当前位置:文档之家› 3D numerical simulations of sharp nosed projectile impact on ductile targets

3D numerical simulations of sharp nosed projectile impact on ductile targets

3D numerical simulations of sharp nosed projectile impact on ductile targets
3D numerical simulations of sharp nosed projectile impact on ductile targets

3D numerical simulations of sharp nosed projectile impact on ductile targets

M.A.Iqbal a ,*,A.Chakrabarti a ,S.Beniwal a ,N.K.Gupta b

a Department of Civil Engineering,Indian Institute of Technology Roorkee,Roorkee 247667,India b

Department of Applied Mechanics,Indian Institute of Technology Delhi,New Delhi-110016,India

a r t i c l e i n f o

Article history:

Received 13September 2008Received in revised form 3September 2009

Accepted 22September 2009Available online 2October 2009Keywords:

Oblique Impact Layered target

3D Numerical Simulation ABAQUS

a b s t r a c t

Three-dimensional FE model is presented for perforation under normal and oblique impact of sharp nosed projectiles on single and layered ductile targets.Numerical simulations have been carried out to study the behavior of Weldox 460E steel and 1100-H12aluminum targets impacted by conical and ogive nosed steel projectiles respectively.Weldox 460E steel targets of 12mm thickness in single and double layered combination (2?6mm)and 1100-H12aluminum targets of 1mm thickness in single and double layered combination (2?0.5mm)impacted at 0 ,15 and 30 obliquity were considered for simulations.The results of monolithic and layered targets were compared for each angle of impact.Monolithic targets were found to have higher ballistic resistance than that of the layered in-contact targets of equivalent thickness.Failure of both the targets occurred through ductile hole enlargement.However,ogive nosed projectile failed 1mm thick aluminum target through petal formation and conical nosed projectile failed 12mm thick steel target through a circular or elliptical hole enclosed by a bulge at rear surface.The explicit algorithm of ABAQUS ?nite element code was used to carry out the numerical simulations.Various parameters which play critical role in numerical simulation such as element size and its aspect ratio have been studied.

ó2009Elsevier Ltd.All rights reserved.

1.Introduction

The study of the behavior of ductile targets subjected to projectile impact is important to the design of safe protective structures such as military bunkers and armored vehicles.The problem has been extensively studied in the past,both experi-mentally and numerically,and several studies are available in literature.

Johnson and Cook [1]presented the Lagrangian EPIC code computations for oblique and yawed rod impact on thin single as well as spaced steel plates at different velocities.The results were found in good agreement with experiments as well as previously published computational results with Eularian MESA code.The computation time required in the case of EPIC code was found comparatively lesser than that of the MESA code.

Gupta and Madhu [2]studied the normal and oblique impact of armor-piercing projectiles of 6.2mm diameter on single and layered plates of mild steel,RHA steel and aluminum of thickness varying from 6to 40mm.They observed that in oblique impact,the angle of exit was smaller or greater than the angle of incidence

depending on the thickness of the plate and hardness of its mate-rial.For relatively thicker plates in two layers,the residual velocity was comparable to single plate of equal thickness.However,for thin plates in-contact the layered combination gave higher residual velocity for all the materials tested.

Borvik et al.[3,4]carried out experimental and axi-symmetric numerical investigation of Weldox steel plates impacted normally by blunt,hemispherical and conical nosed projectiles.Blunt projectiles were more ef?cient penetrators than hemispherical and conical projectiles at low velocities.However,at higher impact velocities,the conical projectile required less energy for perfora-tion.Close agreement was found between experimental and cor-responding numerical results.The simulations with conical nosed projectiles resulted in excessive mesh distortions and error termi-nation of program.Numerical results were improved by reducing the element size and using adaptive meshing.

Schef?er [5]used the Eulerian CTH hydrocode to model the perforation behavior of 30 oblique aluminum targets impacted by hemispherical nosed steel projectiles.The simulations were mainly focused on testing the capability of the Eulerian hydrocode to predict correctly the residual velocity and projectile-target defor-mations.It was concluded that pure Eulerian codes cannot model the experiments and the need for a hybrid code was felt which couples Lagrangian and Eulerian methods.

*Corresponding author.Tel.:t911332285866;fax:t911332275568.

E-mail addresses:iqbalfce@iitr.ernet.in ,iqbal_ashraf@https://www.doczj.com/doc/a710542451.html, (M.A.

Iqbal).

Contents lists available at ScienceDirect

International Journal of Impact Engineering

journal home page:

https://www.doczj.com/doc/a710542451.html,/locate/ijimpeng

0734-743X/$–see front matter ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.ijimpeng.2009.09.008

International Journal of Impact Engineering 37(2010)185–195

In an earlier paper,Gupta et al.[6],we studied the normal impact of blunt and hemispherical nosed projectiles on 1mm thick aluminum plates experimentally as well as numerically.Good agreement between the experimental and numerical results was found provided the mesh is suf?ciently re?ned.Adaptive meshing was employed in the case of hemispherical nosed projectile impact.Experimental and numerical behavior of thin single and layered aluminum plates impacted normally by blunt,ogive and hemispherical nosed projectiles were also studied,see Gupta et al.[7,8].Effect of projectile nose shape,impact velocity and plate thickness on the deformation of the target was studied.For two layers the residual velocity of the projectiles was comparable to that of the single plate of equivalent thickness,however,when the number of layers was increased the velocity drop was found to be higher in the case of equivalent monolithic plate.Adaptive meshing was employed to reduce the element distortion in all the cases of layered target plates as well as monolithic target plates impacted by ogive and hemispherical nosed projectiles.

Teng and Wierzbicki [9]tested six different ductile fracture models to identify the best suitable fracture criterion for high velocity perforation of ductile targets.For the evaluation of fracture models they performed 2D numerical investigations on steel and aluminum targets impacted by blunt nosed projectiles using ABA-QUS/Explicit.They concluded that among all models Johnson–Cook and Bao–Wierzbicki models predicted the realistic fracture pattern as well as the residual velocities.They also proposed a new cali-bration procedure for Johnson–Cook model particularly for the loading case dominated by compression.Dey et al.[10]studied the ballistic response of Weldox 700E steel plates impacted in single and layered con?guration by blunt and ogive nosed projectiles.The ballistic limit of 6mm and 12mm thick monolithic target plates was found to be higher for ogive nosed projectile impact than for the blunt nosed projectile impact.In the case of ogive nosed projectile impact the numerical analysis was not sensitive to the size of element,however due to excessive distortion of elements adaptive meshing was employed in this case.In case of impact by blunt nosed projectile however,a ?ner mesh was used without adaptive meshing.

Zhou and Stronge [11]studied the ballistic resistance of mono-lithic,double layered and sandwiched steel plates impacted nor-mally as well as at 30 and 45 obliquity by ?at and hemispherical nosed projectiles.Flat nosed projectile was found to have lower ballistic limit velocity than that of the hemispherical nosed pro-jectile.In the case of oblique impact by ?at nosed projectile layered plates were found to have higher ballistic limit than monolithic plates,and it was almost same in the case of oblique impact by hemispherical nosed projectile on monolithic plates and sandwich panels.For obtaining better results in the numerical simulations they suggested the re?nement of material constitutive relations including failure criterion.

Arias et al.[12]performed numerical simulations of impact behavior of 12mm thick Weldox steel plates subjected to impact by blunt,hemispherical and conical non deformable projectiles using the ABAQUS ?nite element code.The simulations were carried out with the adaptive as well as Lagrangian mesh.It was concluded that there were no signi?cant effect of adaptive meshing on the numerical

results.

Fig.1.Finite element model;(a)12mm thick Weldox steel target;(b)1mm thick 1100-H12aluminum target.

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

186

Teng and Wierzbicki [13]performed numerical simulations with ABAQUS ?nite element code to study the ballistic resistance of monolithic plates of 12mm thickness as well as double layered plates of equivalent total thickness.Steel plates having different ductility were impacted by blunt and conical nosed projectiles of different masses.The order of layering the target was studied.It was found that the con?guration with front layer of high ductility and low strength material and the rear layer of low ductility and high strength material gave highest ballistic resistance.

The studies carried out in the literature reveal that the problem of normal projectile impact on ductile targets has received considerable attention in the past,and in?uence of various pa-rameters such as projectile nose shape,impact velocity,target thickness and layered target has been explored experimentally as well as numerically.However,mechanics of perforation is quite complex and there are still aspects such as effect of obliquity on the ballistic resistance of monolithic and layered targets,which are not clearly understood and require further investigation.

Numerical analysis of perforation in oblique impact is rarely found in the literature since the prediction of accurate behavior of the target requires three-dimensional numerical simulations.Mechanics of perforation is seen to be quite complex,and depen-dent on several parameters of the situation including thickness and material properties of the target and the geometry of the projectile.The present investigation focuses on the three-dimensional nu-merical simulation of the behavior of ductile targets subjected to normal as well as oblique impact by sharp nosed projectiles using ABAQUS/Explicit ?nite element code.1mm thick 1100-H12aluminum targets of diameter 255mm were impacted by 52.5grams,19mm diameter ogive nosed steel projectiles [7].And,

12mm thick Weldox 460E steel targets of diameter 500mm were impacted by 197grams,20mm diameter conical nosed steel projectiles [3].Both the targets were impacted in single and double layered combination (0.5mm ?2?1mm thick aluminum target and 6mm ?2?12mm thick steel target)of equivalent total thickness at 0 ,15 and 30 obliquity.The impact velocities of conical nosed projectile were kept same as in the experimental investigation carried out by Borvik et al.[3]and that of the ogive nosed projectile were kept identical to those employed in our earlier experiments,Gupta et al.[7].Single as well as layered targets were hit at same incident velocities at each angle of inci-dence.Ballistic resistance of monolithic and layered targets was compared at each angle of impact.Effect of critical parameters such as element size as well as its aspect ratio on the numerical results was also studied.Aspect ratio of the elements was kept unity in the in?uenced region,and in the other portion of the target plate it was kept close to unity.Failure of both the targets witnessed ductile hole enlargement.However,failure of 1mm thick aluminum target occurred through petal formation.On the other hand,in the case of 12mm thick Weldox 460E steel target a hole at the centre of target was found enclosed by a bulge on its rear surface.In general the resistance of monolithic target was found slightly higher than that of the layered in-contact target of equivalent thickness.Ballistic limit of single 1mm thick 1100-H12aluminum target increased by 6.3%and 9.3%at 15 and 30 obliquity respectively as compared to that of the normal impact.Values of the ballistic limit of 12mm thick Weldox 460E steel target at 15 and 30 obliquity remained quite close to its value under normal impact,however,simulations showed that when the angle of impact is 45 ,the in?uence of obliquity becomes signi?cant.

2.Numerical investigation

The present study deals with a three-dimensional ?nite element model using ABAQUS/CAE,Fig.1.For the case of oblique impact the target was rotated about its in-plane horizontal axis to get the desired angle of inclination.Projectile was modeled as analytical rigid and the target as a deformable body,see Fig.1.1mm thick 1100-H12aluminum and 12mm thick Weldox 460E steel targets were impacted by ogive and conical nosed cylindrical steel projectiles respectively.Eight noded brick elements (C3D8R)

were

Table 1

Variation of residual velocity of ogive nosed projectile with element aspect ratio Fig.2.Variation of residual velocity with element aspect ratio.

Fig.3.Variation of residual velocity with number of elements over target thickness.

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

187

used in all the simulations carried out in this study.Contact between the projectile and target was assigned using the kinematic contact algorithm of ABAQUS-6.7-3[14].For normal impact outer surface of the projectile was modeled as the ?rst surface and the contact region of the target as node based second surface.For oblique impact the exact contact region of the target was not known therefore a slightly larger portion than that of the contact region of projectile was modeled as node based second surface.In the case of 1100-H12aluminum target,effect of friction was considered negligible between the projectile and target.The assumption was veri?ed by taking two different values of contact friction as 0.0and 0.05but no signi?cant difference was observed in the results.In the case of Weldox 460E steel target however,a coef?cient of friction of 0.05was considered between the projectile and target,as in [4].Contact between the two layers of a layered target was modeled using general contact algorithm of ABAQUS-6.7-3[14].The rear surface of the front plate was modeled as the ?rst surface and the front surface of the rear plate was modeled as second surface.A coef?cient of friction of 0.5was considered bet-ween the contact surfaces of layered 1100-H12aluminum target.The value of coef?cient of friction was obtained from inclined plane experiments.In the case of Weldox 460E steel target however,frictional effects were not considered between the contact surfaces of layered target.To validate the effect of friction between the layered target typical simulations were run by keeping the coef?-cient of friction zero and 0.5between the contact surfaces of 0.5mm thick double layered 1100-H12aluminum target at the same impact velocity of 65.8m/s.The residual velocities of projectile were found to be 40.3m/s and 39.6m/s respectively.Further,in a typical simulation of 6mm thick double layered Weldox 460E steel target the coef?cient of friction was kept 0.5and the target was impacted at 317.9m/s velocity.The residual velocity of projectile was found to be 220m/s.On the other hand when the friction between the contact surfaces of layered target was not introduced,the residual velocity of projectile was found to be 221.2m/s.These simulations carried out at normal impact revealed that introduction of friction between the contact surfaces of layered target did not have signi?cant in?uence on the ballistic resistance.In the normal direction hard contact was de?ned between the contact surfaces of layered target.Diameter of 1100-H12aluminum target was 255mm [7]and that of the Weldox 460E steel target was 500mm [3].The geometry and mass of the conical and ogive nosed projectiles were taken identical to those of the projectiles used by Borvik et al.[3,4]and Gupta et al.[7]respectively.The target plate was restrained at its periphery with respect to all

degree of freedoms.A typical simulation took 28CPU hours on DELL T7400Xeon Workstation.

For choosing the ?nal mesh in the case of 1mm thick 1100-H12aluminum target,aspect ratio of elements was varied by increasing the number of elements along the thickness direction from 2to 7and keeping the number of elements along the radial direction constant (Table 1).The effect was studied by impacting the target normally at a constant velocity of 65.8m/s.The residual velocity of projectile was found to be highest when the number of elements over the thickness was three and the aspect ratio was very close to unity,Fig.2.The residual velocity obtained with unity aspect ratio of elements matched with the residual velocity obtained from experiments carried out by Gupta et al.[7].The size of element,another important parameter which affects the results of numerical simulation,was investigated by varying the number of elements over the thickness of 1mm thick 1100-H12aluminum target from 3to 7and keeping the aspect ratio unity in the in?uenced region.Hence,the target was meshed with ?ve different con?gurations,taking element size 0.33?0.33?0.33mm 3,0.25?0.25?0.25mm 3,0.20?0.20?0.20mm 3,0.16?0.16?0.16mm 3and 0.14?0.14?0.14mm 3corresponding to 3,4,5,6and 7elements,and impacted by ogive nosed projectile at a constant velocity of 65.8m/s.Results,see Fig.3,show that up to ?ve elements over thickness the velocity drop of projectile decreased,and thereafter it became almost constant.It was therefore decided to mesh the aluminum target with six elements over thickness giving a total 516,104elements in the whole plate for all the simulations.In the case of double layered 1100-H12aluminum targets three elements were taken in each layer of 0.5mm thickness,giving a total number of 258052elements.

The meshing of 12mm thick Weldox 460E steel target was done in such a fashion that the results could be obtained accurately within the available computational facility.Therefore the total number of elements in the mesh was restricted up to 700,000.In the central in?uenced region of target 40elements were taken over the thickness and aspect ratio of element was kept unity.The outer region of the target was meshed taking 10elements over the thickness with an average aspect ratio of 3.42.The meshes of central and outer region were connected by a transition mesh with six noded continuum (C3D6)wedge elements,Fig.1.This con?g-uration produced a total number of 651,804elements in the whole plate.Same con?guration was adopted in all the cases of 12mm thick Weldox 460E steel target.In the case of layered targets however,20elements were taken along thickness in the central region and 5elements in the outer region giving total number of 325902elements in each layer of 6mm

thickness.

Table 2

Table 3

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

188

3.Constitutive modeling

The material behavior of the target for the numerical simula-tions of 1100-H12aluminum as well as Weldox 460E steel target was incorporated using Johnson–Cook elasto-viscoplastic model [15,16]that is capable of predicting the ?ow and fracture behavior of the target.It includes the effect of linear thermo-elasticity,yielding,plastic ?ow,isotropic strain hardening,strain rate hard-ening,softening due to adiabatic heating and damage.The equiv-alent von Mises stress s of the Johnson–Cook model is expressed in the following form;

s 3p1;_3

p1b T

?h A tB 3p1 n i "1tC ln _3p1_3

0!#

h 1àb T

m i :(1)

where A is quasi–static yield stress,B is a hardening constant,n is

the hardening exponent,C is the strain rate sensitivity parameter and m is the temperature sensitivity parameter.3p1is the

equivalent plastic strain,_3

p1is equivalent plastic strain rate,_30is a reference strain rate and b T is non dimensional temperature

de?ned as;

b T ?eT àT 0T=eT melt àT 0T

T 0 T T melt

(2)

where T is the current temperature,T melt is the melting tempera-ture and T 0is the room temperature.The fracture model proposed

by Johnson–Cook [16]takes into account the effect of stress tri-axiality,strain rate and temperature on the equivalent fracture

strain.The equivalent fracture strain 3p1f

is expressed in the following form;

3p1

s

m

s

;_3

p1;b T

?h

D 1tD 2exp D 3

s m

s i "1tD 4ln _3p1_3

0!#

?h

1tD 5b T i

(3)

Table 4

Table 5

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

189

Where D 1–D 5are material parameters,s m

s is the stress tri-axiality ratio and s m is the mean stress.

The material parameters used in the present investigation given in Table 2for Weldox 460E steel target were taken from Borvik et al.[17]and those for 1100-H12aluminum target given in Table 3were obtained by Gupta et al.[6].

https://www.doczj.com/doc/a710542451.html,putational results and discussion

Table 4presents the results of the residual velocity for Weldox 460E steel target and Table 5shows the results for 1mm thick 1100-H12aluminum target.In general it was observed that

monolithic target offered higher ballistic resistance at each angle of impact when compared to that of the double layered target of equivalent thickness.Further,the ballistic resistance of 1mm thick monolithic as well as double layered (2?0.5mm)1100-H12aluminum target increased with an increase in obliquity.However,the response of 12mm thick monolithic as well as double layered (2?6mm)Weldox 460E steel target remained almost similar at 0 ,15 and 30 obliquity.Numerical simulations for both of these targets were also performed at 45 obliquity,see Table 4.The results obtained revealed that the ballistic limit of 12mm thick monolithic and double layered Weldox 460E steel target increased by 10%and 6%respectively at 45 impact when compared to that of

a b

https://www.doczj.com/doc/a710542451.html,parison of three-dimensional numerical results with the previous experimental and axi-symmetric numerical studies for normal impact;(a)12mm thick Weldox 460E steel target impacted by conical nosed projectile;(b)1mm thick 1100-H12aluminium target impacted by ogive nosed

projectile.

Fig.5.Typical failure modes of target at normal impact.(a)1mm thick 1100-H aluminium target impacted normally by ogive nosed projectile;(b)12mm thick Weldox 460E steel target impacted normally by conical nosed

projectile.

Fig.6.Behavior of 1mm thick 1100-H12aluminium target during projectile perforation.

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

190

the normal impact.Fig.4compares the results of previous experi-mental and axi-symmetric numerical studies with the present three-dimensional numerical investigation for normal impact.A good correlation has been found between the previous experi-mental and axi-symmetric numerical studies and present three-dimensional numerical investigation.The ballistic limit of12

mm Fig.7.Failure modes of target plates at different obliquity.(a)12mm thick Weldox460E steel target;(b)1mm thick1100-H12aluminium

target.

Fig.8.Progress of deformation of double layered Weldox460E steel target(each layer6mm thick)impacted by conical nosed projectile at different obliquity.

M.A.Iqbal et al./International Journal of Impact Engineering37(2010)185–195191

thick Weldox 460E steel target was found to be 280.9m/s from the experiments carried out by Borvik et al.[3]and 231m/s from the present numerical investigation,Fig.4(a).Fig.4(b)shows the comparison of results for 1mm thick 1100-H12aluminum target.The ballistic limit of 1mm thick aluminum target was found to be 52.2m/s from the present numerical investigation and 45.3m/s from the experiments carried out by Gupta et al.[7].

The global deformation of both the targets was found to decrease with an increase in impact velocity.Highest global deformation occurred at ballistic limit in both the targets.However,the magnitude of deformation was higher in the case of thin aluminum targets as compared to that of the thick steel targets.Earlier experimental studies [18–20]reported that the global and local deformation of target increases with impact velocity and reaches a maximum at ballistic limit.Thereafter it decreases and gets stabilized at an impact velocity well above the ballistic limit.Fig.5shows the failure modes of 12mm thick Weldox 460E steel and 1mm thick 1100-H12aluminum targets impacted normally by conical and ogive nosed projectiles respectively.Both the failed targets witnessed ductile hole enlargement.1mm thick aluminum targets failed through the formation of petals which is a typical failure mode of thin ductile targets impacted by sharp nosed projectiles,Fig.5(a).On the other hand,12mm thick steel targets failed through the formation of a circular hole enclosed by a bulge at the rear surface,Fig.5(b).A small plug was also removed from the target in front of the projectile tip.The target piercing time of 57m s noted for a typical impact velocity of 280.9m/s was quite comparable to the actual piercing time of 62m s observed during the experiments carried out by Borvik et al.[3].In the case of 1mm thick aluminum target also a similar plug was removed.But the fracture pattern was quite different in this case due to the small target thickness.Four equal petals were formed at all impact velocities and the length of each petal was 8mm.Thickness of the petal was also found to be same at each impact velocity and at the tip of the petal,its thickness was 0.7mm.Experiments carried out by Gupta et al.[7]also revealed that four equal petals were formed in 1mm thick 1100-H12aluminum targets impacted normally by ogive nosed projectile.After the ogival portion of the projectile pierced the target,its elastic recovery occurred towards its original position as shown in Fig.6(between t ?1000m s and t ?1500m

s).

Fig.9.Progress of deformation of double layered 1100-H12alminium target (each layer 0.5mm thick)impacted by ogive nosed projectile at different obliquity.

a b

https://www.doczj.com/doc/a710542451.html,parison of impact and residual velocities at different obliquities;(a)12mm thick Weldox 460E steel target impacted by conical nosed projectile;(b)1mm thick 1100-H12aluminium target impacted by ogive nosed projectile.

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

192

The failure mode in oblique impact of both the targets was slightly different,see Fig.7.The hole formed in12mm thick Weldox460E steel target and the bulge formed at its rear surface were elliptical in shape,Fig.7(a).The petals formed in1mm thick1100-H12 aluminum target were four at15 obliquity.However,the size of lower two petals increased and that of the upper two petals decreased,Fig.7(b),and at30 obliquity the upper two petals vanished.

Figs.8and9show the progress of deformation of double layered Weldox steel targets impacted by conical nosed projectile and double layered aluminum targets impacted by ogive nosed projectile respectively,at0 ,15 and30 obliquity.In a normal impact,both the projectiles followed their central axis during perforation.However,in oblique impact the projectiles deviated towards the plate normal while perforating the target.The devia-tion of projectiles increased with an increase in target obliquity and decrease in the impact velocity.This phenomenon was observed for both conical and ogive nosed projectiles and can be seen in Fig.8. Experiments in oblique impact[2]also revealed that during perforation of the target the projectile does not follow the same straight path while coming out from rear side.It turns towards or away from plate normal depending on the angle of impact,target material and its thickness.Moreover,the?nal obliquity of projectile decreases(deviation towards plate normal increases)with an increase in target obliquity and decrease in impact velocity.

Fig.10(a)shows the behavior of12mm thick Weldox460E steel target impacted at0 ,15 ,30 and45 obliquities.The residual velocity curves are overlapping each other at0 ,15 and30 obliquities,and at45 the target has offered higher resistance.The ballistic limit of target remained almost identical up to30 obliq-uity however,thereafter it increased by10%at45 obliquity.The ballistic limit of target was found to be231m/s,229m/s,233m/s and254m/s at0 ,15 ,30 and45 obliquities respectively. Fig.10(b)shows the behavior of1mm thick1100-H12aluminum target impacted at different obliquities.In this case there was an increase in the ballistic limit of target by6.3%at15 obliquity and 9.3%at30 obliquity when compared to that of the normal impact. Fig.11(a)shows the behavior of double layered Weldox460E steel target on impact at0 ,15 ,30 and45 obliquities.The layered target also offered similar resistance up30 obliquity.However,at 45 obliquity there was an increase of6%in the ballistic limit.The ballistic limit of target was found to be228.5m/s,228m/s,225m/s and242m/s at0 ,15 ,30 and45 obliquities respectively.In the case of double layered1100-H12aluminum target the ballistic limit increased by4.8%at15 obliquity and11.4%at30 obliquity in comparison to that of the normal impact[Fig.11(b)].The results obtained for monolithic and layered in-contact targets revealed that up to30 obliquity there was no signi?cant increase in the ballistic resistance of thin as well as thick targets.Goldsmith and Finnegan[21]carried out normal and oblique impact(up to50 obliquity)experiments with aluminum,mild steel and medium carbon steel targets of thicknesses 1.78–25.4mm impacted by cylindro–conical and cylindrical projectiles.It was concluded that obliquity considered in the study had insigni?cant effect on the

a b

https://www.doczj.com/doc/a710542451.html,parison of impact and residual velocities at different obliquities;(a)double layered(2?6mm)Weldox460E steel target impacted by conical nosed projectile;

(b)double layered(2?0.5mm)1100-H12aluminium target impacted by ogive nosed projectile.

https://www.doczj.com/doc/a710542451.html,parison of impact and residual velocities of conical nosed projectile for12mm thick monolithic and double layered Weldox460E steel target at different obliquities.

M.A.Iqbal et al./International Journal of Impact Engineering37(2010)185–195193

behavior of target.For thin as well as thick targets,the velocity drop of projectile reduced slightly at 10 and 20 obliquity,at 30 obliquity the velocity drop became almost equivalent to that of the normal impact.Corbett et al.[22]presented a review of impact studies and concluded that at low obliquities ( 30 )the behavior of target remains more or less same as that of the normal impact however,at higher obliquities (!45 )the resistance of target increases signi?cantly.

Fig.12compares the results of monolithic and double layered Weldox 460E steel targets impacted by conical nosed projectiles at different obliquity.At each angle of impact the ballistic resistance of monolithic target was found slightly better than that of the double layered target of equivalent thickness.The ballistic limit of 12mm thick monolithic target was found to be 1%,0.4%and 3.5%higher than that of the double layered target of equivalent thickness at 0 ,15 and 30 obliquity respectively,Fig.12.For 1100-H12aluminum target also,the ballistic resistance of monolithic target was found better than that of the double layered target at each angle of impact (Fig.13).The ballistic limit of 1mm thick monolithic target was found to be 4.8%,6.3%and 2.8%higher than that of the double layered target of equivalent thickness at 0 ,15 and 30 obliquity respectively.

5.Conclusions

This paper presented a three-dimensional ?nite element model for normal and oblique impact of sharp nosed projectiles on ductile targets.Numerical simulations have been performed to study the ballistic resistance of monolithic and double layered target when impacted normally as well as at 15 and 30 obliquity.

Ballistic limit of 12mm thick Weldox 460E steel target was found to be almost same up to 30 obliquity however,thereafter it increased by 10%at 45 obliquity.For 1mm thick 1100-H12aluminum target the ballistic limit increased by 6.3%at 15 and 9.3%at 30 obliquity as compared to that of the normal impact.For double layered (2?6mm)Weldox 460E steel target also the ballistic limit was found to be almost same up to 30 obliquity however,thereafter it increased by 6%at 45 obliquity.For double layered (2?0.5mm)1100-H12aluminum target the ballistic limit increased by 4.8%at 15 and 11.4%at 30 obliquity in comparison to that of the normal impact.There was no signi?cant difference in the ballistic resistance of monolithic and double layered target of both the materials at normal as well as oblique impact.Both the targets failed through ductile hole enlargement however,12mm thick Weldox 460E steel target failed through the formation of a hole enclosed by a bulge at the rear surface.On the other hand 1mm

thick 1100-H12aluminum target failed through petal formation.Four equal petals were formed at normal impact in 1mm thick 1100-H12aluminum target.The size of upper two petals decreased and that of the lower two petals increased with an increase in obliquity.At 30 obliquity the upper two petals vanished.

The study shows that the mechanics of perforation is quite complex and depends on various parameters including thickness and material properties of the target and shape of the projectile.Mechanics of deformation is not completely understood for which further work is necessary.Research is also needed to improve the description of material behavior.

References

[1]Johnson GR,Cook https://www.doczj.com/doc/a710542451.html,grangian epic code computations for oblique,

yawned-rod impacts onto thin-plate and spaced-plate targets at various velocities.Int J Impact Eng 1993;14:373–83.

[2]Gupta NK,Madhu V.An experimental study of normal and oblique impact of

hard-core projectile on single and layered plates.Int J Impact Eng 1997;19:395–414.

[3]Borvik T,Langseth M,Hopperstad OS,Malo KA.Perforation of 12mm thick

steel plates by 20mm diameter projectiles with ?at,hemispherical and conical noses part I:experimental study.Int J Impact Eng 2002;27:19–35.[4]Borvik T,Hopperstad OS,Berstad T,Langseth M.Perforation of 12mm thick

steel plates by 20mm diameter projectiles with ?at,hemispherical and conical noses part II:numerical simulations.Int J Impact Eng 2002;27:37–64.[5]Schef?er DR.Modeling non-eroding perforation of an oblique aluminum

target using the Eulerian CTH hydrocode.Int J Impact Eng 2005;32:461–72.[6]Gupta NK,Iqbal MA,Sekhon GS.Experimental and numerical studies on the

behavior of thin aluminum plates subjected to impact by blunt-and hemi-spherical-nosed projectiles.Int J Impact Eng 2006;32:1921–44.

[7]Gupta NK,Iqbal MA,Sekhon GS.Effect of projectile nose shape,impact

velocity and target thickness on deformation behavior of aluminum plates.Int J Solids Struct 2007;44:3411–39.

[8]Gupta NK,Iqbal MA,Sekhon GS.Effect of projectile nose shape,impact

velocity and target thickness on the deformation behavior of layered plates.Int J Impact Eng 2008;35:37–60.

[9]Teng X,Wierzbicki T.Evaluation of six fracture models in high velocity

perforation.Eng Fract Mech 2006;73:1653–78.

[10]Dey S,Borvik T,Teng X,Wierzbicki T,Hopperstad OS.On the ballistic resis-tance of double-layered steel plates:an experimental and numerical investi-gation.Int J Solids Struct 2008;44:6701–23.

[11]Zhou DW,Stronge WJ.Ballistic limit for oblique impact of thin sandwich

panels and spaced plates.Int J Impact Eng 2008;35:1339–54.

[12]Arias A,Rodr ?guez-Mart ?nez JA,Rusinek A.Numerical simulations of impact

behaviour of thin steel plates subjected to cylindrical,conical and hemi-spherical non-deformable projectiles.Eng Fract Mech 2008;75:1635–56.

[13]Teng X,Wierzbicki T,Huang M.Ballistic resistance of double-layered armor

plates.Int J Impact Eng 2008;35:870–84.

[14]Version 6.7ABAQUS analysis user’s manual,vol.2;2007.

[15]Johnson GR,Cook WH.A constitutive model and data for metals subjected to

large strains,high strain rates and high temperatures.In:Proceedings of the seventh international symposium on Ballistics.The Hague;1983.

[16]Johnson GR,Cook WH.Fracture characteristics of three metals subjected to

various strains,strain rates,temperatures and pressures.Eng Fract Mech 1985;21(1):31–48.

https://www.doczj.com/doc/a710542451.html,parison of impact and residual velocities of ogive nosed projectile for 1mm thick monolithic and double layered 1100-H12aluminium target at different obliquities.

M.A.Iqbal et al./International Journal of Impact Engineering 37(2010)185–195

194

[17]Borvik T,Hopperstad OS,Berstad T,Langseth M.Numerical simulation

of plugging failure in ballistic penetration.Int J Solids Struct2001;38:6241–64.

[18]Borvik T,Clausen AH,Hopperstad OS,Langseth M.Perforation of AA5083-H116

aluminum plates with conical nosed steel projectiles–experimental study.Int J Impact Eng2004;30:367–84.

[19]Goldsmith W,Finnegan SA.Penetration and perforation process in metallic

targets at and above ballistic velocities.Int J Mech Sci1971;13:843–66.[20]Calder CA,Goldsmith W.Plastic deformation and perforation of thin plates

resulting from projectile impact.Int J Solids Struct1971;7:863–81.

[21]Goldsmith W,Finnegan SA.Normal and oblique impact of cylindro-conical

and cylindrical projectiles on metallic plates.Int J Impact Eng1986;4: 83–105.

[22]Corbett CG,Reid SR,Johnson W.Impact loading of plates and shells by free-

?ying projectiles:a review.Int J Impact Eng1996;18:141–230.

M.A.Iqbal et al./International Journal of Impact Engineering37(2010)185–195195

门禁系统使用说明书

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

夏普液晶电视维修

夏普液晶电视出现如液晶屏类故障怎么去判断呢?故障维修服务有哪些呢?下面我们就一起来看看以下内容的详细介绍吧。 要维修,首先就要先找出原因。 1、学会判断故障部位是维修的第一步。开机三无现象。电源灯不亮,可能是电源板坏,也可能是CPU部分工作不正常。灯闪不能开机。CPU总线工作不正常或开机程序IC(BIOS)不良,"BIOS"IC和CPU之间接触不良。 2、开机出现无象无音,电源灯闪一下变成常亮,屏幕在开机瞬间闪一下白光。此故障多为背光驱动板损坏,不过在维修中也遇见过是屏内的灯管损坏的。 3、出现开机一个时后屏幕飘雪花,音正常,此现象首先可以考虑数字板不良(过孔不通或IC接触不好),也可能是机内连线

接触不好。 1、开机三无主要是因为电源没有送到SZ板,或是电源板本身有故障。对于这种故障检修思路是,开机测量XS817第2脚有没有12V电压输出,如果没有12V,那么故障就在电源板上。电源板主要问题有两个,一个就是烧保险,如果一旦出现这中问题后,可先查整流器V901、N901,还有个问题就比较明显,一看电源板输出滤波电容顶部以爆烈,如出现这种情况,只要换上三个同型号电容即可。 2、开机有声音,但显示屏不亮。可先查电源对高压板供电12V有没有,如没有,那么只要查L503对它供电是否正常。如果L503输出电压也正常,屏还是不亮,那么就要考虑升压板的问题了,可以换上新升压板看一下,一般来讲,屏坏的机率是很小的,如换上新的升压板,而供电控制信号都正常,屏还是不亮,那么就是说屏坏了,换屏。

3、开机声音正常白屏。多是由于排线接触不好引起的,这主要是由于LC-TM2018 到插槽内的,在长时间高温的工作环境下,而导致接触不良,解决方法是取出排线重新插好即可。最好是插好后用胶带粘在排线与插槽的架上,这样以后不会白屏。如插好排线后不用胶带粘好的话,过不了多久还回出现同一问题。 4、选不了台,或是没有遥控节目还会跳动,或出现屏幕框。出现这问题是由于按键出现局部短路而引起的,只要换上按键即可排除故障。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

F6门禁管理系统用户手册

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

夏普电视维修多少钱

当我们的夏普电视液晶屏坏了维修多少钱呢?是什么原因导致的呢?下面,为你讲解: 夏普电视机画面有重影的主要原因: 1.夏普电视机信号接收环境不佳或高频头接地屏蔽不良,如接收点附近有高大建筑物,电视机在接收直通信号的同时还接收到了由高大建筑物反射回的反射信号,导致图像重影;另外,若高频头屏蔽或接地不良也会导致重影; 2.声表面滤波器不良,当声表面滤波器内部的极片接地不良时,就会导致一部分中频信号直接通过其分布电容超前于主信号进入图像中放IC,从而使图像出现重影; 3. 图像画质增强电路出现故障,许多大屏幕彩电为增强图

像清晰度,在图像处理电路上增加了图像勾边,即所谓图像轮廓校正电路,如果该电路在视频信号的处理上出现错误,就会形成重影。 出现重影的故障检修方法如下: 1.将电视机的色饱和度开至最小,如果图像有重影,则应检查天线输入系统.高频头. 声表面滤波器及它们的屏蔽接地是否良好及清晰度增强电路是否正常。反之,若图像没有重影,则要检查亮度延时线(包括它周围电路元件) 或色带通滤波电路元件; 2.测量.检查电视机的末级视放电压或加速极电压是否过低; 3.用电阻测量法对所怀疑的元器件进行确诊,如显像管是否老化或极问是否漏电.亮度延时线.电阻等是否开路; 4.使用元件替换法,比如当高频头.声表面滤波器.集成块.色度带通滤波器.亮度延 时线及有关电容不良时用电压.电阻测量法不能确诊的,可以使用替换法逐一排查; 5.针对普通用户,一般建议联系电视机的售后服务或者专业维修人员对电视机进行全面检测.保修。 6.接收环境不佳或高频头接地屏蔽不良,如接收点附近有高大建筑物,电视机在接收直通信号的同时还接收到了由高大建筑物反射回的反射信号,导致图像重影;另外,若高频头屏蔽或接地不良也会导致重影;

空气净化器技术对比

空气净化机技术 净化室内空气有很多种方法,然而只有少数几种常用技术是有效的。包括:高效微粒过滤器(HEPA)、电子过滤器(Electronic)、活性碳(Activated Carbon)、紫外线(UV)、负离子(Negative lon)、臭氧(Ozone)和光触媒(PCO)等。 简易对比表 方式可除污染 物 优点缺点代表品牌 高效尘埃过滤器灰尘1、故障点少,仅我机可 能会出故障 2、对较大的灰尘净化效 率高 1、滤纸(或滤网)密度一般超过 30微米,对较小的悬浮颗粒净 化效果差 2、滤网堆积灰尘,成为病菌繁殖的 温床 3、电耗大,噪音大,滤纸风阻大, 需配大功率风机 4、耗材费用很高,滤纸堵满就需要 更换,无法清洗 亚都 美的 奥斯叮 瑞宝 夏普 日立 远大静电式净化灰尘病菌1、除尘效果非常好,能 吸附0.1微米的微尘 2、高压静电杀菌无二次 污染,产生臭氧比室 外还低,确保安全杀 菌 3、风阻极小,电耗及噪 音低 4、远大净化机制除尘 器可方便取出清洗, 长时间使用无需更 换,只需要换活性碳, 后期使用成本极低 5、通过恒流限压(根据 三档自动调节电压) 和除尘器的高压电器 组件限制电流来防止 拉弧(正极板与负极 板之间发生的一种强 烈放电现象) 电子元器件较多,有可能出故障远大 国外静电式净化灰尘病菌原理:二段式静电除尘, 第一段为电离区,释放 11000V电压使空气电 离,第二段集尘区释放 4000V电压,带电粒子被 吸附在极性相反的集尘 板上。 1、恒压式静电除尘,空气潮湿时易 拉弧 2、电压非常高,臭氧易超标 3、除尘面积小,噪音大 4、价格昂贵 5、除尘器不可清洗,2年后整机报 废 ORECK 霍尼韦尔 爱芯牌 欧力克 飞利浦 大金

智能门禁管理系统说明书.doc

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

夏普空气净化器型号大全

夏普空气净化器型号大全 准备买夏普空气净化器?不知道有哪些型号、适合在什么场合使用、有哪些颜色?通常我们经常看到的夏普空气净化器分为:FU、KC、IG-B、IG-A四个系列,每个系列都有其独特的功效,不要着急,让我带着你去慢慢了解一下。 一、FU系列——纯净化型 FU系列属于纯净化型的夏普空气净化器,其型号包括了FU-Y180SW、FU-W240SW和FU-W240SR 等等。 FU-Y180SW的机身为白色,适用于卧室或者是办公室,适用面积为18~27平方米; FU-W240SW的机身同样也是白色,适用于卧室、不大的客厅,也可以作为新婚礼物或者是乔迁之礼送与他人,适用面积为20~30平方米; FU-W240SR的机身是红色的,同样也适用于卧室或者是不大的客厅,红色代表喜庆,作为礼物送给新婚的朋友或者是搬新屋的朋友也非常合适,适用面积为20~30平方米。 二、KC系列——加湿智能型 KC系列的智能型空气净化器型号不多,KC-Y180SW、KC-200SW、KC-W280SW和KC-W380SW-W 都属于智能型空气净化器。 KC-Y180SW的机身为白色的,可加湿,加湿量为350mL/h,并且有三种颜色的清洁显示,风量属于自动调节的,适用于居家净化或者是小型办公场所,适用面积为18~27平方米。 KC-W200SW的机身也是白色,可加湿,加湿量为600mL/h,有5个阶段的室尘监测显示,当显示灰尘、温湿2状态时会自动运转,可用于居家净化、办公场所或者是商务送礼,其适用面积为20~30平方米。 KC-280SW机身是白色的,也可以加湿,加湿量为600mL/h,有9个阶段的室尘监测显示,当灰尘、异味、温湿为3状态时可自动运转,作为居家净化、办公场所或者是商务送礼也是一个不错的选择,适用面积在25~38平方米。 KC-W380SW-W是首款取得了中华人民共和国卫生部颁发的消毒器械卫生许可批件的空气净化器,可加湿,加湿量为730mL/h,11个阶段室尘监测显示,灰尘、异味、温湿为3状态时自动运转,常用于居家净化、办公场所和高档礼品,适用面积为35~53平方米。 三、IG-B系列 IG-B系列是车载空气净化器,不但可以去除汽车内的异味、细菌、病毒已经其他异味,还可以起到美肤的作用,目前夏普空气净化器在我国有白色和黑色两种,但只有IG-BC2S-B这个型号。 四、IG-A系列 IG-A系列的空气净化器属于桌面型或者是大型的,总共有三个型号,分别是IG-A10S-W、IG-A20S-W、IG-A40S-S。 IG-A10S-W是桌面型的空气净化器,机身为白色,是专门为放置办公桌、书桌所设计的,可近距离享受清新空气,适用面积为10~15平方米。 IG-A20S-W是中大型高浓度净离子群空气净化器,其最大的特点就是抗菌能力特别强,大空间的每一个角落都不会放过,最适合大客厅、酒店套房或者是美容院的使用,适用面积为40~60平方米。 IG-A40S-S是大型的高浓度净离子群空气净化器,可保持高的净化效果到达大空间的每一个角落进行全面净化,大型美容院、大客厅以及酒店套房也非常适用,其适用面积大于60平方米。 这下都了解了吧,以上资料均由夏普空气净化器官网提供。

成都夏普电视维修

成都夏普电视再好也是电视,免不了出现故障,只能维修?想要了解的话,就一起来看看方法吧。 夏普液晶电视常见故障 液晶屏故障:屏幕故障(屏裂,屏暗,屏污,屏模糊,闪屏,花屏,黑屏,红屏,白屏,黄屏等);屏幕显示故障(屏幕出现亮点,亮块,亮线,暗线等);屏幕内容故障(图像偏色,字体模糊,字体大小不一等) 液晶电视机维修液晶驱动板故障:开机三无(既无图象,无光栅,无伴音,电源指示灯不亮);开机异常(开机自动换台,音量自动增加等);声音不正常(声音音量小,沙哑,失真等); 主板正常情况下 A.出现白屏现象表示背光板能正常工作,首先判断主板能否正常工作,可按电源开关查看指示灯有无反应,

如果指示灯可以变换颜色,表明主板工作正常: 1.检查主板信号输出到屏的连接线是否有接触不良(可以替换连接线或屏) 2.检查主板各个工作点的电压是否正常,特别是屏的供电电压 3.用示波器检查行场信号和时钟信号(由输入到输出) 修液晶电视——主板不正常情况 B.如指示灯无反应或不亮,表明主板工作不正常: 1.检查主板各工作点的电压,要注意EEPROM的电压(4.8V左右),复位电压(高电平或低电平,根据机型不同),MCU电压.如出现电源短路,要细心查找短路位置,会有PCB板铜箔出现短路的可能. 2.查找MCU各脚与主板的接触是否良好 3.检查主板芯片和MCU是否工作,可用示波器测量晶振是否起振

4.必要时替换MCU或对MCU进行重新烧录 好了,也是关于夏普液晶电视白屏的问题的相关内容的一些介绍,修液晶电视中心就大致讲到这里,看完了上面的内容,相信大家对于夏普液晶电视白屏中情况出现的时候,能够从小着陆点入手,排查出夏普液晶电视白屏的原因,然后能够比较好的解决这个问题。希望我的介绍对大家有帮助。 啄木鸟家庭维修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

夏普液晶电视维修服务

电视主要是以夏普液晶电视为多,但是近期用户反映,在使用过程中经常出现故障,原因何在呢?下面跟着一起来看看吧! 线路板与电子元器件锡焊的非常少,有些地方因为元器件工作发热,而出现虚焊、脱焊情况。 电视机线路板出现虚焊、脱焊情况,因为现在电视机生产都是采用波峰焊等等,线路板与电子元器件锡焊的非常少,有些地方因为元器件工作发热,而出现虚焊、脱焊情况。电视机黑屏故障原因:电视机线路板出现断裂,这种情况也比较常见,因为现在电视机都采用大规模集成电路,线路板线条有的非常细。电视机的磕碰、线路板安装的不平整与电视机放置的不平等等,都会出现线路板断裂。 电视机黑屏检修方案:应确定是什么保护动作。方法是逐一

断开各保护支路予以排除,然后分别检查。对X射线保护或过压保护应重点检查行频是否过低和行逆程电容是否变小,对过流保护或电流过大使电源不能正常工作应重点检查行输出变压器和其负载电路。至于行部分已经工作而三无的情况则比较简单,主要是检查高压、中压和低压供电电路是否正常以及灯丝供电是否正常。 检查U2外围相关的电路有没有发生故障的原件,代换U2之后重新开机进行故障的排除。电视机黑屏怎么办,将背光板高压逆变器和控制三极管重新的进行加锡补焊。 电视机黑屏处理方法:把智能电视重新启动,并使用清理应用将系统垃圾缓存清理下,看是否还有黑屏现象。安装的软件有问题造成黑屏还有一个原因就是软件与软件的冲突或者是与系统不兼容的问题,这时批量卸载逐个安装观察,排除问题。

电视机黑屏处理方法:液晶电视开机只要部分电路异常就会导致电视机不开机指示灯不闪烁的状态。按下电视机的电源开关,电视机的按键无反应,电视机的指示灯闪烁,使用万用表测试电源板的电路输出时正常,主电源无电流输出,就能排出按键板出现故障的情况。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

博克门禁系统使用说明书

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

门禁系统使用说明书

-- - XX职业技术学院信息工程学院 门禁管理系统 操作说明书

制作人:X珍海 日期:2014年3月25日 目录 (请打开【帮助H】下的【使用说明书】,这样方便您了解本系统) 第1章软件的基本操作3 1.1 登录和进入操作软件3 1.2 设备参数设置4 1.3 部门和注册卡用户操作4 1.3.1 设置部门4 1.3.2 自动添加注册卡功能(自动发卡)5 1.4 基本操作7 1.4.1 权限管理8 1.4.2 校准系统时间11 1.5 常用工具12 1.5.1 修改登陆用户名和密码12 第2章考勤管理功能模块13 2.1 正常班考勤设置13 2.1.1 设置考勤基本规则13 2.1.2 设置节假日和周休日14 2.1.3 请假出差的设置15 2.2 考勤统计和生成报表17 2.2.1 生成考勤详细报表17 2.2.2 启用远程开门错误!未定义书签。

第1章软件的基本操作 1.1登录和进入操作软件 1.点击【开始】>【程序】>【专业智能门禁管理系统】>【专业智能门禁管理系统】或双击桌面钥匙图标的快捷方式,进入登录界面。 2.输入缺省的用户名:abc 与密码:123(注意:用户名用小写)。该用户名和密码可在软件里更改。 3.登录后显示主操作界面

入门指南。如果您没有经验,您可以在该向导的指引下完成基本的操作和设置。我们建议您熟悉后, 关闭操作入门指南,仔细阅读说明书,熟悉和掌握软件的操作。 “关闭入门指南”后,操作界面如下。 1.2设备参数设置 1.3部门和注册卡用户操作 1.3.1设置部门 点击【设置】>【部门】,进入部门界面。 点击【添加最高级部门】。

2020-2024年中国空气净化器市场的分析

2020-2024年中国空气净化器市场的分析 1.1全球空气净化器行业细分市场 全球空气净化器市场细分为HEPA,活性炭,离子过滤器等。其中HEPA技术领域在占有最大的市场份额,主要系HEPA过滤器非常有效地捕获空气中的颗粒,例如灰尘,花粉,烟雾和生物污染物。2019年HEPA技术市场份额为34.40%,离子过滤器次之(26.50%)。 图表2019年全球空气净化器行业细分市场份额 数据来源:GRAND VIEW RESEARCH 1.2国内空气净化器市场销售规模 从空气净化器市场的需求来看,2018-2019年空气净化器销量大幅下降,根据奥维云网监测的数据来看,2018年空气净化器零售量为529.1万台,同比下降27%;2019年,我国空气净化器累计销量为413.7万台,同比下降12.2%。截至2020年上半年,我国空气净化器销量达392万台。 根据奥维云网公布的监测数据显示,2018年我国空气净化器零售额为115.8亿元,大幅下降,同比下降28.6%,2019年我国空气净化器零售总额为90.7亿元,同比下降12.2%。2020年上半年,我国空气净化器零售总额达63.7亿元。

图表2018-2020年中国空气净化器销售规模 数据来源:奥维云网(截至2020年上半年) 1.3中国空气净化器品牌竞争状况 虽然空气净化器行业需求出现了疲软,但其行业内部的竞争仍然非常激烈,小米、豹米等厂商均在拓荒期进入市场,墨迹、聚美、锤子等后来者面临的困境要更加明显,美的、飞利浦、夏普等综合性品牌产品不断地进行调整,352等专业净化器品牌稳定占据一定市场份额。 2019年线下渠道零售中,飞利浦和史密斯占据较多的市场份额,分别为17%和14%;线上渠道中小米脱颖而出,占据较多的线上销售市场份额,占比达27%,其次为飞利浦,其线上销售额占线上销售总额的13%。

夏普2011电视新品测评

夏普2011电视新品测评 4月13日,夏普在广州发布了2011年AQUOS全系列液晶电视新品,包括“AQUOS Quattron 3D”X50系列在内的五大系列14款液晶电视新品亮丽登场。此次发布会上,夏普不仅推出了三款60英寸大尺寸产品强化了大机型阵容,首次推出了拥有互联网功能的型号,更重要 的是推出了夏普独有的四色技术的升级之作——“煌彩技术”,使得液晶电视的画质技术迈向了新的境界。由中国电器门户转载 “煌彩技术”由四色技术升级而来,不仅传承了四色技术的丰富的色彩表现能力,还能更加真实地还原烟花和照明等光源物体的璀璨辉煌。“煌彩技术”不像通常的区域控光技术那样单纯地在暗影像区域降低背光电力,而是通过独有的高亮度化影像信号处理将暗影像区域的背光电 力高效地投入到亮影像区域中,从而以更为节能的方式获得明亮、绚丽、鲜艳的高画质。目前,“煌彩技术”仅用于夏普液晶电视旗舰X50A 系列上,也是这项技术在全球的首次应用。 自从夏普日本堺市十代液晶面板生产线投产以来,60英寸大尺寸 的经济切割,使得夏普在大尺寸液晶电视领域的领军地位得到了空前 的强化,此次发布会上,夏普旗下的X50A、LX830A、LX531A三大 系列均配置了60英寸型号,产品定位涵盖中高端用户群体。夏普公司常务执行役员、中国本部长菅野信行先生表示,70英寸AQUOS也有 望今年内在大陆地区上市,夏普将在未来针对中国市场提供更多的大 尺寸AQUOS产品。 此次发布会上,作为夏普最高端的X50A和LX830A两大系列液 晶电视,首次融入互联网电视功能,用户可以通过无线WiFi或者有线LAN连接互联网,或者构建DLNA家庭娱乐网络。用户既可以直接上 网收看“百事通BesTV”的影视内容,也可以通过“夏普AQUOS Life”了 解夏普的新品介绍,还可以实现与个人电脑中的音乐、照片、视频娱 乐资源共享。

2020液晶电视机质量排名前十名

2020液晶电视机质量排名前十名 第一位:三星液晶电视 十大液晶电视品牌,三星电子有限公司是韩国最大的企业,业务涉及多个领域,主要包括半导体、移动电话、显示器、笔记本、电 视机、电冰箱、空调、数码摄像机以及IT产品等。三星电子在动态 存储器、静态存储器、CDMA手机、电脑显示器、液晶电视、彩色电 视机等近20种产品中保持着世界市场的领先位置。 第二位:索尼液晶电视 十大液晶电视品牌,索尼液晶电视的问世,为平板电视领域开拓了四大新关注热点,分别是HDMI1.3接口、10bit高清面板、 x.v.color色域标准以及Motionflow100Hz动态响应时间技术。这 三项新技术被运用到了第三代索尼BRAVIA液晶电视产品当中,而目 前索尼液晶电视阵营如果按照高中低端顺序排列的话,应该是X、W、F、V380A、V、M,这六大系列,所以按照情理逻辑,索尼将这三大 新技术分配到了不同的定位的型号当中,也就是说,除了最旗舰的 X系列液晶电视外,其余的系列都没有同时拥有这三大技术,这也 是为了体现出索尼电视当之无愧的王者地位。 第三位:创维液晶电视 十大液晶电视品牌,创维成立于1988年,经过二十年的奋斗, 创维已成长为蜚声国际的中国家电巨子,2007财年集团年销售额达139.39亿港元,出口额持续10年居全国领先行列,成功挺进世界 彩电十大品牌之列,成为中国电子百强名列第16位的优秀企业。 第四位:海信液晶电视 十大液晶电视品牌,海信电视业务是由青岛海信电器股份有限公司经营。海信电器拥有中国最先进数字电视机生产线之一,年彩电 产能1610万台。

十大液晶电视品牌,夏普(Sharp),是一家日本的电器及电子公司,创业于1912年,总公司设于日本大阪。夏普现已在世界25个国家,62个地区开展业务,是一个大型的综合性电子信息公司。2012年,夏普股价不断下跌,2012年9月27日,夏普宣布向日本国内的札幌证交所、名古屋证交所和福冈证交所提交退市申请。2013年4月23日据日本共同社报道,陷入经营困境的夏普公司2013财年(2013年4月至2014年3月)有望扭亏为盈,实现数十亿日元的净利润。这是由于夏普与国际巨头合作及在日元贬值的环境下,预计主要产品的液晶面板销量将增加。人员缩减等重组措施也将对改善业绩作出贡献。 第六位:TCL液晶电视 十大液晶电视品牌,TCL液晶电视加入了动态对比度和自然光调节技术,除了提升画面的显示效果外,还有效改善了动态画面的拖尾现象。另外在提升画面显示效果的同时,TCL液晶电视还加入了智能音效,通过这一技术的加入,用户可以享受到影院般的视听效果。作为娱乐机的代表产品,TCL液晶电视在娱乐功能方面有着不俗的表现,用户除了可以实现主流视频文件的播放外,还可以通过网络的连接对资讯进行在线浏览以及软件的升级。 第七位:康佳液晶电视 十大液晶电视品牌,康佳集团成立于1980年5月21日,前身是“广东光明华侨电子工业公司”,是中国改革开放后诞生的第一家中外合资电子企业,康佳集团主要从事彩色电视机、手机、白色家电、生活电器、LED、机顶盒及相关产品的研发、制造和销售,兼及精密模具、注塑件、高频头、印制板、变压器及手机电池等配套业务,是中国领先的电子信息企业。 第八位:长虹液晶电视 十大液晶电视品牌,长虹(Longrain-bow)作为国内知名彩电企业之一,推出了A系列和B系列两大智能电视新品,成为智能电视先锋代表。

夏普LCD技术详解

夏普LCD技术详解 说到液晶电视品牌,洋品牌中素有“液晶之父”美誉的夏普就不得不提到, 夏普品牌无论是在产品销量还是在质量上面都有不错的口碑。作为世界的 Super Green Factory 而受到人们关注的龟山工厂,夏普从采用最先进技术的高解像度面板到能够一气呵成地开发和生产出大型的显示器,完美构筑出了具有 小型、中型、大型尺寸的丰富产品阵容。夏普系列的高清液晶电视更是运用了 一流的图像优化技术,在屏幕、色彩、高对比度等方面都拥有独到之处,完全 不辱“液晶之父”之称。ASV 技术 对于夏普的液晶电视来说,液晶屏是它的核心部分,而消费者之所以购 买夏普液晶电视,也正因为夏普拥有整个产品的核心部分——液晶屏,提到液 晶屏又不得不提到夏普在液晶面板制造过程中的独创专利技术—— ASV(Advance Super View)技术。夏普的ASV 技术,这并不是一种面板技术类型,而是一种用于提高图象质量的技术,主要是通过缩小液晶面板上颗粒之间 的间距,增大液晶颗粒上光圈,并整体调整液晶颗粒的排布来降低液晶电视的 反射,增加亮度、可视角和对比度。应用ASV 技术的液晶面板针对光线的反 射与透光问题而设计的,它通过在屏幕表面加入数层带有特殊化学涂层的薄膜 光学物质对外来光线进行处理,一方面折射成不同的比例,使反射的光线得以 改变方向并互相抵消,另一方面能最大限度地吸收外来光线,改变光线传播的 波长和反射。 采用ASV 的面板是目前排名首位的液晶面板,产品在出厂检测的时候,都是在全黑的情况下测试对比度,因为这样才能够测出最佳的数值。但是如此 一来就忽略了在正常光线下的对比度值,在有光线反射的环境下,无论是电视

国内车载空气净化器市场分析

国内车载空气净化器市场分析 车载空气净化器,又叫车用空气净化器、汽车空气净化器,是指专用于净化汽车内空气中的异味、有毒有害气体、细菌病毒等车内污染的空气净化设备。目前主流的车载空气净化器品牌有斯帝沃、夏普,国内有亚都、沃讯等。你知道哪些车载空气净化器品牌?哪些品牌的车载空气净化器好?下面小编就带大家一起看看车载空气净化器哪些品牌好 斯帝沃 (车用空气净化器中国市场占有率第一,空气净化器出口量全国第一,中国车用空气净化器行业第一品牌中国第一台汽车氧吧,中国第一台采用多层次净化过滤技术的空气净化器,中国第一台太阳能空气净化器) CARMATE快美特 (始创于1966年日本,日本最大的汽车用品生产制造商之一,大型跨国公司,快美特汽车精品(深圳)有限公司) 沃讯 (汽车用品行业高新技术企业,最早进入汽车车内空气净化领域品牌之一,十大品牌,厦门美时美克空气净化有限公司) 夏普SHARP (始于1912年日本,大型的综合性电子信息公司,全球高端液晶显像领域领导品牌,夏普商贸(中国)有限公司)

亚都YADU (始创于1987年,北京市著名商标,北京名牌,国内空气品质领域著名企业,北京亚都空气净化技术有限责任公司) 威卡司Vacarx (国内最具规模的汽车用品生产供应商之一,汽车用品领域有影响力的知名品牌,广州市艾瑞司贸易有限公司) 丰鸾 (专业从事空气净化环保产品的研发、制造与销售企业,拥有良好的声誉和地位,青岛市丰鸾环保科技有限责任公司) 南柏 (集产品研发/生产/销售/服务为一体的专业制造商,行业中产量最大的制造商之一,深圳市南柏科技有限公司) 迪美 (集研发/生产/销售为一体的专业技术型公司,上海室内环境净化协会会长单位,东莞市迪美环保科技有限公司) 高欣GX (国内著名车载电源制造商,较具竞争力的车载节能电子品牌,拥有多项技术专利,佛山市思捷光电科技有限公司)

门禁系统管理平台-详细设计说明书

门禁系统管理平台详细设计报告 2015年09月20日

目录 一、基本信息 .................................................................................................................. 错误!未定义书签。 二、市场分析 (4) 1.客户需求分析 (4) (1)国际国内市场需求量预测及客户咨询类似产品情况..... 错误!未定义书签。 (2)客户对该产品的功能、安全、使用环境要求等............. 错误!未定义书签。 2.市场现状分析 (4) 三、详细设计 (4) 1. 模块描述 (4) 2. 功能描述 (4) 3. 信息传输过程 (6) 4. 标准符合性分析 (6) 5. 验证(试制/试验/检测)确认方法、手段的分析 (8) 四、资源论证 (8) 1.人力资源需求分析 (8) 2.开发设备资源需求分析 (9) 3.项目开发成本预算 (9) 五、研发时间安排 (9) 六、项目风险评估 (10) 1.技术方面 (10) 2.人员方面 (10) 3.其它资源 (10) 七、评审结论 (11) 八、公司意见 (11)

一、市场分析 1.客户需求分析 1.2014年7月份由三大运营商出资成立了中国通信设施服务股份有限公司,同年9月份 变更名称为中国铁塔股份有限公司。铁塔公司成立后,2015年12月下旬,2000多亿存量铁塔资产基本完成交接。而从2015年1月1日起,三大运营商停止新建铁塔基站,交由中国铁塔进行建设。据统计,2015年1-11月,中国铁塔累计承接三家电信运营企业塔类建设需求53.2万座,已交付41.8万座。针对如此庞大的存量基站及新建基站。 铁塔公司总部急需对基站人员进出做到统一管理,有效管控。提高效率。因此所产生的市场需求量是很大的。 2.随着互联网及物联网技术的快速发展,原有传统门禁管理系统、单一功能的管理软件已 经无法管理众多不同品牌、不同通讯方式、不同厂家的IC/ID读卡设备,因此客户需要一种开放式、分布式的云管理平台,来管理整个基站门禁系统中的所有设备 2.市场现状分析 ●同行业中,各厂家的产品采用传统的门禁方案,既读卡器和控制器及电磁锁或电插锁对 现场的基站门进行管理。造价昂贵,安装复杂。。 ●目前大部分厂家的管理平台架构单一,系统兼容性差,各家的门禁管理平台只能兼容自 家的控制器。开放性不够。 ●目前很多厂商的平台都是针对某一个硬件厂商的设备来运行的,当项目中有多家设备时 平台的控制力明显不足 二、详细设计 1. 模块描述 铁塔基站门禁系统管理平台系统主要包括三部分:BS/CS客户端、云服务器和手机APP。 其中客户端的主要功能包括: 支持对多家基站锁具设备的识别、获取、登录 支持对不同用户进行权限划分。 支持对锁具根据区域进行分组。 支持多家基站锁具设备的设备配置 支持多家设备通过手机APP开锁、获取状态、日志查询。 支持多家设备的设备时间校准 支持设备更新,当设备更新时,可以方便的只更新涉及到的文件,而不需要重装整个系统 支持电子地图

夏普电视维修收费标准

家里的电器,例如电视机,也会因为潮湿的环境而遭到损害,例如高压打火,那么下面夏普电视维修收费标准中心就来为大家介绍一下出现电视机高压打火的原因和维修办法以及夏普电视维修收费标准,一起来看看夏普电视维修收费标准吧。 夏普电视维修收费标准:

夏普电视维修收费标准—电视高压包打火的原因 1、空气中灰尘较多。电视机工作过程中,由于高压产生静电感应而将灰尘吸附地高压帽周围,使其绝缘性能下降。 2、空气湿度大,高压帽密封不严,电视维修使高压帽内进入潮湿空气。 3、高压卡簧与高压线连接焊点有毛刺,毛刺会产生尖端放电现象,将高压帽橡胶烧老化。所以说电视机高压大火主要是因为天气潮湿造成的。

夏普电视维修收费标准—电视高压包维修的办法 1、首先要区分是什么位置造成的高压打火,以便对症下药。高压帽打火处理办法:在去下高压帽之前一定要对显像管高压嘴进行放电处理,放电时先准备一条外皮绝缘导线,两头要有金属头,一头搭在电视机的地线上另一头要插进高压帽里,会听到啪的一声,高压就被放掉了,应该反复放电3次以上保证高压被彻底放干净。 2、放电完成后把高压帽拿下,然后要把高压帽内用无水酒精清洗干净,还有显像管阳极周围部分一定要用酒精多次擦洗保证没有任何灰尘。特别是放电严重时把显象管打出的沟,这些部位清洗干净后用电吹风吹干一定要吹的很干。然后在高压阳极涂上高压硅脂,安装高压帽时一定要把内部空气尽量挤出去。这样就可以防止电视机高压帽打火。 3、彩电高压嘴发生打火现象,可用这个方法来消除:先将高压嘴处放电。取出烧坏高压帽和卡簧。如果高压嘴及周围无石墨层部分的污垢不多,可用酒精棉花清洗;若污垢较厚,可用锋利刀片类工具刮除。如高压嘴有锈迹,应用砂纸等擦亮,将高压嘴里面的残留物彻底清除干净。清洗干净后,用电吹风加热将高压嘴及附近的水分除尽。

智能门禁管理系统说明书

IC一体式/嵌入式门禁管理系统 使用说明书

目录 1.系统简介 (3) 2.功能特点 (3) 3、主要技术参数 (4) 4、系统组成 (4) 5、设备连接 (5) 6、门禁管理系统软件 (6) 6.1 软件的安装 (6) 6.2 人事管理子系统 (7) 6.3 一卡通管理系统 (9) 6.4 门禁管理子系统 (12) 7. 调试操作流程 (28) 8、注意事项 (28)

1.系统简介 在高科技发展的今天,以铁锁和钥匙为代表的传统房门管理方式已经不能满足要求,而集信息管理、计算机控制、Mifare 1 IC智能(射频)卡技术于一体的智能门禁管理系统引领我们走进新的科技生活。 Mifare 1 IC智能(射频)卡上具有先进的数据通信加密并双向验证密码系统,卡片制造时具有唯一的卡片系列号,保证每张卡片都不相同。每个扇区可有多种密码管理方式。卡片上的数据读写可超过10万次以上;数据保存期可达10年以上,且卡片抗静电保护能力达2KV以上。具有良好的安全性,保密性,耐用性。 IC卡嵌入式门禁管理系统以IC卡作为信息载体,利用控制系统对IC卡中的信息作出判断,并给电磁门锁发送控制信号以控制房门的开启。同时将读卡时间和所使用的IC卡的卡号等信息记录、存储在相应的数据库中,方便管理人员随时查询进出记录,为房门的安全管理工作提供了强有力的保证。 IC卡嵌入式门禁管理系统在发行IC卡的过程中对不同人员的进出权限进行限制,在使用卡开门时门禁控制机记录读卡信息,在管理计算机中具有查询、统计和输出报表功能,既方便授权人员的自由出入和管理,又杜绝了外来人员的随意进出,提高了安全防范能力。 IC卡嵌入式门禁管理系统,在线监控IC卡开门信息、门状态,给客户以直观的门锁管理信息。 IC卡嵌入式门禁(简称门禁读卡器,门禁控制机,控制器)是目前同行业产品中体积较小的门禁,可以嵌入到市场上几乎所有的楼宇门禁控制器中,解决了因为楼宇门禁控制器内部空间小所带来的麻烦,是楼宇门禁控制器的最佳配套产品;它绝不仅仅是简单的门锁工具,而是一种快捷方便、安全可靠、一劳永逸的多功能、高效率、高档次的管理系统。它能够让你实实在在享受高科技带来的诸多实惠和方便。 2.功能特点 2.1.IC卡嵌入式门禁具有的功能: 2.1.1使用MIFARE 1 IC卡代替钥匙,开门快捷,安全方便。 2.1.2经过授权,一张IC卡可以开启多个门(255个以内)。 2.1.3可以随时更改、取消有关人员的开门权限。 2.1.4读卡过程多重确认,密钥算法,IC卡不可复制,安全可靠。 2.1.5具有512条黑名单。

相关主题
文本预览
相关文档 最新文档