当前位置:文档之家› 半透明材料相变过程中热辐射效应研究

半透明材料相变过程中热辐射效应研究

半透明材料相变过程中热辐射效应研究
半透明材料相变过程中热辐射效应研究

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

相变材料

相变材料 夏红芳环境工程一班 2220083741 摘要:由于全球能源和环境问题的日益加剧,能源节约和环境的改善已成为当今迫切解决的问题,相变节能材料受到很大重视和广泛研究。本文主要介绍了相变材料的概念、特点、恒温机理及分类,然后讨论了它在各领域的主要运用,并展望了其良好前景和未来研究的方向。 关键词:相变材料节能恒温建筑采暖 1 前言 近年来,随着全球能源危机的日益加剧,节约能源、有效利用能源逐渐成为人们追求的目标。相变材料的节能应用很早就受到重视,许多发达国家对此进行了大量的研究和开发[1]。我国的科研机构亦对此课题进行大量的研究并发表了许多论文。但由于生产材料的成本过高和稳定性等原因,其应用受到限制。近年来由于材料的研究取得重大进展,相变材料的成本大大降低,稳定性也已达到上万个相变周期而不改变其特性,这使得应用相变材料节能达到了实用阶段[2]。从可持续发展战略出发,研究如何在满足当前经济飞快发展的需求,尽可能地提高对能源的有效利用率,对于当前的能源形势具有重大的意义[1]。 2 相变材料 相变材料PCMs( Phase Change Materials)是指在一定狭窄明确的温度范围,即通常所说的相变范围内可以改变物理状态,如从固态转变为液态或从液态变为固态的材料[3]。在相变过程中,体积变化很小,热焓高,因此以潜热形式从周围环境吸收或释放大量热量,热的吸收量或释放量比一般加热和冷却过程要大得多,而此时PCMs的温度保持不变或恒定。因此它是一种利用相变潜热来贮能和放能的化学材料。

我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长[3]。这是相变材料的一个最典型的例子。从以上的例子可看出,相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。 3 相变材料的分类 相变材料并不是科学家发明的一种新型材料,而是以各种形式存在于自然界中。迄今为止,已有超过500 种的天然和合成相变材料被人们掌握和了解[4]。按相变材料的科学属性划分,相变材料一般可以分为:无机水合盐相变材料、有机相变蓄能材料、复合相变蓄能材料。 3.1 无机类 无机类相变材料主要有结晶水合盐类、熔融盐类等其中最典型的是结晶水合盐类,它们有较大的熔解热和固定的熔点(实际上是脱出结晶水的温度变化: 脱出的结晶水使盐溶解而吸热,降温是其发生逆过程,吸收结晶水而放热)。通常 是中、低温相变蓄能材料。具有代表性的有:Na 2SO 4 ·10H 2 O , MgCl 2 ·6H 2 O 等 水合盐类。无机类相变材料通常具有使用范围广、导热系数大(与有机类相变材料相比)、溶解热较大、密度大(单位体积的储热密度大) 、一般成中性、价格较便宜等优点。但是,这类材料通常存在过冷现象、相分离两个问题[4]。 3.2 有机类 有机相变蓄能材料是利用晶体之间的转变来吸热或放热,典型的有石蜡、酯酸类和高分子化合物。有机类相变材料具有的优点有: 在固体状态时成型性较好,一般不容易出现过冷现象和相分离。而缺点是: 导热系数小,单位体积的储能能力较小,熔点较低,不适于高温场合中应用[4]。 3.3 复合类 复合相变材料主要指性质相似的二元或多元化合物的一般混合体系或低共熔体系,形状稳定的固液相变材料,无机有机复合相变材料等[5][14]。复合相变蓄热材料一般有分为两种,一种利用无机物作为网络状基质以维持材料的形状、力学性能,而有机物作为相变材料嵌在无机网络结构里面,这样通过有机物的相变来吸收和释放能量;另一种纤维复合蓄热材料,它是将导热纤维制成蓬松团置入金属容器或模腔中,并加入相变蓄热材料的复合材料。复合相变材料既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。 此外,还有一些其他分类方法,按相变温度的范围,将相变材料分为三类: 高温、中温和低温相变材料。按相变材料的组成成份将相变材料分为两类: 有机类和无机类。按相变的方式,将相变材料分为四类:固——固相变、固——液相变、固——气相变、及液——气相变材料。由于后两种相变方式在相变过程中,伴随有大量气体的存在,使材料体积变化较大。因此,尽管它们相变焓较大,但在实际中很少应用[4]。常用的就是固——固相变和固——液相变材料。 4 相变材料蓄能机理 相变材料具有在一定温度范围内改变其物理状态,发生吸热和放热的反应。当环境温度高于某相变温度时,材料吸收并储存能量,以降低环境

VO2材料研究进展

VO2材料最新研究进展 陈宗德201121220007 核科学与技术学院 摘要:VO2是一种具有特殊相变性能的功能材料。随着温度的变化,该晶型会发生半导体态与金属态的可逆变化,同时,电阻和红外透射率等物理性质也发生突变,其相变点在68"C附近。这些优异的特性使得VO2材料在新型热敏器件、光敏器件、光电开关和红外探测等领域都有着广阔的应用前景。 关键字:VO2 相变特性热敏电阻辐射探测 Abstract:VO2 is a kind of functional phase changing material.With the change in temperature, its structure will appear the irreversible semiconductor-metal state transition, at the same time,the mutations of resistance,infrared transmission, and other physical natures will occur, the phase transition point is in the vicinity of 68℃.Moreover, it is discovered that VO2 phase transition can also be induced by changing applied electric field. The excellent transition feature brings series of valuable applications to VO2 in new thermal and photosensitive devices, photoelectric switches and infrared detector areas. Key words: VO2phase changing the mutations of resistance infrared detector 1. 引言 1958年,科学家F.J.MorinⅢ在贝尔实验室发现钒和钛的氧化物具有一种特殊的现象:随着温度的降低,在一定的温区内材料会发生从金属性质到非金属性质的突然转变,同时还伴随着晶体向对称程度较低的结构转化。接着,其它一些过渡元素金属如钨、铌、铁、镍、铬的化合物也被相继发现具有这种性质[1]。这些化合物包括:Ti2O3,Ti3O5,Ti5O9,Fe203,Fe304,V509,FeSi2,CrS,NbO2,NiS等。其中最引人注目的是一批低价钒氧化物,它们的临界相变温度如表1所示。

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/a510151092.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

相变材料的储热

相变材料的储热 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料; 引言:相变材料(PCM)在其本身发生相变的过程中,可以吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的。相变储能技术通过相变材料相变时吸收或放出大量热量以达到能量存储的目的,是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式。 正文 一、相变储热材料应用的意义 当今社会能源短缺及环境污染成为我们所面临的重要难题。开发利用可再生能源对节能和环保具有重要的现实意义。发展热能存储技术尤为重要,热能存储就是把通过一定的方式把占时应用不到应用不完的多余的热和废热存储起来,适时还可以另作他用。该技术在太阳能的利用、电力的“移峰填谷”、气废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。 二、相变储能材料分类及材料的选择 1、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机相变材料和有机相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。 但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)从蓄热过程中材料相态的变化方式来看,分为固-液相变、固-固相变、固-气相变和液-气相变四类。由于后两种相变方式在相变过程中伴随着大量气体的产生,是材料的体

高温相变材料的研究进展和应用

高温相变材料的研究进展和应用 摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。 关键词:相变材料;储热材料;相变 1引言 物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。 2相变储热技术

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。 3高温相变储热材料 3.1高温固—液相变材料 固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

相变材料

浅谈相变储能材料的热能储存技术及其应用 云南师范大学能环学院再生B班马侯君(12416181) (云南师范大学太阳能研究所 650500) 摘要:由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点,因此,采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径,也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大,使其在许多工程应用中具有较大的吸引力,筒要介绍利用相变储能材料的热能储存技术及其在工程中的多种应用。本文对热能存储技术的主要类型和技术原理进行了简要介绍,讨论了建筑采暖系统中热能 存储技术的应用现状及发展的趋势。 关键词:相变储能材料热能储存技术工程应用建筑采暖 1 引言 利用相变储能材料的热能储存技术是协调能源供求矛盾、提高能源利用效率和保护环境的重要技术,也是储存和回收利用短期或长期需求能源的一种有效途径。它在工业与民用建筑的采暖、空调、温室、太阳能热利用、工业生产过程的热能回收和利用等多个领域得到了广泛的应用,并已逐步成为世界范围高度重视的研究领域。特别是随着相变储能材料的基础和应用研究的不断深入,利用相变储能材料的热能储存技术的应用深度和广度都将不断拓展。为此,本文着重介绍相变储能材料及其研究,以及利用各种相变储能材料的热能储存技术在工程中的多种应用。 2 相变储能材料及其研究 相变储能材料的种类 人们对相变储能材料的研究可以追溯到20世纪70年代,近几十年来国内外研究人员对相变储能材料的研究和开发进行了大量的研究工作,取得了一定的研究成果,得到了具有温度变化小、储能密度大、过程易控制并适于利用材料的相变潜热进行热能储存的多种相变储能材料。根据其相变形式可分为固-液相变储能材料、固-固相变储能材料、固-气相变储能材料、液-气相变储能材料4类,虽然固-气相变和液-气相变具有的相变热大,但其体积上的大变化使相变储能系统变得复杂和不实用,因此,后两种相变储能材料在实际应用中很少被选用,应用较多的相变储能材料主要是固-液相变储能材料和固-固相变储能材料两类。 固-液相变储能材料 在固-液相变储能材料中,主要有无机相变储能材料、有机相变储能材料及其共融混合物3类。 (1)无机相变储能材料 无机相变储能材料包括结晶水合盐、熔融盐、金属合金和其它无机物。其中,水合盐是适于温度范围在 0"--150℃的潜热式储存的典型无机相变储能材料,它也是中低温相变储能材料中重要的一类,其优点是价格便宜、单位体积储能密度大、一般呈中性;缺点是过冷度大和易析出分离,需要通过添加成核剂和增稠剂进行处理。常用作相变储能材料的结晶水合盐热物理性能见表1。 表1 常用作相变储能材料的结晶水合盐热物理性能

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/a510151092.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

相变材料

相变材料的种类 摘要:相变储能材料对于能源的开发与应用具有重要意义。综述了相变储能材料的分类、相变特性、并展望其今后的发展方向。 关键字:无机相变材料;有机相变材料;储能;进展; 前言 相变材料是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。相变材料可分为有机和无机相变材料。亦可分为水合相变材料和蜡质相变材料。相变材料具有在一定温度范围内改变其物理状态的能力。相变材料的分类相变材料主要包括无机PCM 、有机PCM 和复合PCM 三类。根据相变的方式不同,又可分为固—固相变,固液相变, 固气相变,液气相变.由于后两种相变方式在相变过程中伴随有大量气体存在,使材料体积变化较大,因此尽管它们有很大的相变热,但实际应用较少。根据使用的温度不同又可分为低温,中温,高温三种。 无机相变材料 固 -液相变材料是指在温度高于相变点时 ,物固相变为液相吸收热量 ,当温度下降时物相又由液相变为固相放出热量的一类相变材料。目前 , 固 -液无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度 ,从几百摄氏度至几千摄氏度 ,因而相变潜热较大。固 -固相变储能材料是利用材料的状态改变来储、放热的材料。目前 ,此类无机盐高温相变储能材料已研究过的有SCN NH 4,2KHF 等物质。2KHF 的熔化温度为 196 ℃,熔化热为 142 kJ/kg;SCN NH 4从室温加热到 150 ℃发生相变时 ,没有液相生成 ,相转变焓较高 ,相转变温度范围宽 ,过冷程度轻 ,稳定性好 ,不腐蚀 ,是一种很有发展前途的储能材料。 无机盐高温相变复合储能材料近年来 ,高温复合相变储能材料应运而生 ,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点 ,又可以改善相变材料的应用效果以及拓展其应用范围。因此 ,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。目前,已研究的无机盐高温复合相变材料

相变储热材料的制备与应用

相变储热材料的制备与应用 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料 一、相变材料在国内外的发展状况 国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。 相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。 二、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)根据使用的温度不同又可以分为高、中、低温相变储热材料。一般使用温度高于100℃的相变储热材料称为高温相变储热材料。以熔融盐、氧化物和金属及其合金为主。使用温度低于100℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液-气相变型的,如液氮、氦。 (3)从蓄热过程中材料相态的变化方式来看,可分为固液、固气、液气、固固四种相变。由于固气和液气两种方式相变是有大量气体产生,使材料的体积变的很大,所以实际中很少采用这两种方式。 三、相变材料的分类选择因素 (1)合适相变温度; (2)较大的相变潜热; (3)合适的导热性能;

复合定形蓄能相变材料研究进展 修改

复合定形蓄能相变材料的研究进展 仝仓, 李祥立 (大连理工大学建设工程学部, 辽宁啊,大连116024) 摘要:简述了复合定形蓄能相变材料的分类,着重讨论了熔融共混法、物理吸附法、压制烧结法、接枝共聚法、微胶囊化法、原位插层法、溶胶—凝胶法等七种主要制备复合定形蓄能相变材料方法,分析了各种方法的优势和存在的问题,并指出各种方法适用于制备的相变材料类型。此外提出了复合定形相变材料的发展方向,可作为研究和工程应用的参考。 关键词:定形相变材料制备方法 1.引言: 蓄能技术的发展解决了热能供需时间和空间失配的矛盾,提高了能源利用率。相变蓄能材料从上个世纪70年代在工业和新能源领域受到重视后发展到现在,新型材料和制备方法不断涌现,其中高温相变蓄能材料已经在航空航天、热机、磁流体发电、太阳能等领域得到了应用;而中低温相变蓄能材料应用于绿色建筑、余热回收、太阳能热储存、空?、保暖服装、电子设备等领域。蓄能技术按工作介质所处状态分为显热蓄能技术、潜热蓄能技术和热化学蓄能技术[1],其中以相变蓄能材料(PCMs:phase change materials)为支撑的潜热蓄能技术,具有储能密度大,温度恒定,体积小,性能稳定等优点,是当前国内外学者研究热点之一。相变材料按相变方式可分为固—固PCMs、固—液PCMs、固—气PCMs、液—气PCMs。后两者在相变过程中体积变化较大,且有气体产生,不符合实际工程要求;前两者则包括熔融盐,金属合金,结晶水合盐,多元醇,脂肪酸,石蜡等,但其中大部分材料都有一个共同的缺陷:相变过程中有液相产生,会造成原材料的泄漏,腐蚀容器,污染工作环境,从而导致储热效率,安全系数大幅降低等一系列问题。通过研发合适的复合定形储能材料,既可以解决液相泄漏的问题,又在一定程度上调节材料的相变温度,提高其热传导率,使其更好的满足工程需要。 2.复合定形蓄能材料的主要制备方法 复合定形蓄能材料是指在固—固/固—液相变材料的基础上通过各种方法把有机物与有机物/无机物结合后制备的定形材料,一般包括工作质和载体。复合定形相变材料按照相变方式分为固—固相变蓄能材料和形状稳定的固—液相变蓄能材料[2],按载体材料可分为聚合物基定形相变材料、无机多孔基定形相变材料、微胶囊定形相变材料、有机/无机纳米级定形相变材料等,其制备方法主要有以下几种:熔融共混法、物理吸附法、压制烧结法、接枝共聚

复合相变材料及其设备制作方法与相关技术

图片简介: 本技术涉及相变材料技术领域,尤其涉及一种复合相变材料及其制备方法。本技术介绍了一种复合相变材料,该复合相变材料将相变材料作为内核,透明高分子材料具有良好的机械强度和织性模量,凝胶聚合物作为壳层将相变材料限域保护起来,可以阻止其泄露,还能增加相变材料的换热面积,使其便于储存和运输;透明高分子材料具有高的透光度,胆甾相液晶的颜色的温敏变化可以显示出来,液晶颜色的变化温度与相变材料的相转化温度范围匹配,实现相变材料的“可视化”;一维导热材料具有很好导热能力,其位于壳层与核层之间径向排列的阵列纳米结构,阵列的纳米结构能使热量沿着导热材料传输,能够很好的提升相变材料的充放热速度,减少了热量的损失。 技术要求 1.一种复合相变材料,其特征在于,所述复合相变材料呈核壳结构; 所述核壳结构中的壳层为含有胆甾相液晶的凝胶聚合物,核层为相变材料,所述壳层与所述核层之间径向负载有一维导热材料; 所述凝胶聚合物由透明高分子材料制得。 2.根据权利要求1所述的复合相变材料,其特征在于,所述核层的粒径为90-150μm,壳层的厚度为10~30μm,一维导热材料的厚度为20-30μm。

3.根据权利要求1所述的复合相变材料,其特征在于,所述相变材料为石蜡型相变材料; 所述一维导热材料选自铜纳米线、碳纤维或碳纳米管; 所述胆甾相液晶包括向列相液晶和手性掺杂剂。 4.根据权利要求3所述的复合相变材料,其特征在于,所述向列相液晶为BHR-59001,所述手性掺杂剂为S-811。 5.根据权利要求3所述的复合相变材料,其特征在于,所述石蜡型相变材料为十四烷、十八烷或二十烷。 6.根据权利要求5所述的复合相变材料,其特征在于,所述透明高分子材料为明胶和/或阿拉伯胶。 7.权利要求1至6任意一项所述的复合相变材料的制备方法,其特征在于,包括以下步骤: 步骤1:利用Stober法将相变材料、十六烷基三甲基溴化氨在水和醇的混合溶剂中,加入硅源进行反应,得到二氧化硅包覆的相变材料; 步骤2:将所述二氧化硅包覆的相变材料浸入一维导热材料分散液中,搅拌、干燥,得到一维导热材料/二氧化硅/相变材料; 步骤3:将所述一维导热材料/二氧化硅/相变材料浸泡于氢氟酸中,得到一维导热材料/相变材料; 步骤4:将透明高分子材料、所述一维导热材料/相变材料、胆甾相液晶和水进行混合,冷冻干燥,得到复合相变材料。 8.根据权利要求7所述的制备方法,其特征在于,所述相变材料与所述硅源的质量比为(30~50):1; 所述一维导热材料与所述相变材料的质量比为1~3:4。 9.根据权利要求7所述的制备方法,其特征在于,所述透明高分子材料、所述一维导热材料/相变材料、所述胆甾相液晶和所述水的用量比为8g:(25~35)g:5g:95mL。 10.根据权利要求7所述的制备方法,其特征在于,所述胆甾相液晶包括向列相液晶和手性掺杂剂; 所述向列相液晶与所述手性掺杂剂的质量比为5:(0.5~1.5)。 技术说明书 一种复合相变材料及其制备方法

相变储热材料的制备与应用

摘要:热能储存可以通过蓄热材料地冷却、加热、熔化、凝固.气化、化学反应等方式实现.它是一种平衡热能供需和使用地手段.热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热. 关键词:相变;储热;复合材料 相变材料在国内外地发展状况 国外对相变储能材料地研究工作始于世纪年代.最早是以节能为目地,从太阳能和风能地利用及废热回收,经过不断地发展,逐渐扩展到化工、航天、电子等领域.近年来最主要地研究和应用集中在建筑物地集中空调、采暖及被动式太阳房等领域.国外研究机构和科研人员对蓄热材料地理论研究工作,尤其是对蓄热材料地组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细地研究,在实际应用上也取得了很大进展. 相对于已经进入实用阶段地发达国家,我国在世纪年代末年代初才开始对蓄热材料进行研究,所以国内相变储能材料地理论和应用研究还比较薄弱.上世纪年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料地研究开发.资料个人收集整理,勿做商业用途 相变储热材料地分类 ()从材料地化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解地是有机类相变材料.无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物.与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点.其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料地研究使用中受到广泛地重视.但石蜡类相变储能材料热导率较低,也限制了其应用范围.为有效克服石蜡类有机化合物相变储能材料地缺点,同时改善相变材料地应用效果及拓展其应用范围,复合相变储能材料应运而生 .复合相变材料由较稳定地有机化合物和具有较高导热系数地无机物颗粒制备而得,因而复合相变材料具有稳定地化学性质,无毒无腐蚀性或毒性和腐蚀性小.同时它地导热能力较有机物有较大地改善.资料个人收集整理,勿做商业用途 ()根据使用地温度不同又可以分为高、中、低温相变储热材料.一般使用温度高于℃地相变储热材料称为高温相变储热材料.以熔融盐、氧化物和金属及其合金为主.使用温度低于℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液气相变型地,如液氮、氦.资料个人收集整理,勿做商业用途 ()从蓄热过程中材料相态地变化方式来看,可分为固液、固气、液气、固固四种相变.由于固气和液气两种方式相变是有大量气体产生,使材料地体积变地很大,所以实际中很少采用这两种方式.资料个人收集整理,勿做商业用途 三、相变材料地分类选择因素 ()合适相变温度; ()较大地相变潜热; ()合适地导热性能; ()性能稳定,可反复使用而不发生熔析和副反应; ()相变地可逆性,过冷度要尽量小; ()符合绿色化学要求:无毒、无腐蚀、无污染; ()使用安全、不易燃.易爆或氧化; ()蒸汽压要低使之不易挥发损失; ()材料密度较大,从而确保单位体积储热密度较大; ()体积膨胀较小; ()成本低廉,原料易得. 实用型地相变储热材料需要满足以上各项基本原则,但选用时也可以结合实际地应用情况,

相变储热材料的发展概况及展望

相变储热材料的发展概况及展望 本文系统概括了相变储热材料的发展概况,介绍了相变储热材料的分类、性能和应用,并对其未来的发展进行了展望。 标签:相变材料相变储热能源 能源是人类赖以生存的基础。随着现代工业的迅速发展,人们对能源的需求量越来越大,迫切需要全球各国不断开发和利用新能源。在此过程中,虽然新能源在不断被开发,但是我们对能源的利用在许多情况下都未达到合理化,致使大量能源被浪费。因此,提高能源的利用率很有必要。储热技术可用于解决热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重要技术。储热技术主要包括显热、潜热和反应热3种储热方式。其中,以相变材料(Phase Change Material,PCM)的固-固、固-液相变潜热来储存热量的潜热型热能储存方式最为普遍,也最为重要。其优点为:储热密度大、储放热过程近似等温和过程容易控制等[1]。 固-固相变储热材料和固-液相变储热材料是目前应用较为广泛的相变储热材料。固-液相变材料存在过冷和相分离现象,从而导致储热性能恶化,具有腐蚀性等缺点。固-固相变材料在发生相变前后固体的晶格结构改变而放热吸热,与固-液相变储热材料相比,固-固相变储热材料具有稳定性好、腐蚀性小、装置简单等特点[2]。 一、相变储热材料分类及应用 1.相变储热材料分类 相变储热材料主要有固-固和固-液型两类,其中固-液相变储热材料根据使用温度范围,又可分为高温型和低温型储热材料,或者根据材料类型,又可分为有机型和无机型储热材料;固-固相变储热材料主要有3大类,分别是高分子类、多元醇类和层状钙钛矿类。 1.1固-固相变储热材料 高分子类相变储热材料主要是一些高分子的聚合物。如聚烯烃类、聚缩醛类等。目前最常见的是聚乙烯。这种材料一般不产生过冷或相分离现象,结晶度高,导热率高,物美价廉。 多元醇类相变储热材料主要有季戊四醇(PE)、2,2-二羟甲基-丙醇(PG)、新戊二醇(NPG)、三羟甲基乙烷(TMP)等。这类材料具有寿命长、焓变大、性能稳定等优点。多元醇的相变温度较高,在很大程度上限制了其应用[3],可通过混合多元醇,调节相变温度。

相变材料应具有以下几个特点

相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸汽压低。此外,相变材料还需与建筑材料相容,可被吸收。 3相变储能材料的特点 作为相变材料主要应满足的要求有:合乎需要的相变温度:足够大的相变潜热:性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀性。储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本:为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。而有机物相变材料则热导率较低。相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如:铜粉、铝粉或石墨等作为填充物以提高热导率。或采用翅片管换热器,依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。固一液相变材料主要优点是价格便宜,但是存在过冷和相分离现象,从而导致储能不理想:易产生泄露问题,污染环境;腐蚀性较大,封装容器价格高等缺点。 与固一液相变材料相比,固一固相变材料具有不少优点。可以直接加T成型,不需容器盛装:固一固相变材料膨胀系数较小,相变时体积变化较小:不存在过冷和相分离现象,不需要加入防过冷剂和防相分离剂;毒性很低,腐蚀性很小;无泄露问题,对环境不产生污染;组成稳定,相变可逆性好,使用寿命长:装置简单,使用方便。固一固相变材料主要缺点是相变潜热较低,价格较高。 4 应用展望 相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变蓄热材料主要应用在家庭采暖系统中,它与水合盐相比.具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年):把它们注入纺织物,可以制成保温性能好、重量轻的服装:可以用于制作保温时间比普通陶瓷杯长的保温杯:含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空和航天器材、军事侦察、日常生活用品等方面有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:(a)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义:(b)开发复合相变储热材料是克服单一无机或有机相变材料不足,提高其应用性能的有效途径;(c)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一:(d)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显著提高系统效率,并能维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义:(e)进一步关注高温储热和空调储冷。美国NASA Lewis研究中心利用高温相变材料成功的实现了世界上第一套空间太阳能热动力发电系统2kW 电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源 解决方案之一,必将极大地推动高温相变储热技术的发展。另外,低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段;(f)纳米复合材料领域的不断发展,为制备高性能复合相变储热材料提供了很好的机遇。利用纳米材料的特点制备新型高性能纳米复合

相关主题
文本预览
相关文档 最新文档