当前位置:文档之家› 上海交大电机学实验+同步发电机运行特性

上海交大电机学实验+同步发电机运行特性

上海交大电机学实验+同步发电机运行特性
上海交大电机学实验+同步发电机运行特性

电机学实验报告

实验四同步发电机运行特性

一、实验目的

1.掌握用实验方法测取三相同步发电机对称运行特性的方法;

2.掌握用实验数据获取同步发电机稳态参数的方法。

二、实验内容

1.测取发电机的空载特性;

2.测取发电机的短路特性;

3.测取额定电流条件下发电机的零功率因数负载特性。

三、实验接线图

测取三相同步发电机对称运行特性的实验线路图如图4-1所示。其中发电机G的转子与直流电动机M的转子机械连接,转子励磁绕组接励磁电源,电枢绕组为Y形连接。

图4-1三相同步发电机运行特性接线图

实验过程中,测定三相同步发电机空载特性的时候,将开关S2打开,这样同步发电机处于空载状态。

测定三相同步发电机短路特性的时候,将开关S2的右侧的三个端口短接,这样同步发

电机处于短路运行状态。

测定额定电流条件下三相同步发电机零功率因数负载特性的时候,将开关S2闭合,X L 为一个三相饱和电抗器,忽略电阻,则它的功率因数为零,这样来测定零功率因数负载特性。

四、实验设备

1.G同步发电机P N=2kW、U N=400V、I N=3.6A、n N=1500r/min;

2.M直流电动机P N=2.2kW、U N=220V、I N=12.4A、U fN=220V、n N=1500r/min;

3.变阻器R1:0/204Ω、0/17A,励磁变阻器R f1:0/500Ω、1A;

4.X L三相饱和电抗器;

5.直流电流表30A(电枢);

6.直流电流表4A(励磁);

7.直流电压表400V;

8.交流电压表500V;

9.交流电流表10A;

10.功率表500V 10A。

五、实验数据

1.测定发电机的空载特性:

0AB AB CA

2.测定发电机的短路特性:

表4-2发电机的短路特性实验数据n=n

k A B C

3.测定发电机的零功率因数负载特性:

表4-3发电机的零功率因数负载特性实验数据n=n

AB AB CA

六、特性曲线、参数计算及问题分析

1.根据实验数据作出同步发电机的空载运行特性曲线U0=f(I f),如下图4-2所示:

图4-2 发电机空载运行特性曲线

2.根据实验数据作出同步发电机的短路运行特性曲线I k=f(I f),如下图4-3所示:

图4-3发电机短路运行特性曲线

3.根据实验数据作出同步发电机的零功率因数负载特性曲线U=f(I f),如下图4-4所示

图4-4 发电机零功率因数负载特性曲线

4.利用空载特性和短路特性确定同步电机的直轴同步电抗X d(不饱和值)以及短路比:计算直轴同步电抗X d需要在取同一个I f值的情况下,计算空载电压U0和短路电流I k 的比值。

首先选定I f = 0.589 A 。此时由实验数据可以直接读出I k = 1.58 A ;由于空载特性曲线中I f 在(0,0.8)范围内大致呈一条直线,所以可以计算出I f = 0.589 A 时,电压U 0= 237.934V 。

所以可以计算得:

X d (不饱和值)=U 0I k = 237.934

1.58= 150.59 Ω

计算短路比,需要确定当空载为额定电压时,空载特性曲线所对应的电流I f ,并求出电

流为I f 时的短路电流I k 。

由空载特性实验数据大致可以求出,空载特性曲线所对应的电流: I f =

(400?394.77)(1.301?1.159)

419.97?394.77

+1.159 = 1.1885 A

再由短路特性曲线,可以大致计算出,此时:

I k = (1.1885?1.021)(3.209?2.5767)1.292?1.021

+ 2.5767 = 2.9675 A

所以,短路比为:

Kc=

I k I N

= 0.822

5.利用空载特性和纯电感负载特性确定同步电机的直轴同步电抗X d (饱和值):

计算同步电机的直轴同步电抗饱和值,需要先找出纯电感负载,即零功率因数负载时,额定电压时的电流I f ,然后根据I f 求出空载时的电压U 0。最后利用U 0和U N 、I N 求出同步电抗饱和值。

由同步发电机零功率因数负载特性的实验数据可以看出,额定电压时,I f = 3.077A ,此时,可以近似求得,空载时的电压U 0:

U 0 =

(481.1?439.8)(3.077?1.433)

1.791?1.433

+ 439.8= 629.457 V

所以,同步电抗饱和值:

X d (饱和值)=U 0?U N

I N

= 63.56 Ω

6.根据空载特性和零功率因数负载特性求发电机保梯电抗X p :

计算同步电机保梯电抗,需要确定空载和零功率因数负载时,电压为零时所对应的I f

的差值,并利用该差值,通过作图,求出空载曲线上的电压U 0。最后利用U 0和U N 、I N 求出保梯电抗。

首先,求出差值:

I f0 = 1.943 - 1.943?1.785 201.3

201.3?150.8

=1.3132A 。

从零功率因数负载特性数据可知,额定电压时,I f = 3.077A ,所以在空载特性曲线上,通过点(1.7638A ,400V )作斜率与气隙电抗斜率相同的直线,经计算可得,两者交点的电压值为:(2.113A ,518.26V )。

所以计算保梯电抗为:

X p = 518.26?4003.61

= 32.76 Ω

七、思考题

1.同步发电机的短路特性为什么是一条直线?

答:短路时,电机的气隙磁通很小,所以电机的同步电抗为常数,所以Φ0正比于If,所以有Ik∝E0∝Φ0∝If,即短路特性是一条直线。

2.由空载特性和零功率因数负载特性求出的保梯电抗Xp与电枢漏抗Xσ有什么区别?

答:保梯电抗Xp大于电枢漏抗Xσ。因为零功率因数负载时,当电压加到额定电压,由于磁路的饱和,磁阻要变大,所以这时作电抗三角形,该三角形就会处于空载特性曲线下方,这样会使电抗三角形的高度变高。电抗三角形的高度代表的正是电抗的大小,所以保梯电抗的值要大于电枢漏抗的值。

八、心得与体会

这次实验是我和另外三名组员合作完成的第三组实验。有了前两次的合作经验,这次

我们组的实验进展依旧非常顺利。通过这次实验,我对同步发电机的空载、短路以及零功

率因数负载特性有了更加深入的认识,尤其实在处理实验数据的过程中,将课堂上的公式

进一步理解,这些都对今后电机的学习有很大帮助。

发电机的运行特性

1.为什么发电机在并网后,电压一般会有些降低? (2) 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? (2) 3.发电机运行时为什么会发热? (2) 4.定子绕组单相接地时对发电机有危险吗? (2) 5.大修后的发电机为什么要做空载和短路试验? (2) 6.什么是保护接地与保护接零? (3) 7.发电机启动前,对碳刷和滑环应进行那些检查? (3) 8.发电机升压操作时应注意什么? (3) 9.发电机并解列前为什么必须投入主变中性点地刀? (3) 10.何谓发动机的调相运行?如何实现? (4) 11.何谓发动机的进相运行,应注意什么,为什么? (4) 12.何谓发动机自励磁,一般在什么情况下发生,如何避免? (4) 13.失磁现象? (4) 14.转子两点接地的危害表现为: (5) 15.发动机非全相运行的危害? (5) 16.与发电厂相连的线路在什么情况下可采用零起升压? (5) 17.定子单相接地时对发电机是否有危险? (5) 18.转子一点接地时发电机是否可以继续运行? (6) 19.发电机为什么要做直流耐压试验并测泄漏电流? (6) 20.发电机的空载特性试验有什么意义?做发电机空载特性试验应注意哪些事项? (6) 21.发电机产生轴电压的原因是什么?它对发电机的运行有何危害? (6)

1.为什么发电机在并网后,电压一般会有些降低? 对于发电机来说,一般都是迟相运行,他的负载也一般是阻性和感性负载。当发电机升压并网后,定子绕组流过电流,此电流是感性的,感性电流在发电机内部的电枢反应作用比较大,他对转子磁场起削弱作用,从而引起端电压下降。当流过的只是有功电流时,也有相同的作用,只是影响比较小。这是因为定子绕组流过电流时产生磁场,这个磁场的一半对转子磁场起助磁作用,而另一半起去磁作用,由于转子磁场的饱和性,助磁一方总是弱于去磁的一方。因此,磁场会有所减弱,导致端电压有所下降。 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? 调无功功率时,因为励磁电流的变化引起功角的变化,从式看出,当发电机电动势增加,SIN¥值减小时,有功基本不变。 调有功功率时,对无功功率输出的影响就较大。发电机能不能送无功功率与电压差有关这个电压差指的是发电机电动势和端电压(系统电压)的同相部分的电压差,只有这个电压差才产生无功电流。当发电机送出有功功率,电动势就与系统电压错开一个角度,这样无功电压变小了。当有功变化越大,差角就越大,无功电压更小,因此无功自动减小,反之,当差角减小,无功会自动增加。 3.发电机运行时为什么会发热? 任何机器运转都会产生损耗,发电机也不例外,运行时他的内部损耗也很多。大致分四类: 铜损是指定子绕组的导线流过电流后在电阻上产生的损耗,即I2R而且定子槽内的导线产生的集肤效应额外引起损耗。 铁损是指铁芯齿部和轭部所产生的损耗,他有两种形式,一种是涡流损耗,另一种是磁滞损耗。涡流损耗是由于交变磁场产生感应电动势,在铁芯中引起涡流导致发热;磁滞损耗是由于交变磁场而使铁磁性材料克服交变阻力导致发热。 励磁损耗是转子绕组的电阻损耗。 另外,机械损耗就容易理解了。 这四种损耗都将使绕组、铁芯或其他部件发热,因此发电机在运行中会发热,这是不可避免的。 4.定子绕组单相接地时对发电机有危险吗? 发电机的中性点是绝缘的,如果一相接地,乍看构不成回路,但是由于带电体与处于地电位的铁芯间有电容存在,发生一相接地,接地点有会有电容电流流过。单相接地电流的大小,与接地线匝的份额a成正比。当机端发生金属性接地,接地电流最大,而接地点越靠近中性点,接地电流愈小,故障点有电流流过,就可能产生电弧,当接地电流大于5A时,就会有烧坏铁芯的危险。 5.大修后的发电机为什么要做空载和短路试验? 这两个试验都属于发电机的特性和参数试验,他与预防性试验的目的不同。这类试验是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被电机结构确定了的参数。做这些试验可以反映电机的某些问题。 空载试验是指电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。他的用途很多,利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

上海交大电机学实验+三相同步发电机并网运行

。 + 。- I f 。 。 + - . 电机学实验报告 实验五 三相同步发电机并网运行 班级: 姓名: 学号: 同组成员: 实验时间: 实验地点: 一、实验目的 1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 二、实验内容 1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时无功功率调节。 (1) 测取输出功率等于零时三相同步发电机的 V 形曲线。 (2) 测取输出功率等于 0.5 倍额定功率时三相同步发电机的 V 形曲线。 三、实验接线图 1.图 5-1 三相同步发电机与电网并联运行接线图 电 枢 电 源 S1 V A M ˉ A1 A2 G ~ B1 B2 A A B C . V . * * * W . W * A A A A B1 R f1 B2 励磁电源 并车开关 1 3 2 T 三 相 交 流 电 源 . V A 0 B 0 断 开 C 0 A g B g 闭 C g 合 四、实验设备 1. T 三相感应调压器 2. G 同步发电机 P N =2kW U N =400V I N = 3.61A I fN =3.6A n N =1500r/min 3. M 直流电动机 P N =2.2kW U N =220V I N =12.4A U fN =220V n N =1500r/min

4.变阻器励磁变阻器Rf10/500Ω1A 5.并车开关 6.直流电流表30A(电枢) 7.直流电流表4A(励磁) 8.直流电压表400V 9.交流电压表500V 10.交流电流表10A 11.功率表 五、实验数据记录 1.P2≈0时无功功率调节实验数据 2.P2=0.5PN时无功功率调节实验数据 六、计算及问题分析 1.根据实验操作过程,简要说明发电机与电网并联运行时无功功率调节的方法。 在保持同步发电机的有功功率不变的情况下,调节同步发电机的励磁电流 I f,改变了功率因数角,调节电机的无功功率输出。在励磁电流变化的过程中,在励磁电流取某一值的时候,定子电流会出现一个最小值,这时功率因数角为

电机学实验三(一)(1)

肇庆学院 电子信息与机电工程学院电机学实验报告 13级电气2班姓名:梁智健学号:201324122202指导老师:肖奇军实验地点:后山金工楼2楼电工实验室 实验日期:2015年12月15日 实验三:三相鼠笼异步电动机的工作特性 一、实验目的 1、掌握三相异步电动机的空载、堵转和负载试验的方法。 2、用直接负载法测取三相鼠笼式异步电动机的工作特性。 3、测定三相鼠笼式异步电动机的参数。 二、预习要点 1、异步电动机的工作特性指哪些特性? 2、异步电动机的等效电路有哪些参数?它们的物理意义是什么? 3、工作特性和参数的测定方法。 三、实验项目 1、测量定子绕组的冷态电阻。 2、判定定子绕组的首末端. 四、实验方法 1、实验设备

2、屏上挂件排列顺序 D33、D32、D34-3、D31、D42、D51 3、测量定子绕组的冷态直流电阻。 将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。 (1) 伏安法 测量线路图为图3-1。直流电源用主控屏上电枢电源,可先调到50V输出电压。开关S1、S2选用D51挂箱,R用D42挂箱上1800Ω可调电阻。 图3-1 三相交流绕组电阻测定 量程的选择:测量时通过的测量电流应小于额定电流的20%,约小于60毫安,因而直流电流表的量程用200mA档。三相鼠笼式异步电动机定子一相绕组的电阻约为50Ω,因而当流过的电流为60毫安时二端电压约为3伏,所以直流电压表量程用20V 档。 按图3-1接线。把R调至最大位置,合上开关S1,调节直流电源及R阻值使试验电流不超过电机额定电流的20%,以防因试验电流过大而引起绕组的温度上升,读取电流值,再接通开关S2读取电压值。读完后,先打开开关S2,再打开开关S1。 调节R使A表分别为50mA,40mA,30mA测取三次,取其平均值,测量定子三相绕组的电阻值,记录于表3-2中。

电机学实验大纲-2017版

《电机学》实验教学大纲 课程名称:《电机学》课程编码:060132008 课程类别:专业基础课课程性质:选修 适用专业:自动化 适用教学计划版本:2017 课程总学时:32 实验(上机)计划学时: 8 开课单位:自动化与电气工程学院 一、大纲编写依据 1.自动化专业2017版教学计划; 2.自动化专业《电机学》理论教学大纲对实验环节的要求; 3.近年来《电机学》实验教学经验。 二、实验课程地位及相关课程的联系 1.《电机学》是自动化专业的专业基础课程; 2.本实验项目是《电机学》课程综合知识的运用; 3.本实验项目是理解直流电机,交流电机及变压器的基础; 4.本实验以《电路》、《大学物理》为先修课; 5.本实验为后续的《运动控制基础》、《直流运动控制系统》、《交流调速系统》及《工厂供电及节能技术》课程学习有指导意义。 三、实验目的、任务和要求 1.本课程是自动化专业的一门专业基础课。课程主要讲解直流电机、变压器、交流电机。它一方面研究电机的基本理论问题、另一方面又研究与其相联系的科学实验和生产实际中的问题。本课程的实验目的是使学生掌握直流电机、交流电机、变压器的基本理论,为学习“直流运动控制系统”、“交流调速系统”和“工厂供电及节能技术”等课程打下坚实基础; 2.通过实验培养学生观察问题、分析问题和独立解决问题的能力; 3.通过综合性、设计性实验训练,使学生初步掌握电机的应用; 4.培养正确记录实验数据和现象,正确处理实验数据和分析实验结果的能力以及正确书写实验报告的能力。 5.实验项目的选定依据教学计划对学生工程实践能力培养的要求; 6.巩固和加深学生对电机学理论的理解,提高学生综合运用所学知识的能力; 7.通过实验,要求学生做到: (1)预习实验,自行设计实验方案并撰写实验报告; (2)正确连接实验线路; (3)用电机学理论知识独立分析实验数据。 四、教学方法、教学形式、教学手段的特色 重视学生的实际动手能力 五、实验内容和学时分配

上海交大电机学实验+三相同步发电机并网运行

电机学实验报告 实验五 三相同步发电机并网运行 班级:姓名:学号: 同组成员: 实验时间: 实验地点: 一、 实验目的 1掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 二、 实验内容 1. 用准确同步法将三相同步发电机投入电网并联运行。 2. 三相同步发电机与电网并联运行时无功功率调节。 (1) 测取输出功率等于零时三相同步发电机的 V 形曲线。 (2) 测取输出功率等于0.5倍额定功率时三相同步发电机的 V 形曲线。 三、 实验接线图 1. 图5-1三相同步发电机与电网并联运行接线图 四、实验设备 1. T 三相感应调压器 2. G 同步发电机 P N =2kW U N =400V I N = 3.61A I fN =3.6A n N =1500r/min 3. M 直流电动机 P N =2.2kW U N =220V I N =12.4A U N =220Vn N =1500r/min * 1 A J * W A1 电+ 枢 G 电 C A2 B2 A B1 B2 +励磁电源 B 相 交 流 断 电 源 V A A W A 并车开关 1 A B o B 闭 C g 合 开C o

4.变阻器励磁变阻器Rf1 0/500 Q 1A 5.并车开关 6.直流电流表30A(电枢) 7.直流电流表4A(励磁) 8.直流电压表400V 9.交流电压表500V 10.交流电流表10A 11.功率表 五、实验数据记录 1.P2~0时无功功率调节实验数据 2P2=0.5PN 六、计算及问题分析 1.根据实验操作过程,简要说明发电机与电网并联运行时无功功率调节的方法。 在保持同步发电机的有功功率不变的情况下,调节同步发电机的励磁电流I f,改变了功率因数角,调节电机的无功功率输出。在励磁电流变化的过程中, 在励磁电流取某一值的时候,定子电流会出现一个最小值,这时功率因数角为

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0 的条件下,测取空载特性曲线U0=f(I f) 。 3、三相短路实验:在n=n N、U=0 的条件下,测取三相短路特性曲线I K =f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈的0条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cos φ =1和cos φ =0.8滞(后)的条件下,测取外特性曲线U=f(I) 。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I) 。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1 中。

源 电 磁 励 2 5 +D +D 图 5-1 三相同步发电机实验接线 图 4、空载实验 (1) 按图 5-1 接线, 校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发 电机G S旋转, GS的定子绕组为 Y 形接法 (U N =220V) 。R f2用 R4 组件上的 90Ω与 90Ω 串联加 R6 上 90Ω 与 90Ω并联共 225Ω 阻值, R st 用 R2 上的 180Ω 电阻值, R f1用 R1 上的 1800Ω电阻值。开关 S 1, S 2 选用 D51 挂箱。 (2) 调节 D52 上的 24V 励磁电源串接的 R f2 至最大位置。调节 MG 的电枢串联电阻 R st 至最大值, MG 的励磁调节电阻 R f1 至最小值。开关 S 1、S 2 均断开。将控制屏左侧调压器旋钮向逆时针方向旋 转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在 “关 ”断的位置,作 好实验开机准备。 (3) 接通控制屏上的电源总开关, 按下 “启动 ”按钮,接通励磁电源开关, 看到电流表 A 2有励磁电 流指示后,再接通控制屏上的电枢电源开关 ,起动 MG 。MG 起动运行正常后 , 把 R st 调至最小,调节 R f1使 MG 转速达到同步发电机的额定转速 1500 r/min 并保持恒定。 (4) 接通 GS 励磁电源,调节 GS 励磁电流 (必须单方向调节 ),使 I f 单方向递增至 GS 输出电压 U 0≈ 1.3U N 为止。 (5) 单方向减小 GS 励磁电流,使 I f 单方向减至零值为止,读取励磁电流 I f 和相应的空载电压 U 0。 (6) 共取数据 7~9 组并记录于表 5-2 中。 表 5-2 n=n N =1500r/min I=0 序号 1 2 3 4 5 6 7 8 9 10 11 I(mA) 48.1 26.7 33.8 33.8 26.7 40.8 26.7 33.5 47.1 U(V) 0.76 0.42 0.53 0.53 0.42 0.64 0.42 0.53 0.74 R(Ω) 63.3 63.6 63.8 63.8 63.6 63.8 63.6 63.2 63.6 COSФ R L S 1 R L A R L I C R f2 + x A MG X + y B V 1 C 同步电机 励磁绕组 同步电机 电枢绕组 TG R t s 源 电 磁 励 GS 3~ 励磁绕组

同步发电机运行与控制实验报告

广西大学电气工程学院 发电机运行实验报告 同步发电机运行与控制 专业班级: 姓名: 学号: 实验地点:

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以7.5KW直流电动机与同轴的5KW 同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和计算机监视控制屏(计算机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-52,凸极机 额定功率7.5kW 额定电压DC220V 额定电流41A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.98A(5、6、7号机组为0.5A) 同步发电机 型号T2-54-55 额定功率5kW 额定电压AC400V(星接) 额定电流9.08A 额定功率因数0.8 空载励磁电流 2.9A 额定励磁电流5A 直流电动机-同步发电机组接线如图一所示。发电机通过空气开关2QS和接触器2KM 可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期用,两侧电压通过转换开关6SA接入同期表S (MZ-10)。 发电机励磁电源可以取自380V电网(他励方式),也可以取自机端(自励方式),通

电机学实验报告

电机学实验报告 学院:核技术及其自动化工程专业:电气工程及其自动化 教师:黄洪全 姓名:许新 学号:200706050209

实验一异步电机的M-S曲线测绘 一.实验目的 用本电机教学实验台的测功机转速闭环功能测绘各种异步电机的转矩~转差曲线,并加以比较。 二.预习要点 1.复习电机M-S特性曲线。 2.M-S特性的测试方法。 三.实验项目 1.鼠笼式异步电机的M-S曲线测绘测。 2.绕线式异步电动机的M-S曲线测绘。 >T m, (n=0) 当负载功率转矩 当S≥S m 过读取不同转速下的转矩,可描绘出不同电机的M-S曲线。

四.实验设备 1.MEL 系列电机系统教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.电机起动箱(MEL-09)。 4.三相鼠笼式异步电动机M04。 5.三相绕线式异步电动机M09。 五.实验方法 1 被试电动机M04法。 G 功机,与按图线,实验步骤: (1)按下绿色“闭合”按钮开关,调节交流电源输出调节旋钮,使电压输出为220V ,起动交流电机。观察电机的旋转方向,是之符合要求。 (2)逆时针缓慢调节“转速设定”电位器经过一段时间的延时后,M04电机的负载将随之增加,其转速下降,继续调节该电位器旋钮电机由空载逐渐下降到200转/分左右(注意:转速低于200转/分时,有可能造成电机转速不稳定。) (3)在空载转速至200转/分范围内,测取8-9组数据,其中在最大转矩附近多测几点,填入表5-9。

(4)当电机转速下降到200转/分时,顺时针回调“转速设定”旋钮,转速开始上升,直到升到空载转速为止,在这范围内,读出8-9组异步电机的转矩T,转速n,填入表5-10。 2.绕线式异步电动机的M-S曲线测绘

上海交大电机学实验+三相异步电动机参数及工作特性

电机学实验报告 实验三三相异步电动机参数及工作特性 一、实验目的 1.掌握三相异步电动机空载、堵转实验及参数计算的方法; 2.用实验的方法测定三相异步电动机的工作特性。 二、实验内容 1.三相异步电动机空载实验; 2.三相异步电动机堵转实验; 3.三相异步电动机负载实验。 三、实验接线图 下图3-1为三相异步电动机参数及工作特性实验的两种接线图,分别对应不同的实验台。本组所使用的7号实验台有磁粉制动器,所以实验实际所用的为图b的接线方式。 图3-1 三相异步电动机接线图 四、实验设备 1.T三相感应调压器额定容量10kV A,额定输入电压380V,额定输出电压0~430V, 额定输出电流13.4A; 2.M绕线转子三相异步电动机P N=3kW(R1=2Ω) U N=380V I N=7.1A n N=1390r/min; 3.G直流发电机3kW (或ZJ转矩传感器50N?m,CZ磁粉制动器50N?m); 4.R L单相变阻器8.8/108Ω 2/25A; 5.交流电压表500V; 6.交流电流表10A; 7.功率表500V 10A; 8.直流电压表400V; 9.直流电流表30A; 10.直流电流表4A; 11.张力控制器;

12.转矩转速显示仪。 五、实验数据 1.三相异步电动机空载实验: 0AB AB CA0A B C0???为三相输入功率 2.三相异步电动机堵转实验: 表3-2 三相异步电动机堵转实验数据温度θ=16℃ 0AB AB CA k A B C0???为三相输入功率3.三相异步电动机负载实验: 1A B C1???为负载时三相输入功率

六、特性曲线、参数计算及问题分析 1.根据空载实验数据绘出空载特性曲线U0=f(I0)、p0=f(U0)、cosφ0=f(U0)。其中,空载 功率因数为cosφ0 = p0 3U0I0 : 图3-2 三相异步电动机空载特性曲线U0=f(I0) 图3-3 三相异步电动机空载特性曲线p0=f(U0)

直流发电机的工作特性实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 直流发电机的工作特性实验报 告

编号:FS-DY-20379 直流发电机的工作特性实验报告 篇一:直流发电机实验报告 一、实验目的 1、掌握用实验方法测定直流发电机的各种运行特性,并根据所测得的运行特性评定该被试电机的有关性能。 2、通过实验观察并励发电机的自励过程和自励条件。 二、预习要点 1、什么是发电机的运行特性?在求取直流发电机的特性曲线时,哪些物理量应保持不变,哪些物理量应测取。 2、做空载特性实验时,励磁电流为什么必须保持单方向调节? 3、并励发电机的自励条件有哪些?当发电机不能自励时应如何处理? 4、如何确定复励发电机是积复励还是差复励? 三、实验项目

1、他励发电机实验 (1)测空载特性保持n=nN使IL=0,测取U0=f(If)。 (2)测外特性保持n=nN使If=IfN ,测取U=f(IL)。 (3)测调节特性保持n=nN使U=UN,测取If=f(IL)。 2、并励发电机实验 (1)观察自励过程 (2)测外特性保持n=nN使Rf2=常数,测取U=f(IL)。 3、复励发电机实验 积复励发电机外特性保持n=nN使Rf2=常数,测取U =f(IL)。 四、实验设备及挂件排列顺序 1、实验设备 2、屏上挂件排列顺序D31、D44、D31、D42、D51 五、实验方法1、他励直流发电机 励磁电源图2-3直流他励发电机接线图 按图2-3接线。图中直流发电机G选用DJ13,其额定值PN=100W,UN=200V,IN=0.5A,nN=1600r/min。校正直流测功机MG作为G的原动机(按他励电动机接线)。MG与

三相同步发电机实验解读

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

电机学实验报告

课程名称:电机学实验指导老师:章玮成绩:__________________ 实验名称:异步电机实验实验类型:______________同组学生:旭东 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、测定三相感应电动机的参数 2、测定三相感应电动机的工作特性 二、实验项目 1、空载试验 2、短路试验 3、负载试验 三、实验线路及操作步骤 电动机编号为D21,其额定数据:P N=100W,U N=220V,I N=0.48A,n N=1420r/min,R=40Ω,定子绕组△接法。 1、空载试验 (1)所用的仪器设备:电机导轨,功率表(DT01B),交流电流表(DT01B),交流电压表(DT01B)。 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表0.5A,功率表250V、0.5A。(4)试验步骤: 安装电机时,将电机和测功机脱离,旋紧固定螺丝。 试验前先将三相交流可调电源电压调至零位,接通电源,合上起动开S1,缓缓升高电源电压使电机起动旋转,注意观察电机转向应符合测功机加载的要求(右视机组,电机旋转方向为顺时针方向),否则调整电源相序。注意:调整相序时应将电源电压调至零位并切断 电源。

接通电源,合上起动开关S1,从零开始缓缓升高电源电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。 调节电源电压由1.2倍(264V~66V)额定电压开始逐渐降低,直至电机电流或功率显著增大为止,在此围读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表4-3中。注意:在额定电压附近应多测几点。 试验完毕,将三相电源电压退回零位,按下电源停止按钮,停止电机。 表4-3 2、短路试验 (1)所用的仪器设备:同空载试验 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表1A,功率表250V、2A。

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

同步发电机励磁控制实验..

实验报告 课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________ 实验名称: 同步发电机励磁控制实验 实验类型:________________同组学生姓名:__________ 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.掌握励磁调节器的基本使用方法; 6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 图1 励磁控制系统示意图 实验用的励磁控制系统示意图如图l 所示。可供选择的励磁方式有两种:自并励和它励。当三相全控 专业: 电气工程及其自动化 姓名: 学号: 日期: 地点:教2-105

桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F (保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 发电机正常运行时,三相全控桥处于整流状态,控制角α小于90?;当正常停机或事故停机时,调节器使控制角α大于90?,实现逆变灭磁。 三、实验项目和方法 (一) 不同α角(控制角)对应的励磁电压波形观测 (1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器 面板“它励”指示灯亮; (3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面 板上的“恒α”指示灯亮; (4)合上励磁开关,合上原动机开关; (5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮 即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。 注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需

电机学实验预习讲义

实验一直流他励发电机 一.实验目的 1.掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该电机的有关性能。 2.通过实验观察并励发电机的自励过程和自励条件。 二.预习要点 1.什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取。 2.做空载试验时,励磁电流为什么必须单方向调节? 3.并励发电机的自励条件有哪些?当发电机不能自励时应如何处理? 三.实验项目 1.他励发电机 (1)空载特性:保持n=n N,使I=0,测取Uo=f(I f)。 (2)外特性:保持n=n N,使I f =I fN,测取U=f(I)。 (3)调节特性:保持n=n N,使U=U N,测取I f =f(I)。 2.并励发电机 (1)观察自励过程 四.实验设备 1.直流电动机电枢电源(NMEL-18/1) 2.直流电动机励磁电源(NMEL-18/2) 3.同步发电机励磁电源/直流发电机励磁电源(NMEL-18/3) 4.可调电阻箱(NMEL-03/4) 5.电机导轨及测功机、转速转矩测量(NMEL-13) 6.开关板(NMEL-05) 7.直流电压、毫安、安培表 8.直流发电机M01 9.直流并励电动机M03 五.实验说明及操作步骤

1.他励发电机。 按图1-3接线 S 1:双刀双掷开关(NMEL-05) R 1:发电机负载电阻(NMEL-03/4中R 1)。 V 、A :分别为直流电压表(量程为300V 档),直流安倍表(量程为2A 档)。 (1)空载特性 a .打开发电机负载开关 S 1,将 NMEL-18/3中纽子开关拨向直流发电机励磁,直流发电机励磁 电流调至最小,接通直流发电机励磁电源,注意选择各仪表的量程。 b .调节直流电动机电枢电源至最小,直流电动机励磁电流最大,接通直流电动机励磁电源,接通直流电动机电枢电源,使电机旋转。 b .从数字转速表上观察电机旋转方向,若电机反转,可先停机,将直流电动机电枢或励磁两端接线对调,重新起动,则电机转向应符合正向旋转的要求。 d .调节电动机电枢电源至220V ,再调节电动机励磁电流,使电动机(发电机)转速达到1600r/min (额定值),并在以后整个实验过程中始终保持此额定转速不变。 e .调节发电机励磁电流,使发电机空载电压达U O =1.2U N (240V )为止。 f .在保持电机额定转速(1600r/min )条件下,从U O =1.2U N 开始,单方向调节直流发电机励磁电流,使发电机励磁电流逐次减小,直至I f =o 。 I f =o 时对应的电压就是剩磁电压。 每次测取发电机的空载电压U O 和励磁电流I f ,只取7-8组数据,填入表1-2中,其中U O =U N 和I f =0两点必测,并在U O =U N 附近测点应较密。 U O (V ) I f (mA ) (2)外特性 图1-3 直流他励发电机接线图直流发电机 G V A 直流电动机 M 直流电动机励磁电源 mA 直流 发电 机励 磁电源 mA 直流电动机电枢电源 V R 1 S 1 E E E U I I f F 1 F 2 A 1 A 2 F 1F 2 A 1 A 2

三相同步发电机的并联运行实验报告

实验报告四 实验名称:三相同步发电机的并联运行实验 实验目的:1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 实验项目:1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 →测取当输出功率等于零时三相同步发电机的V形曲线。(一)填写实验设备表

(二)三相同步发电机与电网并联运行时有功功率的调节 填写实验数据表格 表4-1 U=220V (Y ) f f0I =I = 0.85 A (三)三相同步发电机与电网并联运行时无功功率的调节 填写实验数据表格 表4-2 n=1500r/min U=220V 2P 0≈W

(四)问题讨论 1.三相同步发电机投入电网并联运行有哪些条件?不满足这些条件将产生什么后果? 答:1.发电机的频率和电网的频率相同。 2.发电机和电网的电压大小相等,相位相同。3.发电机和电网的相序相同。 不满足这些条件将产生:1.频率不同,引起系统功率下降,进而导致系统解列。2.电压不同,引起系统损耗加大。相位不同不但会使有功和无功的冲击外,还会有一个电磁力矩冲击,会导致传动部分冲击。 3.相序不同.将会发生短路,造成人身伤亡和损坏设备事故。 2. 三相同步发电机与电网并联的方法有哪些? 答:1.直接并网,2.有电动机带动至电网电压和频率时并网。3.发电机先做电动机,再转向发电机状态。 3. 实验的体会和建议 答:熟悉了三相同步发电机并网运行的条件与操作方法,知道了如何对三相同步发电机并联运行时有功功率与无功功率的调节,明白了三相同步发电机投入电网并联条件的重要性。

三相同步发电机的运行特性报告

三相同步发电机的运行特性 一、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3、三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈0的条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cosφ=1和cosφ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I)。 四、实验方法 1、实验设备 序号型号名称数量 1MET01电源控制屏1台 2DD03不锈钢电机导轨、测速系统及数显转速表1件 3DJ23校正直流测功机1台 4DJ18三相凸极式同步电机1台 5D34-2智能型功率、功率因数表1件 6D51波形测试及开关板1件 7D52旋转灯、并网开关、同步机励磁电源1件 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻 被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1中。 表5-1 室温20℃ 绕组Ⅰ绕组Ⅱ绕组Ⅲ

I(mA) 48.126.733.833.826.740.826.733.547.1U(V) 0.760.420.530.530.420.640.420.530.74R(Ω) 63.363.663.863.863.663.863.663.263.6 图5-1 三相同步发电机实验接线图 4、空载实验 (1) 按图5-1接线,校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y 形接法(U N =220V)。R f2用R4组件上的90Ω与90Ω串联加R6上90Ω与90Ω并联共225Ω阻值,R st 用R2上的180Ω电阻值,R f1用R1上的1800Ω电阻值。开关S 1,S 2选用D51挂箱。 (2) 调节D52上的24V 励磁电源串接的R f2至最大位置。调节MG 的电枢串联电阻R st 至最大值,MG 的励磁调节电阻R f1至最小值。开关S 1、S 2均断开。将控制屏左侧调压器旋钮向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,作好实验开机准备。 (3) 接通控制屏上的电源总开关,按下“启动”按钮,接通励磁电源开关,看到电流表A 2有励磁电流指示后,再接通控制屏上的电枢电源开关,起动MG 。MG 起动运行正常后, 把R st 调至最小,调节R f1使MG 转速达到同步发电机的额定转速1500 r/min 并保持恒定。 (4) 接通GS 励磁电源,调节GS 励磁电流(必须单方向调节),使I f 单方向递增至GS 输出电压U 0≈1.3U N 为止。 (5) 单方向减小GS 励磁电流,使I f 单方向减至零值为止,读取励磁电流I f 和相应的空载电压U 0。 (6) 共取数据7~9组并记录于表5-2中。表5-2 n=n N =1500r/min I=0序 号1234567891011 z

相关主题
文本预览
相关文档 最新文档