当前位置:文档之家› 纯石墨膨胀板材 expanded graphite

纯石墨膨胀板材 expanded graphite

纯石墨膨胀板材 expanded graphite

All data quoted are based on our extensive tests and years of experience, however, they can only serve as guide values. Failure to select

proper sealing products could result in property damage and/or serious injury. Specifications are subject to change without notice. CAZ is registered brand of CAZ Group Corporation Cixi CAZ Group Corporation Cixi CAZseal Packing & Gasket Co.Ltd Expanded Graphite Sheet

CAZ Grafoil TM 440

CONSTRUCTION:

CAZ 440 Pure Expanded graphite sheets

Grafoil TM is Selected from the high purity natural flake graphite. They

are made through the advanced chemical treatment and mechanical

procedure without fibers, binders or other additives. It offer excellent

sealing capabilities under extreme conditions with a longer life and

less maintenance.

Nuclear Style grade:440N

APPLICATION:

Made for packing rings and various kinds of gaskets.

Cut into strip for filler of spiral wound gasket - Style TA440

Used widely in chemical, automotive and pump, valve industries. As

a superior replacement for asbestos, new more applications are

Being identified daily.

Temperature: -240~500°C under oxidizing environment

-240~3500°C under non-oxidizing environment

PH Range: 0 - 14

PARAMETER:

Item

Nuclear grade Industrial grade Tolerance of Density g/cm 3

±0.05 ±0.06 Carbon Content ≥%

99.5 98/99 Tensile strength ≥Mpa

5 4 Compressibility ≥%

30 30 Recovery ≥%

15 15 Sulphur Content ≤ppm

700 1200 Chlorine Content ≤ppm

25 50 Stress relaxation rate %

10 10 Lgnition loss ≤% 0.5 2.0

DIMENSIONS:

Item Sheets Rolls

Density g/cm 3 1.0 1.0

Length 1000, 1500mm 30~100m

Width mm 5~1000, 1500 3~1000~1500

Thickness mm 0.5~3 0.2~1.1

Special density, thickness, shape or grade available on request.

Style of graphite cut gasket:G440

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯材料

石墨烯材料 1.4石墨烯材料 纯净、完美的石墨烯是一种疏水材料,并且在大多数有机溶剂中也难于溶解。不过,对石墨烯进行复合和改性,如通过修饰,共价或非共价的方法将功能基团引入石墨烯平面,能使其溶解度显著提高H¨”。在没有分散剂的作用下,直接将疏永的石墨烯片分散在水中是很困难的。通过氨水调节pH值为10左右,用水合肼还原氧化石墨烯(GO)的办法,可以得到还原的石墨烯(rG0)。由于这利-石墨烯还含有少量的含氧基团,因而可在水溶液中分散。但这种分散能力依然是有限的,不超过O 5 mg/mL。除了水,一些有机溶剂,如乙醇、丙酮、二甲基亚砜和四氢呋喃也可以用来分散rGO。金属离子和功能基团同样可以用来修饰rGO片层。在KOH溶液中,用肼还原氧化石墨可得到钾离子修饰的石墨烯(hKlvlG),其能在水溶液中均匀分散。另外,将苯磺酸基团引入GO,还原后可得少量磺化的石墨烯,这种石墨烯在pH处于3-10的范围内时,浓度可达2mg/mL。 共价修饰石墨烯指的是用含有功能基团的分子与石墨烯表面的含氧基团的反应,如羧基、环氧基、羟基,包括平面内的碳碳双键。例如,分散在四氢呋喃,四氯化碳,1,2-二氯乙烷(EDC)qb的rGO,发现把其边缘的羧基修饰上十八胺时后,其稳定性增加[48-50。用异氰酸酯处理石墨烯时,表面的羟基和边缘的羧基会形成酰胺和氨基甲酸酯。氧化石墨烯的羧基与聚乙烯醇(P、後)的羟基酯化也实现了合成GO与聚合物的复合片层。另一方面,石墨烯表面的环氧基团可以接受亲核试剂(如离子液体1-(3-aminopropyl)-3-methylimidazolium bromide或APTS) 的进攻而发生开环反应。同样,rGO可以用重氮盐(如SDBS)共价功能化,使之在多种极性有机溶剂中具有很好的分散性。此外,由环加成反应将氮烯体系和碳碳双键连接,使苯基丙氨酸和迭氮三甲基硅烷等许多有机官能团引入石墨烯表面。与共价功能化相比,非共价功能化是基于rGO与稳定剂间的范德华力或相互作用。这种修饰不仅对石墨烯的结构破坏更小,而且为调控其溶解度和电子性质提供了便利。在氧化石墨烯的氨水溶液中,加入聚苯乙烯磺酸钠(PSS)后,再用水合肼还原,人们第一次制得了非共价修饰的可分散石墨烯。在这项工作中,PSS的疏水端与rGO发生吸附,阻碍了rGO的团聚。并且PSS 的另一端是亲水性的,这就使1<30.PSS在水中可以稳定分散。此外,通过与生物分子的

基于石墨烯的导电复合材料

基于石墨烯的导电复合材料进展 课程:聚合物结构与性能学生:张恩重学号:201110102626 自2004年英国曼彻斯特大学Geim教授首次制备出单层石墨烯[1](graphene)以来,其独特的性质就引起了科学家们的广泛关注。石墨烯是单层碳原子紧密堆积而形成的炭质新材料,单层石墨烯是以二维晶体结构存在,厚度只有0.335nm,是目前世界上最薄的二维材料,它是构筑其它维度碳质材料的基本单元,可以包裹起来,形成零维的富勒烯,卷起来形成一维的碳纳米管,层层堆积形成三维石墨,如图1。石墨烯是一种没有能隙的半导体材料,具有比单晶硅高100倍左右的载流子迁移率(2×105cm(V·s))[2]在室温下具有微米级自由程和大的相干长度,因此它是纳米电路的理想材料。另外,石墨烯还具有良好的导热性(导热率为5000W(m·K)[3]、高强度高达130GPa[4]、高透明度(对自然光的吸收率只有2.3%左右)和超大的比表面积(2630m2/g)[5]。由于石墨烯具有上述优异的性能,使其有望在微电子、能源、信息材料和生物医药等领域具有重大的应用前景。 图1 2D结构的石墨烯片层演变成C60、碳纳米管和石墨的示意图 目前制约石墨烯和其复合材料发展的两个主要因素是:一、具有单层结构石

墨烯的大规模制备;二、石墨烯的可控功能化。本文将从聚合物复合导电材料、聚合物复合材料导电机理,石墨烯的制备和石墨烯聚合物复合导电材料的性能研究进展等方面介绍基于石墨烯的导电复合材料,并了解其未来研究领域。 导电高分子材料 近二十年,尤其导电高分子获得诺贝尔奖以来,导电高分子材料作为高分子材料发展的一个新领域,其研究与开发已成为功能高分子材料研究的一个重要方面。按导电机理的不同,导电高分子材料可以分为复合型和结构型两种:复合型导电高分子材料是利用向高分子材料中加入各种导电填料来实现其导电能力;结构型导电高分子材料是改变高分子结构使高分子自身具有导电性来实现其导电能力[6]。本文主要介绍以石墨烯为填料的复合型导电高分子材料。 复合型导电高分子材料 复合型导电高分子材料是指将各种导电填料和高分子材料通过不同的复合方法制备的具有导电功能的多相复合材料。这类材料既具有导电功能,同时又保持高分子材料的特点,并且成本较低,因而得到了广泛的应用。根据导电填料的不同它又可分为碳基材料填充型及金属材料填充型。 1、碳基材料填充型 碳基材料主要包括石墨烯、足球烯、碳纳米管、石墨。碳基材料填填充型导电材料是目前复合型导电材料中应用最广泛的一种,应用最多的碳基材料是石墨烯、碳纳米管和石墨,它的优点有以下几个方面:一、碳基材料填价格低廉,实用性强;二、碳基材料填能根据不同的导电要求有较大的选择余地;三是导电持久稳定[7]。 2、金属材料填充型 金属材料填充型复合导电材料的导电性能优良,比传统金属材料轻且易成型加工,是具有潜在优势的新型导电材料和屏蔽材料。近年来,金属纤维填充材料发展迅速。 复合型导电高分子材料的导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态[8]。根据逾渗理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后就会形成连续的导

石墨烯

石墨烯 -聚合物高性能复合材料的制备及性质研究 2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)等制备出了石墨烯。海姆和他的同事偶然中发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 石墨烯 石墨烯的问世引起了全世界的研究热潮。它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。 为了进一步说明石墨烯中的载荷子的特殊性质,我们先对相对论量子力学或称量子电动力学做一些了解。 经典物理学中,一个能量较低的电子遇到势垒的时候,如果能量不足以让它爬升到势垒的顶端,那它就只能待在这一侧;在量子力学中,电子在某种程度上是可以看作是分布在空间各处的波。当它遇到势垒的时候,有可能以某种方式穿透过去,这种可能性是零到一之间的一个数;而当石墨烯中电子波以极快的速度运动到势垒前时,就需要用量子电动力学来解释。量子电动力学作出了一个更加令人吃惊的预言:电子波能百分百地出现在势垒的另一侧。 以下实验证实了量子电动力学的预言:事先在一片石墨烯晶体上人为施加一个电压(相当于一个势垒),然后测定石墨烯的电导率。一般认为,增加了额外的势垒,电阻也会随之增加,但事实并非如此,因为所有的粒子都发生了量子隧道效应,通过率达100%。这也解释了石墨烯的超强导电性:相对论性的载荷子可以在其中完全自由地穿行。 另外,研究也发现,尽管只有单层原子厚度,但石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性的体现。美国哥伦比亚大学两名华裔科学家最近发现,铅笔石墨中一种叫做石墨烯的二维碳原子晶体,竟然比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。这种物质为“太空电梯”超韧缆线的制造打开了一扇“阿里巴巴”之门,让科学家梦寐以求的2.3万英里长(约合37000千米)太空电梯可能成为现实。 中国科学家发现最硬物质 谁也不会想到,铅笔中竟然包含着地球上强度最高的物质!

石墨烯和纳米碳材料的导热性能的研究

石墨烯和纳米碳材料的导热性能的研究 Alexander A. Balandin 近年来,在科学领域和工程领域,人们越来越多地去关注导热性能好的材料。散热 技术已经成为电子工业持续发展的一个重要的话题,低维结构的材料在热传导方面显示 出了优异的性能。就导热能力而言,碳的同素异构体及其衍生品占据了举足轻重的地位。在室温下的碳材料的导热系数跨越了一个非常大的范围——超过了五个数量级——从导 热系数最低的无定型碳到导热系数最高的石墨烯和碳纳米管。在这里,我回顾一下以石 墨烯碳材料为热点的最近热性能的研究成果,碳纳米管和纳米级的碳材料在研究方面遇 到了不同程度的难题。在二维晶体材料方面,尤其是石墨烯,人们非常关注尺寸对热传 导的影响。我也描述了石墨烯和碳材料在电子传热机理上的应用前景。 实际生产应用和基础科学的发展表明了材料热性能研究的重要性。由于功耗散热水 平的提高,导热技术已经成为电子工业持续发展的一个非常重要的热点。对导热性能非 常好的材料的研究严重影响着下一代集成电路和3D 电子产品的设计进程。在光电子和 光子设备领域我们也遇到了类似的需要导热处理的问题。另外,电热能量转换技术需要 材料具有很强的抑制热扩散的能力。 材料的导热能力由其电子结构决定,所以一种材料热性能原理可以描述另外一种材 料的热性能现象。材料热性能的变化只是在纳米尺度上变化。由于声子散射边界的增多 或者声子色散的变化,纳米管和大多数晶体将不再传热。同时,对二维和一维晶体的热 传导理论的研究解释了材料内在优异的热传导性能的原因。二维晶体导热性能的差异意 味着不像非晶体那样,它恢复材料的热平衡不能仅仅靠晶体的非简谐振动,因为这不但 需要限制系统的尺寸,而且还需要掺杂进非晶体结构,这样才能符合热传导性能的物理 意义。这些发现引发了在低维系统中对傅里叶定律的实用性的非议。 碳材料具有非常多的同素异构体,在热性能方面占据了举足轻重的低位(如图, 1a )。碳材料不同的同素异构体的热传导率跨越了很大的一个范围——五个数量级—— 非晶碳的热导率为0.01W . mK ?1 ,在室温条件下金刚石或者石墨烯的热导率为大约

石墨烯常用计量单位及简介

石墨烯 一、常用的计量单位及含义 纯度(Purity):wt% 【“wt%”是重量含量百分数(%);wt是英文weight的简写。】 比表面积SSA(Special Surface Area):m2/g 【比表面积是指单位质量物料所具有的总面积。单位是m2/g,通常指的是固体材料的比表面积,例如粉末、纤维、颗粒、片状、块状等材料。】 电导率(Conductivity):S/m 【电导率,物理学概念,也可以称为导电率。在介质中该量与电场强度E之积等于传导电流密度J。对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。生态学中,电导率是以数字表示的溶液传导电流的能力。单位以西门子每米(S/m)表示。电导率是用来描述物质中电荷流动难易程度的参数。】 振实密度(Tap Density):mg/mL 【振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量。振实密度或者说体积密度(在一些工业领域称为松装密度)定义为样品的质量除以它的体积,这一体积包括样品本身和样品孔隙及其样品间隙体积。堆积密度对于表征催化剂、发泡材料、绝缘材料、陶瓷、粉末冶金和其它工业生产品都是必要的。】 片径(Scale):microns/μm 灰分(ASH):wt% 【无机物,可以是锻烧后的残留物也可以是烘干后的剩余物。但灰分一定是某种物质中的固体部分而不是气体或液体部分。在高温时,发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。】 体积电阻率(Volume Resistivity):Ω?m【体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。通常体积电阻率越高,材料用做电绝缘部件的效能就越高。通常所说的电 阻率即为体积电阻率。 ,ρ v =R v S/h式中,h是试样的厚度(即两极之间的距离);S是电极的面 积,ρ v 的单位是Ω·m(欧姆·米)】 中值粒径D(50):4-6μm【D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位粒径或中值粒径。D50常用来表示粉体的平均粒度。】 方阻(方块电阻):Ω/sq【在一长为l,宽w,高d(即为膜厚),此时L=l,S=w*d,故R=ρ*l/(w*d)=(ρ/d)*(l/w)。方块电阻R=ρ/d令l=w于是R=(ρ/d),其中ρ为材料的电阻率,此时的R为方阻。蒸发铝膜、导电漆膜、印制电路板铜箔膜等薄膜状导电材料,衡量它们厚度的最好方法就是测试它们的方阻。什么是方阻呢?方阻就是方块电阻,指一个正方形的薄膜导电材料边到边“之”间的电阻,方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是0.1米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关】 迁移率(Mobility):cm2/V·s 【指单位电场强度下所产生的载流子平均漂移速度。它的单位

石墨烯等离基元研究背景与意义

石墨烯等离基元研究背景及意义 自上世纪60年代以来,集成电路技术取得了飞速的发展。作为电子及其他相关行业的核心技术,集成电路的研究一直按照“摩尔定律”预言发展。“摩尔定律”是指每隔约18~24个月,集成电路单个芯片上的晶体管数目将增加1倍,集成电路中最细刻线的宽度减小0.7倍[1]。集成电路已从上世纪60年代每个芯片上只有几十个器件发展到现在每个芯片上可包含10亿个以上的器件。 图1.摩尔定律 尽管CPU的数据处理能力伴随着不断提高的晶体管集成度而日益增强,总线的数据传输速率却不能满足CPU的数据处理需求。为了克服电子互联的有限带宽和在数据传输速率方面的局限,充分发挥电子系统在现代信息处理中的作用,就需要研制能够工作在纳米尺度、且可同时实现高速传输的信息载体。从物理角度来看,与电子相比,光子具有更多的优势,比如光子无静止质量,光子不带电荷,从而光子的传输无电磁串扰等问题;光子是玻色子,因而无需遵守泡利不相容原理;光子具有振幅、频率、相位、偏振等多种有利于检测的状态等。因此,利用光子作为信息传输的载体,也就具有电子无法比拟的优势, 如高带宽、高密度、高速率、低耗散、抗干扰、可并行处理等,从而适于大容量高速率的信息传输和处理。目前,基于光子技术的通信网络技术已得到广泛应用。在计算处理器之间的通信网络中使用光纤代替电缆作为系统间的互联,已被证明可以极大的改善信息传输带宽和传输距离。进一步,如果将光子器件和电子器件集成在同一芯片上,则可以克服电子互联技术在传输速率和能耗等方面的现有瓶颈,从而极大的改善器件的性能。而对于芯片级的光子和电子器件的集成而言,首先需要解决的难题

就是如何实现电子元件与光学器件的尺寸匹配。 传统的光子器件主要基于折射率差别很小的介电材料。这些低折射率差光波导一般通过掺杂等工艺,使得波导的芯层折射率略高于包层折射率。对于这一类波导,基于全反射原理,满足一定条件的光波将被限制在芯层部形成导波模式向前传播。由于芯层与包层的折射率差比较小,波导对光场的约束不强,模场面积大。当波导的横向尺寸逐渐减小时,将会使进入包层的能量增加,从而出现相邻波导间串扰增大、弯曲损耗增大等问题,无法实现高密度的光子集成。 目前,在光子器件集成领域,被广泛认为比较有潜力能进一步提高光子器件集成度的研究方向主要有:光子晶体器件及光子晶体光纤、硅基光子器件、以及表面等离激元器件等[2,4]。下面就对这几类光子波导及微纳器件进行简要的介绍。 1.2 微纳光波导及器件 1.2.1 光子晶体器件 光子晶体是由不同介电常数的介质材料在空间呈周期性排布的物质结构[1]。这种周期性结构会对沿特定方向传播的电磁波产生布拉格散射。当构成光子晶体的晶格常数和介电常数比为合适值时,光子晶体的光子能带之间可以出现使某些特定频率的电磁波无法透过的频率区域,被称为光子禁带。在光子禁带以外,电磁波以布洛赫波的形式在光子晶体中传播。光子晶体可以灵活而有效地控制光的辐射与传播,因此具备广泛而重要的应用价值。 按照维度,光子晶体可被划分为一维、二维和三维结构[3]。目前,由于三维光子晶体波导及器件的加工制作技术尚且不够成熟,对于光子晶体波导及器件的相关研究主要集中在二维光子晶体器件方面。二维光子晶体波导是在二维光子晶体中引入线缺陷形成的。引入的线缺陷通常会使得光子晶体禁带产生一个或者多个局域模,这些模式可以实现对光场的较强束缚。由于光子带隙的存在,光场可以在缺陷中以导波的形式传播,实现大角度弯曲,并具有更强的色散特性等等,因此可以被用来构建集成光子器件和集成光路。与基于传统低折射率差波导的集成光路相比,以二维光子晶体波导为基础构建的集成光路可具有更高的集成度。

石墨烯性能简介

第一章石墨烯性能及相关概念 1石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102 m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104cm2/(V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳-碳键长约为0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯

石墨烯的特征,制备,性能和应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元,具有很多奇异的电子及 机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展,包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。关键字:石墨烯,发现历史,性质,制备,应用 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平 面薄膜,只有一个碳原子厚度的二维材料[1]。石墨烯一直被认为是假设性的结构, 无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因―在二维石墨烯材料的开创性实验‖为由,共同获得2010年诺贝尔物理学奖[2]。 石墨烯是一种平面单层紧密打包成一个二维(2D)蜂窝晶格的碳原子,并且是 所有其他维度的石墨材料的基本构建模块。它可以被包装成零维(0D)的富勒烯, 卷成了一维(1D)的纳米管或堆叠成三维(3D)的石墨。[5]石墨烯的碳原子排列与 石墨的单原子层相同,是碳原子以sp2杂化轨道呈蜂巢晶格,排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子网格。石墨烯被认为是平面多环芳香烃原子晶体。关于石墨烯的制造与发现,最初,科学家试着使用化学剥离法来制造石墨烯。他们将大原子或大分子嵌入石墨,得到石墨层间化合物。在其三维结构中,每一层石墨可以被视为单层石墨烯。经过化学反应处理,除去嵌入的大原子或大分子后,会得到一堆石墨烯烂泥。由于难以分析与控制这堆烂泥的物理性质,科学家并没有继续这方面研究。还有一些科学家采用化学气相沉积法,将石墨烯薄膜磊晶成长于各种各样基板,但初期品质并不优良[5]。于2004年,曼彻斯特大学和俄国切尔 诺戈洛夫卡微电子工艺研究所的两组物理团队共同合作,首先分离出单独石墨烯平面[8]。海姆和团队成员偶然地发现了一种简单易行的制备石墨烯的新方法。他们将石 墨片放置在塑料胶带中,折叠胶带粘住石墨薄片的两侧,撕开胶带,薄片也随之一 分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。当然,仅仅是制备是不够的。通常,石墨烯会隐藏于一大堆石墨残渣,很难得会如理想一般地紧贴在基板上。甚至在范围小到 1 cm2的区域内,使用那时代的尖端科技,都无法找到。海姆的秘诀是,如果将石墨 烯放置在镀有在一定厚度的氧化硅的硅片上,用光波的干涉效应,就可以有效地使用光学显微镜找到这些石墨烯。 学者研究在各种不同材料基底上面的石墨烯的可见度和对比度,同时也提供一种简单易行可见度增强方法[9]。另外,使用拉曼显微学的技术做初步辨认,也可以增 加筛选效率[10]。于2005年,同样曼彻斯特大学团队与哥伦比亚大学的研究者证实 石墨烯的准粒子是无质量迪拉克费米子。类似这样的发现引起一股研究石墨烯的热潮。从那时起,上百位才学兼优的研究者踏进这崭新领域。

石墨烯

2019 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:先进功能材料研究进展学生所在院(系):材料科学与工程学院 学生所在学科:材料物理与化学 学生姓名: 学号: 学生类别:工程硕士 考核结果阅卷人

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。本文不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 1.引言 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界各国开始对环保的可再生新能源的运用和开发投入了非常大的科技技术和资金,而新能源材料的开发一直是能源研究领域的热点。近几年来,电子产业的发展非常迅速,电子产品的功能越来越多,手机、电脑等对电池的电化学性能的要求越来越高。然则仅随着电动车、汽车等新能源产业的迅速发展,二次电池的开发迫在眉睫。未来锂离子电池也可能作为电动汽车的动力电源系统之一。因而,

石墨烯的制备方法概述

石墨烯的制备方法概述 1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。 1.2取向附生法—晶膜生长

Peter W.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150 °C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80 %后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3 液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000 °C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman 等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP) 中,超声1h 后单层石墨烯的产率为1%,而长时间的超声(462 h)可使石墨烯浓度高达1.2 mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2。利用气流的冲击作用能够提高剥离石墨片层的效率。Janowska

石墨烯导电材料专利分析

石墨烯导电材料专利分析 发表时间:2019-09-11T13:53:57.000Z 来源:《基层建设》2019年第17期作者:周俊侯尊岩 [导读] 摘要:石墨烯因其优异的导电性在电池、半导体、复合材料、涂料、油墨等领域具有广阔的应用前景。 国家知识产权局专利局专利审查协作天津中心天津 300300 摘要:石墨烯因其优异的导电性在电池、半导体、复合材料、涂料、油墨等领域具有广阔的应用前景。本文通过对国内已公开的有关石墨烯导电材料专利进行检索统计分析,研究了该领域专利申请发展状况,并对该领域以后的发展给出了建议。 关键词:石墨烯导电专利分析 1.石墨烯导电材料简介 石墨烯是一种由单层碳原子紧密堆积而成的二维蜂窝状碳材料。2004年,英国科学家Geim和Novoselov等成功制备了室温下稳定存在的石墨烯,证明了二维材料在自然状态下可以单独存在[1]。因这个革命性和颠覆性的发现,两位教授在2010年共同获得诺贝尔物理学奖。在此背景下,石墨烯众多方向的研究如火如荼地展开,并且迅速在全球范围里掀起了石墨烯制备、石墨烯复合技术和材料、石墨烯下游产品等的研究热潮。石墨烯中相邻两个碳原子以共价键结合,每个碳原子发生sp2杂化,这使得每个碳原子剩余的p轨道上都有一个电子,这些电子之间相互作用,在石墨烯垂直平面上形成一个无穷大的离域大π键,在这个大π键中电子可自由移动,这就使得石墨烯电导率能高达到106 s/m[2],石墨烯还具有室温量子霍尔效应、量子隧穿效应等电子传导现象。这些性质使得石墨烯成为当下炙手可热的导电材料,被广泛应用于电池、半导体、导电复合材料、导电涂料、导电油墨等领域。 2.中国石墨烯导电材料专利申请分析 2.1专利申请趋势 国内关于石墨烯导电材料的专利申请最早开始于2006年,如图1所示,到2009年专利申请量增长缓慢,从2010年开始到2015年增长加快,到2016和2017年达到了高峰,从最开始的一年两件增长为一年900余件的申请量,可见石墨烯导电材料领域研究热度高、发展快。截止到2018年,国内有关石墨烯导电材料的专利申请已达3884件。随着国内、国际石墨烯各合作组织的成立,国家支持的产学研项目的发展,未来有关该领域的专利仍会持上升趋势。 在目前的3884件专利申请中,有大部分专利处于在审状态,授权案件占比35%,远大于驳回和视撤,说明石墨烯导电材料领域技术创新性水平高,具有很高的实用价值。 图1石墨烯导电材料中国专利申请量变化趋势 2.2 专利技术构成 现统计的专利申请中包括3519件发明申请和365件实用新型,涉及的IPC主分类号主要有H01M、H01B、H01L、C08L、H01G、C09D和C09J,其对应的技术领域如表1所示。其中,电池是石墨烯导电材料申请量最多的领域,且是第二的将近两倍,说明石墨烯导电材料在电池领域应用的广泛性。排在第二和第三的同样是电器元件领域,涉及电缆、导体、介电材料和半导体。排在第4的是高分子组合物领域,主要涉及石墨烯高分子导电复合材料,化学领域申请量较大的还有涂料、油墨和粘合剂领域。上述结果说明石墨烯导电材料应用多样化,从高端的电器元件到普通的涂料都有涉及,具有广泛的经济价值。 表1 IPC主分类号对应的技术领域 2.3 申请人分析 经统计,石墨烯导电材料中国专利申请中92%来自国内申请人,只有8%是国外在华申请,主要有美国、韩国、日本和德国,这些也是石墨烯导电材料研究较为成熟的几个发达国家。在申请人类型方面,高校/科研单位、企业和个人分别占55%、37%和8%。中国石墨烯导电材料专利技术的主要申请人有中国科学院、海洋王照明、浙江大学、电子科技大学和京东方,这些科研院所、高校和企业都是国内石墨烯技术领域的领军者。其中海洋王照明是一家民营股份制高新技术企业,在石墨烯技术的研发与创新上颇有建树,目前在国内具有完整的石墨烯的专利布局[3]。京东方也是注重知识产权保护和布局的高科企业,在石墨烯导电材料领域具有可观的申请量。 2.4 全国各省市专利申请情况 图2示意了石墨烯导电材料中国专利申请省市分布,其中申请量排在前列的有江苏、广东、北京、山东、浙江和上海,其中江苏现有石墨烯导电材料的专利

石墨烯粉体电导率的测定(编制说明)

广东省特种设备行业协会团体标准《石墨烯粉体电导率的测定》 编制说明 《石墨烯粉体电导率的测定》标准编制小组 二O二O年三月

广东省特种设备行业协会团体标准《石墨烯粉体电导率的测定》 编制说明 一、标准制定的目的和意义 石墨烯是由单层碳原子构成的二维平面结构材料,其具有优异的电学性质,石墨烯的理论电导率为106 S/m,电子传输特性好,是目前发现的室温下导电性最好的材料,在超级电容器、太阳能电池、石墨烯电池、光电器件等领域已呈现良好的应用前景。石墨烯作为我国《新材料产业“十三五”发展规划》中前沿新材料的重点发展对象,在政府和国家的大力扶持下,得到了长足发展。目前我国在石墨烯粉体的生产上已经初具规模,随着石墨烯粉体生产商的增加,批量化生产的能力逐年提升,市场上的石墨烯粉体逐渐增多。但目前仍然没有统一的石墨烯粉体电导率的测定方法,因此亟需研制出一种稳定可靠的石墨烯粉体电导率检测标准。 制定快速、简洁和准确的石墨烯粉体电导率测定方法,不仅可以准确测定石墨烯电导率指标,而且可以填补国内行业标准的空白,对于使用单位和检测机构具有重要意义和作用,能为石墨烯粉体的生产和应用提供技术支撑。 二、标准的任务来源及参与单位 2020年3月,广州特种承压设备检测研究院向广东省特种设备行业协会提出了制定广东省特种设备行业协会团体标准《石墨烯粉体电导率的测定》的项目申请,同时开始该标准的研究制定工作,在组织上拟定了相关的措施,在技术方面进行了前期的准备。 2020年3月,广东省特种设备行业协会下达了该项目的制定计划任务,详见《广东省特种设备行业协会团体标准<散热膜导热散热性能的测定>等立项公告》(粤特协[2020]11号)。

石墨烯基超级电容器的结构设计

石墨烯基超级电容器的结构设计 超级电容器是最具应用前景的电化学储能技术之一。目前,超级电容器的研究重点是提高能量密度和功率密度,发展具有高比表面积、电导率和结构稳定性的电极材料是关键。石墨烯因具有比表面积大、电子导电性高、力学性能好的特点而成为理想的电容材料,但石墨烯的理论容量不高,在石墨烯基电极制备过程中容易发生堆叠现象,导致材料比表面积和离子电导率下降。因此,发展合适的制备方法,对石墨烯进行修饰或与其他材料形成复合电极材料是一种有效解决途径。本文对石墨烯基电极及其在双电层电容器、法拉第准电容器和混合型超级电容器中的应用的研究进展进行归纳,重点介绍了石墨烯凝胶薄膜电极的制备过程,以促进石墨烯基电极在超级电容器构筑中应用。 传统化石能源资源的日益匮乏和环境的日趋恶化,有力地促进了太阳能和风能等可再生能源的发展但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。同时,电动汽车产业的快速发展也迫切需要发展成本低、环境友好、能量密度高的储能装置。 超级电容器是介于传统电容器和二次电池之间的一种电化学储能装置,其容量可达几百甚至上千法拉。自1975年Conway首次提出法拉第准电容的储能原理以来,超级电容器的研发已经得到了长足的发展,日本NEC、松下、本田、日立和美国Maxell等公司开发出的小型超级电容器已开始推向市场,在小型移动电子设备、汽车能量回收等领域应用。法国SAFT公司、韩国NESE公司等也在进行超级电容器的研究和开发。美国的USMSC计划、日本的New Sunshine计划和欧洲的PNGU计划均将超级电容器列入开发内容。我国将“超级电容器关键材料的研究和制备技术”列入到《国家中长期科学和技术发展纲要(2006—2020年)》,作为能源领域中的前沿技术之一。超级电容器作为一种新型电化学储能单元,具有容量大、功率密度高、免维护、对环境无污染、循环寿命长、使用温度范围宽等优点,已在备用电源系统、便携式电子设备和电动汽车领域有广泛的应用。对于具有随机性和间歇性等特点的可再生能源发电,超级电容器应用于风力发电中可以提高风电场的运行安全。超级电容器的基本构造与应用组件如图1所示。 按照储能机理,超级电容器可分为双电层电容器(electric double layer capacitors,EDLCs)和法拉第准电容器(又叫赝电容器,pseudo-capacitors)。近年来,国内外对超级电容器储能技术的基础研究呈现出爆发式的增长,取得了很多新的突破。双电层电容器的储能机理是

石墨烯性能简介

第一章石墨烯性能及相关概念1石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有 排列而成的蜂窝状晶体结构。石墨烯中碳-碳键长约为0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。

形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过sp2杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm,约为头发丝直径的二十万分之一。 100倍,在室温下可以达到15000cm2/(V·s)。电阻率比铝、铜和银低很多,只有10~6Ω·cm左右。二是具有超强的导热性。石墨烯的导热性能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m?K。三是具有超强的力学性,石墨烯的硬度超过金刚石,断裂强度达到钢铁的100倍。四是具有超强的透光性。石墨烯的吸光率非常小,透光率高达97.7%。五是

具有超强的比表面积。石墨烯的比表面积每克比普通活性炭高出1130m2,达到2630m2/g。 3.1石墨烯的光学性能 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,具有优异的光学性能。理论和实验结果表明,单层石墨 石 饱和。这一非线性光学行为成为饱和吸收。在近红外光谱区,在强光辐照下,由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收。利用这一性质,石墨烯可用于超快速光子学,如光纤激光器等。 3.2石墨烯的电学性能 石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成π键,

相关主题
文本预览
相关文档 最新文档