当前位置:文档之家› 极限常用求法13招

极限常用求法13招

极限常用求法13招
极限常用求法13招

极限求法“13招”

本文根据同济大学《高等数学(第六版)》教材中的例题和习题,归纳总结了高等数学初学者需了解的求极限的基本方法. 这几个“招数”肯定不会有金庸笔下“降龙十八掌”的威力,但作为“江南六怪”传授给“靖哥哥”的武功入门套路,“行走江湖”应足以自保!希望对大家的学习有所帮助. 招数1.约去零因子法.

例1 求极限1

1lim

4

1

--→x x x .

【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去. 【解】6)1)(1(lim 1

)

1)(1)(1(lim

2

1

2

1

=++=-++-→→x x x x x x x x =4.

招数2.分子分母同除变量的最高指数项法.

例2 求极限1

3lim 3

2

3+-∞

→x x

x x .

【说明】∞

∞型且分子分母都为幂函数时,可通过分子分母同除某一项来求

解.

【解】3

131lim

1

3lim

3

11

32

3

=

+

-=+-∞

→∞

→x

x x x x x

x .

由此,可得结论

1101

10

0,,lim

lim

,,,.

n n n n n n m

m m

x x m m m n n

m n a x a x a a x m n b x b x

b b x

a m n

b ---→∞

→∞

-??>?+++?==∞

例3 求极限)13(lim 22+-++∞

→x x x 。

【解】1

3)

13)(13(lim

)13(lim 2

2

2

2

22

2

2

++

+++++-

+=+-

++∞

→+∞

→x x x x x x x x x x

01

32

lim

2

2

=++

+=+∞

→x x x .

例4 求极限3

sin 1tan 1lim

x

x

x x +-

+→.

【解】x

x x

x

x x

x

x x x sin 1tan 1sin tan lim

sin 1tan 1lim

3

3

+-+-=+-

+→→

4

1sin tan lim

2

1sin tan lim

sin 1tan 11

lim

3

3

=

-=

-++

+=→→→x

x

x x

x

x x

x x x x .

【注】本题除了使用分子有理化招数外,及时分离极限式中的非零因子...........是解题的关键. 招数4.重要极限法.

两个重要极限是1sin lim

=→x

x x 和e

x n

x

x x n

n x

x =+=+

=+

→∞

→∞

→1

)1(lim )11(lim )11(lim ,第

一个重要极限常可通过等价无穷小来实现,此处主要考虑第二个重要极限.

例5

求极限x

x x x ?

?

?

??-++∞→11lim .

【说明】1∞型极限的求法是将幂指函数凑出形式

1

lim (1)

→+

最后为保持恒等变形,再凑出指数部分.

【解】2

11

22

lim

2

1

12121lim lim 1lim 111x x

x x x x

x

x x x x x x e

e x x →+∞

----→+∞→+∞→+∞??

??+??????=+=+== ? ? ???--?????????

?

.

【注】 本题招数实际上可推广,得到∞1型未定式)()(lim x g x f 的一般求解公式:

)

()

(lim x g x f )1(∞=)

()1)(lim(x g x f e

-.

因为

()

lim ()ln[()]

lim ()ln[1(()1)]

lim ()

g x g x f x g x f x f x e

e

+-===)

()1)(lim(x g x f e

-.

例6 (1)x

x x ??? ??-+∞→211lim ;(2)已知82lim =??

?

??-++∞→x

x a x a x ,求a .

招数5.等价无穷小代换法.

【说明】(1)常见的9个等价无穷小

当0→x 时,sin ~x x ,tan ~x x ,arcsin ~x x ,arctan ~x x ,ln(1)~x x +,

1~x e x -,1~ln x

a x a -,01a ≠,

,2

11cos ~2

x x -,()11~x x μ

μ+-.

(2)等价无穷小量代换,只能代换极限式中的因式..; (3)此招数在各种求极限的招数中应作为首选...... 例7 求极限0

ln(1)lim

1cos x x x x

→+-.

【解】 0

2

ln(1)lim

lim

211cos 2x x x x x x x

x

→→+?==-.

例8 求极限x

x x x 3

tan

sin lim

-→.

【解】x

x x x 3

tan

sin lim

-→6

13lim

31cos lim

sin lim

2

2

2

1

2

3

-

=-

==-=-=→→→x

x

x

x x

x x x x x .

招数6.变量代换或三角恒等变换法.

例9 求极限2

lim tan (sin 1)x x x π

-. 【解】2

22

2

sin (sin 1)

sin 1lim tan (sin 1)lim

lim sin lim

cos cos x x x x x x x x x x x

x

π

π

π

π

---== ,

2sin 1lim

cos x x x

π

-=,注意:此处要及时分离不为零的极限2

lim sin x x π

利用三角变换,222

2

1cos()1

()sin 12

22lim

lim

lim

0.cos sin(

)

2

2

x x x x x x x

x x

ππ

π

ππππ

---

--===--

或作变量代换,令2

t x π

=

-,得

2

2

1sin()1

sin 1cos 12

2lim

lim

lim lim

0.cos sin cos(

)

2

t t t x t t

x t x

t

t

t π

ππ→→→→

-----====-

招数7.洛必达法则法.

例10 求极限2

2

)

sin

1ln(2cos ln lim

x

x x x +-→.

【说明】∞

∞或0

0型的极限,可通过洛必达法则来求.

【解】2

2

)

sin

1ln(2cos ln lim

x

x x x +-→x

x

x x

x

x 2sin

12sin 2cos 2sin 2lim

2

+--=→

3sin

11

2cos 222sin lim

2

-=??

?

??+--=→x x x x x . 例11 设函数()f x 连续,且0)0(≠f ,求极限.)()()(lim

??

--→x x

x dt

t x f x dt

t f t x

【解】 由于?

?

?=

-=

-=-0

)())(()(x

x

x

u

t x du u f du u f dt t x f ,于是

???

??

-

=--→→x x

x

x x

x

x du

u f x dt

t tf dt t f x dt

t x f x dt

t f t x 0

)()()(lim

)()()(lim

=?

?

+-+→x

x

x x xf du u f x xf x xf dt t f 0

)

()()

()()(lim

=?

?+→x x

x x xf du u f dt

t f 0

)

()()(lim

=)

()()(lim

x f x

du

u f x dt

t f x

x

x +?

?

→=

.2

1)

0()0()0(=

+f f f

倒数第2个等式是利用导数定义求出,见招数8. 招数8.导数定义法.

见教材P.86习题6.

招数9.对数恒等式变换法.

该法用于求幂指函数)()(lim x g x f 型的极限. 其中未定式1∞已在招数4中给出简便的求解方法,另两种未定式00,0∞请参见教材P138中例题9和P139中习题1(15)(16),此处给出一般的求解方法,即

()

lim ()ln[()]

lim ()

g x g x f x f x e

=.

例12 极限x x x 2

)]1ln(1[lim ++→.

【解】 x

x x 2

)]1ln(1[lim ++→=)]

1ln(1ln[20

lim x x

x e

++→=.2

)

1ln(2lim

)]

1ln(1ln[2lim

e e

e

x

x x

x x x ==+++→→

注:请读者使用招数4中的公式求解.

例13

求极限3012cos lim 13x

x x x →??+??

-?? ???????

. 【解法1】 原式2cos ln 33

1lim

x x x e

x

+??

?

??

→-=2

02cos ln 3lim x x x

→+??

?

??

= 2

0l n 2c o s l n 3l i m

x x x →+

-

=()01

s i n 2c o s l i m 2x x x x →?-+=() 011s i n 1

l i m 22c o s 6

x x x x →=-?=-+.

【解法2】 原式2cos ln 33

1lim

x x x e

x +?? ?

??

→-=2

02cos ln 3lim x x x

→+??

?

??

= 20

c o s 1ln 3lim

x x x

→-+

=(1)

20c o s 11l i m 36x x x →-==-. 招数10.Taylor 公式法.

可参见教材P.144例3.

例14 求极限 ) 0 ( ,2

lim

2

>-+-→a x

a

a x x

x .

【解】 ) (ln

2

ln 12

2

2

ln x a x

a x e

a a

x x ++

+==,

) (ln 2

ln 12

22

x a x

a x a

x

++

-=-;

). (ln 2222x a x a a x x +=-+-

∴ a x

x a x x

a

a x x x x 2

2

2

220

2

ln )

(ln lim

2

lim

=+=-+→-→ .

例15 求极限0

11

lim (cot )x x x x

→-. 【解】 0

0111sin cos lim (cot )lim

sin x x x x x x x x x x x

→→--=

3

2

3

2

3

()[1()]

3!

2!

lim

x x

x

x x x x x

οο→-+--

+=

33

3

1

1(

)()12!

3!

lim 3x x x x

ο→-

+==

.

招数11.数列极限转化法.

例16 极限2

1sin

lim n

n n n ??

? ??∞

→.

【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的招数结合罗必塔法则求解。

【解】考虑辅助极限6

11sin 1

10

11sin 222

lim lim 1sin lim -

??

?

?

??-→?

?

? ??

-+∞

→+∞→===?

?? ?

?

+e

e

e

x x y y y y x x x x x

x

所以,6

12

1sin lim -

∞→=?

?? ?

?

e

n n n

n .

招数12.(数列的n 项)和式极限求法.

和式的极限问题有两种招数: (1) 利用两边夹法则求极限;

(2) 用定积分的定义把极限转化为定积分来计算. 例17 极限????

?

?++

+++

+∞

→n n n n n 2

2

2

1

2

11

1lim . 【说明】 两边夹法则需要放大不等式,常用的招数是找出和式中的最大项以及最小项,然后放大缩小.

【解】因为

1

12

11

12

2

2

2

2

+≤

++

+++

+≤

+n n n

n n n n

n n ,

n

n n n +∞

→2

lim

11

lim

2

=+=∞

→n n n ,

所以

????

?

?++

+++

+∞→n n n n n 2

2

2

12111lim =1. 例18 极限???

?

?

?++

+++

+∞→2

2

2

22

2

12

1

1

1lim n

n n n n . 【说明】用两边夹法则失效时考虑用用定积分的定义求极限,此时需把和式化为112n f f f n n n n ?

?

??

??

??+++ ? ? ? ?????????

,然后利用定积分定义,有

?

=???

?

????? ??++??? ??+??? ??∞

→10

)(211lim

dx x f n n f n f n f n n .

【解】原式=??????

?

?

????

?

?++

+?

?

? ??++

?

?

? ??+∞→22

2

112111111lim n n n n n n 1

212ln

2

11110

2

+--

=+=

?

dx x

.

招数13.单调有界准则法.

例19 设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<== .

(Ⅰ)证明lim n n x →∞

存在,并求该极限;

(Ⅱ)计算2

1

1lim n

x n n n x x +→∞?? ???

. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.

【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<.

可推得 10sin 1,1,2,n n x x n π+<=≤<= ,则数列{}n x 有界. 于是

1sin 1n n

n

n

x x x x +=<,(因当0s in x x x ><时,),

则有1n n x x +<,可见数列

{}n x 单调减少,故由单调有界准则必有极限知极限lim n n x →∞

存在.

设lim n n x l →∞

=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即

lim 0n n x →∞

=.

(Ⅱ)因22

11

1sin lim lim n

n

x x n n n n n n x x x x +→∞

→∞

??

??= ?

???

??

,由(Ⅰ)知该极限为1∞型, 6

1sin 0

1sin 110

03

2

2

2

1lim lim sin 1lim -

-→??

?

??-→→===??

? ??+++e

e

e x x x

x

x x x x x x x

x

22

1

1

1

16sin lim lim e n

n x x n n n n n n x x x x -+→∞

→∞

????== ? ???

??

.

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

几道经典极限问题

1、设0,01>>a x ,)(211n n n x a x x +=+,证明:}{n x 收敛并求其极限。 证明:显然0>n x ,又a x a x x n n n ≥+= +)(211(中学中不等式) 又1)1(2121≤+=+n n n x a x x ,所以}{n x 单调减少,有下界,故}{n x 收敛,令A x n n =∞→lim ,由 )(21A a A A +=,则a A =。 2、求20cos 2cos cos 1lim x nx x x n x -→。 解答: +-+-=-→→→2 020202cos cos cos lim cos 1lim cos 2cos cos 1lim x x x x x x x nx x x x x n x 2 10cos 2cos cos )1cos(2cos cos lim x nx x x x n x x n n x --+-→,而21cos 1lim 20=-→x x x , 2020202cos 1lim 2cos 1cos lim 2cos cos cos lim x x x x x x x x x x x x -=-=-→→→, 因为22~cos 1x a x a -,所以22)2(41~2cos 1x x x =-,于是12cos 1lim 2 0=-→x x x , 同理 ,233cos 2cos cos 2cos cos lim 230=-→x x x x x x x , 2cos 2cos cos )1cos(2cos cos lim 2 10n x nx x x x n x x n n x =---→ , 所以原式4 )1(22221+=+++= n n n 。 3、设0,0>>b a ,求][lim 0x b a x x ?+→。 解答:令θ+=n x b ,其中10<<θ,当+→0x 时,+∞→n ,则θ+=n b x , 于是a b n n a b x b a x n x =?+=?∞→+→)(lim ][lim 0θ。 4、⑴证明:当x 充分小时,不等式422tan 0x x x ≤-≤成立。

求极限的13种方法

求极限的13种方法(简叙) 龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。 一、利用恒等变形求极限 利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限 )1...()1)(1(22 lim n a a a n +++∞ → ,其中1

提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等。 例2、求极限1 1lim 1 --→n m x x x ,其中m,n 为正整数。 分析 这是含根式的(0 )型未定式,应先将其利用变量代换进行化简,再进一步计算极限。 解 令11,1→→=t x x t mn 时,则当 原式=m n t t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限 利用对数转换求极限主要是通过公式,ln v u v e u ?=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ?-=)1( 例3、求极限o x →lim x x 2csc ) (cos 解 原式=o x →lim 2 1sin sin 21 lim csc )1(cos 2202 - --==→e e e x x x x x 四、利用夹逼准则求极限 利用夹逼准则求极限主要应用于表达式易于放缩的情形。 例4、求极限∞ →n lim n n n ! 分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。 解 因为n n n n n n n n n o n 1121!≤?-??=≤ , 且不等式两端当趋于无穷时都以0为极限,所以∞ →n lim n n n ! =0 五、利用单调有界准则求极限 利用单调有界准则求极限主要应用于给定初始项与递推公式

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

大学数学经典极限方法(最全)

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞ →x x a x a x ,求a 。

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

经典求极限解题方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】2 2 2 12 1 2112111lim 121lim 11lim e x x x x x x x x x x x =???? ????? ???? ? ?-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。

求极限13种方法

求极限的 13种方法(简叙) 龘龖龍 极 限概念与求极限的运算贯穿了高等数学课程的始终, 极限思想亦是高等数学的核心与 基础, 因此,全面掌握求极限的方法与技巧是高等数学的基本要求。 本篇较为全面地介绍了 求数列极限与函数极限的各种方法,供同学参考。 一、利用恒等变形求极限 利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多 变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母 有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 n 例 1、求极限 lim (1 a)(1 a 2 )...(1 a 2 ) ,其中 a 1 n 分析 由于积的极限等于极限的积这一法则只对有限个因子成立, n 因为 (1 a)(1 a 2 )...(1 a 2 ) 1 (1 a)(1 a)(1 a 2 )...(1 a 2 1a 1 2 2 2 n (1 a 2)(1 a 2 )...(1 a 2 ) 1a 1 2 n 1 11a (1 a 2 ) 2 2n 0,从而 lim (1 a)(1 a 2 )...(1 a 2 )= n 1 a 二、利用变量代换求极限 利用变量代换求极限的主要目的是化简原表达式,从而减少运算量, 提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等。 此, 应先对其进行恒等变形。 n 时 2n 1 2 n 1 a 2

例 2、求极限 lim x 1 ,其中 m,n 为正整数。 x 1n x 1 分析 这是含根式的( 0 )型未定式,应先将其利用变量代换进行化 简,再进一步计算极限 1 解 令 t x mn ,则当 x 1时,t 1 三、利用对数转换求极限 原式 = lim e (cos x 1)csc 2 x e xo 四、利用夹逼准则求极限 利用夹逼准则求极限主要应用于表达式易于放缩的情形。 例 4、求极限 l n im n n ! n n n 分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使 用夹逼准则。 解 因为 o n n ! 1 2 n 1 n 1 , n n n n n n 且不等式两端当趋于无穷时都以 0为极限,所 以 l n im n n ! =0 n n n 五、利用单调有界准则求极限 利用单调有界准则求极限主要应用于给定初始项与递推公式 原式=l t im 1 t t lim (t 1)(t t 1 (t 1)(t n1 m1 t n 2 ... 1) t m 2 ... t n1 t n 2 ... 1 t m 1 t m 2 (1) 利用对数转换求极限主要是通过公式 u v e lnuv ,进行恒等变形,特别 的情形,在( 1 )型未定式时可直接运用 (u 1) v e 例 3、求极限 l x im o (cosx) csc 2 x 1 2 sin x lim 2 2 x 0 sin 2

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

求函数极限的方法和技巧

求函数极限的方法和技巧 在数学分析和微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 一、求函数极限的方法 1、运用极限的定义: 例: 用极限定义证明:12 2 3lim 22=-+-→x x x x 证: 由24 4122322-+-=--+-x x x x x x ()22 22 -=--= x x x 0>?ε,取εδ=,则当δ<-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 2 3lim 22=-+-→x x x x 。 2、利用极限的四则运算性质: 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则:B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 5 3lim 22+++→x x x x 解: 453lim 22+++→x x x x = 2 5 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() ( ) ) 12102(65) 2062(103lim 2232232+++++--+---→x x x x x x x x x x x

求极限的常用方法

毕业论文 题目:求极限的方法 学院:数学与统计学院 专业:数学与应用数学 毕业年限:2013 学生姓名:俞琴 学号:200971010249 指导教师:伏生茂

求极限的方法 俞 琴 (数学与应用数学 200971010249) 摘要:在数学分析中,极限思想始终贯穿于其中,求极限的方法也显得至关重 要,求数列和函数的极限是数学分析的基本运算.求极限的主要方法有用定义、四则运算法则、迫敛性、两个重要极限、定积分、函数连续性等,除了这些常用方法外,还有许多相关技巧.本文结合自己对极限求解方法的总结,通过一些典型的实例,对求极限的各种方法的很多细节作了具体分析,使方法更具针对性、技巧性,因此,克服了遇到问题无从下手的缺点,能够做到游刃有余. 关键词:极限 单调性 定积分 洛必达法则 函数连续性 一、极限的定义及性质 自然界中有很多量仅仅通过有限次的算术运算是计算不出来的,而必须通过分析一个无限变化过程的变化趋势才能求得结果,这正是极限概念和极限方法产生的客观基础. 极限概念是数学分析中最基本的概念,因为数学分析的其它基本概念均可用极限概念来表达,且解析运算(微分法、积分法) 都可用极限概念来描述,如函数)(x f y =在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分、三重积分的定义,无穷级数收敛的定义,这些数学分析中最重要的概念都是用极限来定义的.极限是贯穿数学分析的一条主线,它将数学分析的各个知识点连在了一起.所以,极限概念与极限运算非常重要,学好极限便为学习数学分析打好了基础. (一)定义 定义1 设}{n a 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时有 ε<-a a n ,则称数列}{n a 收敛于a ,定数a 称为数列}{n a 的极限,并记作

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求极限的常用方法Word版

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

求极限的13种方法

求极限的13种方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

极限经典例题集

例题1.在数列{a n}中,a1=1,当n≥2时,a n,S n,成等比数列。 (1)求a2,a3,a4; (2)猜想a n的表达式并用数学归纳法证明; (3)求; (4)(思考题)不使用猜想a n的表达式并用数学归纳法证明的方法直接求a n。 1..解析:∵a n,S n,成等比数列,∴(n≥2)(*) (1)把a1=1,S2=a1+a2=1+a2代入(*)式得: 把a1=1,,代入(*)得:。 同理可得: 由此可以推出: (2)(i)当n=1,2,3,4时,由(*)知猜想成立。 (ii)假设n=k(k≥2)时,成立。 故 ∴或(舍去) 由得

即n=k+1时,命题也成立。 由(i)(ii)可知,对一切n∈N成立。 (3)由(2)得数列前n项的和,所有项和 (4)对于{a n}的通项还可以这样来求: ∵,∴ ,故是以为首项,为公差的等差数列故 , 注:对于含有a n,S n的关系式中,常将a n用S n-S n-1(n≥2)代(或S n+1-S n用a n+1代),化成S n,S n+1(或a n,a n+1)的递归关系式。 例1.数列{a n}满足下列条件,求其通项公式a n。 (1)a1=1, (2)a1=2, (3)a1=2,{a n}的前n项和S n满足 解: (1)

…… 将以上各式叠加,得 ∴ 又n=1时, (2) …… 将以上各式叠乘,得 ∴a n=n(n+1)(n≥2) 当n=1时,1×(1+1)=2 = a1∴a n=n(n+1)(n∈N*) (3)

∴2S n-1S n=S n-1-S n(n≥2) 在上式两边同除以S n S n-1,得 ∴数列为首项,公差为2的等差数列。 例2、在等差数列{a n}中 (1)若a p=q,a q=p(p、q∈N*且q≠p),求a p+q; (2){a n}共有n项,其前四项之和为124,其最后四项之和为156,其所有项之和为210,求项数n; (3)若{a n}前n项和记为S n,且有,求S m+n的范围 解: (1) ∵a q=a p+(q-p)d ∴a p+q=a p+(q+p-p)d=q+q×(-1)=0 (2) ∵a1+a2+a3+a4=124 a n+a n-1+a n-2+a n-3=156 ∴(a1+a n)+(a2+a n-1)+(a3+a n-2)+(a4+a n-3)=280 ∴4(a1+a n)=280∴a1+a n=70 ∴n=6

相关主题
文本预览
相关文档 最新文档