 二.课程简介及主要教学方式和方法简述 课程简介: 第1章为逻辑代数,介绍数制与编码。逻辑代数的基本概念,逻辑代数的公式、定理和规则,逻辑函数的化简以及逻辑函数的表示方法及其相互转换。 第2章为门电路,介绍半导体元件的开关特性,分立元件门电路,TTL集成门电路,CMOS集成门电路以及集成门电路的使用。 第3章为组合Logic电路,介绍组合逻辑电路的分析与设计,加法器,数值比较器,编码器,译码器,数据选择器以及数据分配器。 第4章为触发器,介绍基本RS触发器,同步触发器,主从触发器,边沿触发器以及不同类型触发器间的相互转换。 第5章为时序逻辑电路,介绍时序Logic电路的特点与分类,时序逻辑电路的分析,计数器,寄存器,顺序脉冲发生器以及时序逻辑电路的设计。 第6章为半导体存储器,介绍只读存储器以及随机存取存储器。 第7章为可编程逻辑器件,介绍简单可编程逻辑器件,高密度可编程逻辑器件以及PLD 开发工具MAX+plusⅡ。 第8章为脉冲信号的产生与整形,介绍555定时器及其应用,由门电路构成的单稳态触发器,由门电路构成的多谐振荡器以及由门电路构成的施密特触发器。 第9章为模拟量与数字量的转换,介绍数模转换器以及模数转换器。 第10章为实验和课程设计,介绍常用仪器与设备,电子电路设计的基础知识,数字电路实验以及数字电子技术课程设计。 主要教学方式和方法讲授,师生交互,讨论,实验以及技能培养等型式。 建议教材主编:李中发 书名:《数字电子技术》(第二版) 出版社:中国水利水电出版社 出版年代:2007年2月第2版 参考书主编::阎右 书名:《数字电子技术》

《数字电子技术》课程标准

《数字电子技术》课程标准 课程代码课程类别专业课程课程类型理实一体课程课程性质必修课程课程学分 4.5学分课程学时70学时 修读学期第3/3/3学期适用专业应用电子技术/电气自动化技术/城市轨道交通控制 合作开发企业中国北车长春轨道客车股份有限公司 执笔人裴蓓、李铁维审核人王屹 1.课程定位与设计思路 1.1课程定位 本课程是应用电子技术专业、电气自动化技术专业、城市轨道交通控制专业三个专业的专业基础课,是专业必修课程。其功能是通过数字电子技术的理论学习与技能训练的方式、采取讲练结合的方法,培养学生数字集成芯片识别、功能表读解、数字电路的分析设计、制作与调试等能力。本课程与前修课程《模拟电子技术》课程相衔接,共同培养学生对电子电路分析和运算的能力;与后续专业课程相衔接,从而培养学生对电子电路设计、分析、调试与检测的能力。 1.2设计思路 通过对三个专业的工作岗位的分析,确定了课程的设计思路为:围绕工作岗位所需职业技能要求,根据学生的认知规律和职业能力培养规律,选取典型的学习项目,通过理论学习和实践训练,逐步培养学生的职业工作能力和自主学习能力。 本门课程总学时为70学时,达到本课程的能力培养目标可获4.5学分。

2.课程目标 通过本课程的学习,使三个专业的学生能够应用常用的中、小规模数字集成电路进行逻辑电路设计,初步具备阅读和分析典型数字电子电路原理图的能力和数字电子电路调试与检测能力,同时为学习后续的专业课程打下坚实的基础,提高学生的岗位适应能力和职业素质。 具体如下: 2.1能力目标 (1)能够读、识常用74系列、4000系列等集成芯片并能进行功能测试及好坏判断。 (2)能够根据逻辑电路原理图分析由门电路构成的组合逻辑电路的逻辑功能。 (3)能够设计制作简单的组合逻辑电路和常用编、译码电路并进行调试。 (4)能够根据逻辑电路原理图分析时序逻辑电路的逻辑功能。 (5)能够设计制作简单的时序逻辑电路并使用万用表、示波器等仪器仪表进行调试。 (6)能够利用555定时器设计制作振荡电路,能进行参数计算并能使用万用表、示波器等仪器仪表进行调试。 (7)了解大规模集成电路半导体存储器的存储原理,能够分析ROM、RAM构成电路的功能,能够利用ROM、RAM构成功能电路。 2.2知识目标 (1)熟悉各种门电路的逻辑功能、功能描述方式及相互转换方法。 (2)了解半导体器件开关作用和开关特性。 (3)了解CMOS、TTL电路结构及工作原理、外特性、主要参数、使用方法和注

数字电子技术课程简介

数字电子技术课程简介 课程名称(中英文) 数字电子技术 Digital Electronics 授课 专业 信息学院 电信类专业 授课 年级 2年级 课程编号92151 课程类型必修课校级公共课();基础或专业基础课(√);专业课()选修课限选课(√);任选课() 授课方式课堂讲授(√);实践() 上机();案例讨论() 考核 方式 考试(√);考查(); 上机();论文() 课程教学总学时数 64 学时 学分 数 4 授课 时间 每学年第一学期 学时分配课堂讲授 64 学时;课内实验 0 学时 教材名称数字电路及系统设 计 作者赵曙光 出版社及 出版时间 高等教育出版社 2011年6月 参考教材数字电子技术基础 (第五版) 作者阎石 出版社及 出版时间 高等教育出版社 2008年 授课教师1 赵曙光职称教授单位及部门信息学院电子科学与 技术系 授课教师2 刘玉英职称讲师单位及部门信息学院电子科学与 技术系 授课教师3 李晓丽职称讲师单位及部门信息学院电子科学与 技术系 课程简介数字电子技术是一门正在日益发展的电子学科,它的理论是诸多电专业领域的基础。本课程主要介绍数字电路与逻辑设计的基本分析方法与设计方法,常用中规模集成模块(MSI)应用的综合训练,使学生初步掌握现代化的数字电路和系统的设计方法和实现方法,为培养高素质的电子学应用性人才和今后能从事与本专业有关的工程技术等工作打下一定的基础。本课程是电气信息类专业重要的专业(技术)基础必修课程,具有很强的实践性。 基本知识点1)数制与码制。数制的表示方法以及相互之间的转换;n位有符号二进制数的编码;二——十进制编码(BCD码)。 2)逻辑代数基础。逻辑代数的基本规律和常用公式、逻辑代数的规则、逻辑函数的最小项定义、逻辑函数的两种标准形式;一般与或表达式与最小项表达式之间的转换;逻辑函数的化简。 3)逻辑门电路。CMOS和TTL门电路的结构和工作原理;OC(集电极开路)门、三态(TSL)逻辑门和传输门电路的组成及工作原理;TTL与CMOS的主要特点、TTL的主要参数。 4)组合逻辑电路。组合逻辑电路的定义;典型组合逻辑功能电路的特性和应用方法。

数字电子技术基础课程教学大纲

《数字电子技术基础》课程教学大纲 课程编号:242018 课程名称:数字电子技术基础 英文名称:Fundamentals of Digital Electronics 课程类型: 专业基础课 总学时:93 讲课学时:72 实验学时:21 学时:93 学分:5 适用对象: 电子信息工程,通信工程 先修课程:《电路基础》《模拟电子技术基础》 一、课程性质、目的和任务 数字电子技术基础是信息类学科的一门重要的基础课。通过本课程的学习,使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力,为以后学习有关专业课程及进行电子电路设计打下坚实的基础。 二、教学基本要求 本课程主要讲述数字电路基本理论、基本知识、基本技能,以中规模集成逻辑器件为学习重点。学完本课程应达到以下基本要求: 1.了解各种门电路的基本结构,工作原理及外部特性,对各类数字逻辑门电路,特别是集成逻辑门电路有较系统地完整认识。 2.熟练掌握组合逻辑电路、时序逻辑电路、脉冲波形电路分析和设计的基本方法,能正确运用逻辑函数、卡诺图、状态转换图、真值表、波形图、时序图等方法对数字电路功能进行分析和计算。 3.掌握常用的编码器、译码器、数据选择器、加法器、比较器、计数器、寄存器、移位寄存器、顺序脉冲发生器、序列信号发生器、施密特触发器、单稳态触发器、多谐振荡器等中规模集成逻辑器件功能、应用以及用中规模集成器件解决一定的实际问题。 4.了解存储器、可编程逻辑器件的一般结构和工作原理,熟悉用存储器、可编程逻辑器件设计逻辑电路的原理和方法。

《数字电子技术》教学大纲

《数字电子技术》教学大纲 一、课程基本信息 课程编码:075112B 中文名称:数字电子技术 英文名称:Digital Electronic Technology 课程类别:专业基础及核心课 总学时:64 总学分:4 适用专业:电子科学与技术专业、电气工程及其自动化专业 先修课程:电路分析、模拟电子技术 二、课程的性质、目标和任务 课程性质:《数字电子技术》是电子科学与技术专业、电气工程及其自动化专业的一门专业基础课程,属于必修课。 课程目标:本课程主要使学生熟悉数字电路的基础知识,理解数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法。培养学生的逻辑思维和分析能力,使学生具有一定的分析、设计数字逻辑电路的能力,为数字系统的硬件设计奠定坚实的基础,并能在控制、信号处理等复杂系统及工程应用中加以利用。 课程任务:本课程要求学生掌握数字电路的基本概念、基本原理和基本方法,掌握常用数制、码制,熟练掌握逻辑运算及逻辑函数的化简,掌握组合逻辑电路的分析和设计方法,熟悉常用中规模组合逻辑器件的功能及应用,掌握同步时序逻辑电路的分析和设计方法,熟悉常用中规模时序逻辑器件的功能及应用,理解脉冲波形产生及整形电路的工作原理,了解存储器在数字电路中的应用,了解常用ADC和DAC芯片的技术指标。 三、课程教学基本要求 《数字电子技术》课程的教学环节主要是课堂教学,教师应按照教学大纲精心组织教学内容,每章布置相关习题,并安排适当的习题课。该课程与《数字电子技术实验》课程结合,帮助学生进一步理解数字电路相关理论知识,提高动手能力,使学生具备一定的数字电路设计能力。 四、课程教学内容及要求 第一章数制和码制(4学时)

《数字电子技术》课程教学大纲

《数字电子技术》课程教学大纲 课程名称:数字电子技术 课程代码: 学分 / 学时:3/51 适用专业:电子信息与电气工程类各专业 先修课程:基本电路理论 后续课程:数字电子技术实验 开课单位:电子信息与电气工程学院 一、课程性质和教学目标 课程性质:此课程是电子信息与电气工程类各专业的专业基础课。 教学目标:围绕数字电路的基本概念、基本工作原理,基本分析方法和基本设计方法,培养学生分析和解决实际问题的能力,为后续专业课程打下坚实的基础。 本课程各教学环节对人才培养目标的贡献见下表。

二、课程教学内容及学时分配 三、教学方法 以课堂教学为主,结合自学、课外作业、小组大作业等形式进行多样化教学模式。 使用英语原版教材,与国外相关课程教学接轨,进行双语授课;且同步开设全英语授课小班。 课堂教学主要讲解基本概念,基本原理,基本分析和设计方法,并结合具体应用实例深化讲解,使同学们更好地理解数字电路实现原理、提高对数字电路的兴趣、初步掌握简单数字电路的设计方法。课堂教学中还引入讨论,使同学们能更好地融入课堂教学。 大规模集成电路一章相对比较容易理解,交同学们自学,以培养同学们自主学习的意识、自主学习的能力和抓住要点的能力。 团组大作业能培养同学们的综合能力:熟练运用所学知识的能力、收集和提炼信息的能力、团队合作能力、表达能力等。 期中测验能督促同学平时学习的自觉性,同时也检验同学们前期的学习成效。 四、考核及成绩评定方式 最终成绩由平时作业、课堂表现、小组大作业、期中测验和期末考试成绩组合而成。各部分所占比例如下: 平时作业和上课参与程度:10%。主要考核对知识点的掌握程度、口头及文字表达能力。 小组大作业及报告讨论:10%。主要考核分析解决问题、创造性工作、处理信息、口头及文字表达等方面的能力。 期中测验:30%。主要考核前期对知识的掌握程度以及学习成效。 期末考试:50%。主要考核对该课程有关知识的掌握程度。

数字电子技术教学大纲

《数字电子技术》教学大纲 一、课程说明 【课程性质】数字电子技术是电子技术的一个重要组成部分,《数字电子技术》是电子信息专业本科学生一门重要的专业技术基础课程,数字电子技术是今后电子技术发 展的主要方向,本门课程的开设是为培养电子信息科学与技术、电子信息工程、 通信工程专业学生分析、设计数字电子电路,进而全面提高学生对电子电路应 用能力,本门课程还为后续课程的学习提供专业基础。 【目的任务】掌握数字电子技术的基本槪念、基本原理和基本的分析、设计方法。熟悉典型基本单元电路及数字系统读图。 【学习本课程的前设知识】学习本课程前,学生应具备一定的电子电路知识和初步的电路分析能力。 【总体目标与要求】《数字电子技术》是一门重要技术基础必修课程,通过本课程学习和实验训练,使学生掌握数字电子技术的基本理论,熟悉其基本概念、基本原理和 基本分析和设计方法,能进行简单的数字电路的安装和调试,并具备进一步学 习电子技术及其专业课的能力。 【教材与教学参考书】 教材:《电子技术基础》(数字部分)(第四版)高等教育出版社康华光主编《电子技术基础实验》高等教育出版社陈大钦主编 参考书:《数字电子技术基础》高等教育出版社阎石主编 《数字电路》西安电子科技大学出版社江晓安主编 《数字系统与设计》清华大学出版社韩宝琴主编 【课程总学时】理论课:72学时;实验课:24学时;总学时:96学时。 二、学时分配

三、教学内容和教学要求 理论部分: 第一章数字逻辑基础 [教学目的和要求] 通过本章的学习,使学生了解模拟信号与数字信号、模拟电路与数字电路的区别与联系,掌握数字量、数制的概念及不同数制的互化,掌握基本逻辑运算、逻辑函数的概念及逻辑问题的描述。 [教学内容] 引言 1.1模拟信号与数字信号 1.1.1模拟信号 1.1.2数字信号 1.1. 2.1 二值数字逻辑与逻辑电平 1.1. 2.2 数字波形 1.1. 2.3 模拟量的数字表示 1.2数字电路 1.2.1 数字电路的发展与分类 1.2.2 数字电路的分析方法与测试技术 1.3数制 1.3.1 十进制 1.3.2 二进制 1.3.3 二-十进制之间的转换 1.3.4 十六进制和八进制 1.4二进制码 1.5基本逻辑运算 1.6逻辑函数与逻辑问题描述 [教学建议] 基本逻辑运算、逻辑函数的概念及逻辑问题的描述是本章重点,尤其是逻辑函数的不同表示方法及其互相转换,应通过实例详细介绍。 [作业]2次 第二章门电路 [教学目的和要求]通过本章的学习,使学生掌握TTL门电路和CMOS门电路的逻辑功能及其电气特性,特别是输入特性和输出特性。 [教学内容] 引言 2.1 二极管的开关特性 2.2 BJT的开关特性 2.2.1 BJT的开关作用 2.2.2 BJT的开关时间

《数字电子技术》课程标准

《数字电子技术》课程标准 1 课程基本信息 2 课程定位 《数字电子技术》是电气自动化技术专业的专业课程,也是该专业学生的必修课之一。本课程主要有两部分内容,第一部分主要介绍数字电路的基础知识和基本功能电路,如数制和码制、逻辑门电路、集成触发器和脉冲信号的产生与整形等。注意培养学生进行简单逻辑设计、根据手册选用集成电路和正确使用仪表等能力。第二部分主要介绍基本数字部件和大规模集成电路。如组合逻辑电路、时序逻辑电路、数模和模数转换、半导体存储器和可编程逻辑器件。侧重培养学生综合运用所学知识正确选用集成器件进行设计和解决复杂问题的能力。为后续专业课程的学习打下必要的基础,模拟电子技术》学习领域的内容和分析方法是学生进行《变频器》、《单片机》、《PLC》、《毕业设计》、《顶岗实习》和取得“中高级维修电工证”的基础,是培养学生综合运用所学专业知识的重要一环。 3 课程设计思路 《数字电子技术》课程的设计总体思路是“引入行业企业技术标准,以职业岗位需求为依据,以职业能力培养为目标,采用工学结合的方式,企业和学校共同进行课程开发,以自主研发的教学设备为平台,以基于工作过程的实际项目为载体,以项目教学和任务驱动为方法,引入行业规范,培养学生电子技术综合应用的能力,为企业提供电子技术高技能人才”。 4 课程目标 《数字电子技术》以培养学生的综合工作能力为目的,以职业岗位需求为依据,在内容安排上,突出基本理论、基本概念和基本分析方法,回避繁琐的集成电路内部的分析和数学推导,综合运用各种教学方法、教学组织形式和教学手段,采用相应的考核方式组织教学。从工程的角度出发培养学生的工程思维方法、工作方法和解决实际问题的能力,使能力培养贯穿于教学的全过程。

相关主题
文本预览
相关文档 最新文档