当前位置:文档之家› 人工神经网络评价法

人工神经网络评价法

人工神经网络评价法
人工神经网络评价法

人工神经网络评价法

第一节思想和原理

在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。

人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是人工神经网络的重要特征。

人工神经网络是模仿生物神经网络功能的一种经验模型,首先根据输入的信息建立神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,使输出结果与实际值之间差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系,它能够把问题的特征反映在神经元之间相互联系的权值中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。

神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有自学习、自组织的潜力。另外,它有较强的容错能力,能够处理那些有噪声或不完全的数据。

基于人工神经网络的多指标综合评价方法通过神经网络的自学习、自适应能力和强容错性,建立更加接近人类思维模式的定性和定量相结合的综合评价模型。训练好的神经网络把专家的评价思想以连接权的方式赋予于网络上,这样该网络不仅可以模拟专家进行定量评价,而且避免了评价过程中的人为失误。由于模型的权值是通过实例学习得到的,这就避免了人为计取权重和相关系数的主观影响和不确定性。

反向传播(Back Propagation, BP)神经网络是由Rumelhart等人于1985年提出,它是一种多层次反馈型网络。基于BP人工神经网络的综合评价方法具有运算速度快、问题求解效率高、自学习能力强、适应面宽等优点,较好地模拟了评价专家进行综合评价的过程,因而具有广阔的应用前景。

第二节模型和步骤

一、模型介绍

人工神经网络是对生物神经机制研究基础上产生的智能仿生模型。处理单元,或称之为神经元,是神经网络的最基本的组成部分。一个神经网络系统中有许多处理单元,每个处理单元的具体操作都是从其相邻的其他单元中接受输入,然后产生输出送到与其相邻的单元中去。

神经网络的处理单元可以分为三种类型:输入单元、输出单元和隐含单元。输入单元是从外界环境接受信息,输出单元则给出神经网络系统对外界环境的作用。隐含单元则处于神经网络之中,它从网络内部接受输入信息,所产生的输出则只作用于神经网络系统中的其它处理单元。隐含单元在神经网络中起着极为重要的作用。

最初的神经网络结构只由输入层和输出层。这种双层神经网络能力极为有限。后来在这种双层神经网络的基础上,引入了中间隐含层形成了三层神经网络模型,这种三层神经网络模型大大提高了神经网络的能力。

神经网络的卓越能力来自于神经网络中各神经元之间的连接权。连接权一般地不能预先准确地确定,故神经网络应具有学习功能,也即能根据样本模式逐渐调整权值,使神经网络具有卓越的处理信息的功能。

神经网络的工作过程具有循环特征。而在每个循环中又分为两个阶段,即工作期与学习期。在工作期期间,各神经元之间的连接权值不变,但计算单元的状态发生变化。此期间的特点是:进行速度快,故又称为快过程,并称此期间中的神经元处于短期记忆。在学习期期间,各计算单元的状态不变,但对连接权值作修改。此阶段速度要慢得多,故又称为慢过程,并称此期间中的神经元处于长期记忆。

对事物的判断分析必须经过一个学习和训练过程。1949年,Hebb率先提出了改变神经元连接强度的学习规则。其过程是;将样本(训练)数据赋予输入端,并将网络实际输出与期望输出相比较,得到误差信号,以此为依据来调整连接权值。重复此过程,直到收敛于稳态。

1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算法),BP网络是一种具有三层或三层以上的层次结构网络,相邻上、下层之间各神经元实现权连接,即下层的每个神经元与上层的每个神经元都实现权连接,而每层各神经元之间无连接。换个角度看,BP算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。在BP算法中,节点的作用的激励函数通常选取S(Sigmoid函数)型函数。

对于BP模型的输入层神经元,其输出与输入相同。隐含层和输出层的神经元的操作规则如下:

BP网络的输入与输出的关系是一个“多输入——多输出”、且为高度非线性的影射关系。由于一般情况下难以写出其表达式,故这是一个“黑箱”。

增加层数主要可以进一步降低误差,提高精度,但同时使网络复杂化,从而增加了网络权值的训练时间。

误差精度的提高实际上也可以通过增加隐层中的神经元数目来获得,其训练效果也比增加层数更容易观察和调整,所以一般情况下,应先考虑增加隐层的神经元数目。

隐层单元数的选择是一个复杂的问题。隐层单元数过少不能识别以前没有看见过的样本,容错性差;但隐层单元数过多,又会使学习时间过长,误差也不一定最佳。通常做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量。

BP算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

对多层网络进行训练时,首先要提供一组训练样本,其中的每个样本由输入样本和理想输

出对组成。样本的实验输出作为期望输出(理想输出),计算得到的网络输出为模型输出(实际输出)。当网络的所有实际输出与理想输出一致时,表明训练结束。否则,通过修正权值,使网络的理想输出与实际输出一致。

假设BP网络每层有N个处理单元,训练集包含M个样本对。

对第p个学习样本(p=1,2,…,M),节点j的输入总和记为netpj,输出记为Opj,则:

对于每个输入样本p,网络输出与期望输出(dpj)间的误差为:

式中dpj 表示对第p个输入样本输出单元j的期望输出。

在BP网络学习过程中,输出层单元与隐单元的误差的计算是不同的。

BP网络的权值修正公式为:

Wji = Wji(t) + ηδpjOpj

对于输出节点:δpj = f′(netpj)(dpj – Opj)

对于输入节点:δpj = f′(netpj) Σδpk Wkj

上式中,引入学习速率η,是为了加快网络的收敛速度,但有时可能产生振荡。通常权值修正公式中还需加一个惯性参数α,从而有:

上式中,α为常数项,称为势态因子,它决定上一次的权值对本次权值更新的影响程度。

权值修正是在误差反向传播过程中逐层完成的。由输出层误差修正各输出层单元的连接权值,再计算相连隐含层单元的误差量,并修正隐含层单元连接权值。如此继续,整个网络权值更新一次后,我们说网络经过一个学习周期。重复此过程,当各个训练模式都满足要求时,我们说BP网络已学习好了。

在网络的学习过程中,权重值是随着迭代的进行而更新的,并且一般是收敛的。

二、BP网络的学习算法步骤

1、初始化网络及学习参数,如设置网络初始权矩阵,学习因子η,势态因子α等;

2、提供训练模式,训练网络,直到满足学习要求;

3、前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2);

4、反向传播过程:计算同一层单元的误差,修正权值和阈值,返回(2)。

网络的学习是通过用给定的训练集训练而实现的。通常用网络的均方根误差来定量地反映学习的性能。一般地,当网络的均方根误差值低于0.1时,则表明对给定训练集学习已满足要求了。

BP神经网络的实质就是依据所提供的样本数据,通过学习和训练,抽取样本所隐含的特征关系,以神经元间连接权值的形式存储专家的知识。具体地说,BP算法的基本思想是将每次迭代的误差信号由输出层经隐蔽层至输入层反向传播,调整各个神经元之间的连接权值,如此反复迭代,直到误差达到容许水平,这种调节过程具有自组织、自学习的特点。

基于BP网络的多指标综合评价神经网络模型的设计如下:

BP网络的结构包括网络层数、输入、输出节点和隐节点的个数、连接方式,其中输入层节点数m,即评价指标的个数;输出层节点数n为1,即评价结果;隐含层节点数L=(m*n)1/2。隐含层的输出函数为sigmoid变换函数,输入和输出层函数为线性函数。

具体地说,将用于多指标综合评价的评价指标属性值进行归一化处理后作为BP网络模型的输入,将评价结果作为BP网络模型的输出,用足够多的样本训练这个网络,使其获取评价专家的经验、知识、主观判断及对指标重要性的倾向。训练好的BP网络模型根据待评价对象各指标的属性值,就可得到对评价对象的评价结果,再现评价专家的经验、知识、主观判断及对指标重要性的倾向,实现定性与定量的有效结合,保证评价的客观性和一致性。三、实例分析

现在用人工神经网络对电子行业企业的经济效益进行综合评价为例,讲解人工神经网络的BP模型。

首先要将描述电子行业企业经济效益综合的基础指标的属性值作为人工神经网络的输入向量,然后用足够多的企业样本向量训练这个网络,使不同的输入向量得到不同的输出值,经过学习后确定相应的内部组权系数,最后根据输入的企业经济效益指标向量,可以得出该企业的经济效益的综合评价结果。

对各指标量化后,并得到综合评价总指标的期望值。其中权重是由专家评判组反复斟酌而定,如表5-2所示

应用上述的基于人工神经网络多指标综合评价方法。本例的输入层共有7个结点,输出结点1个,隐层结点数选取10。将表5-2中的数据分为两部分,前15组数据用作学习样本,作为训练神经元连接权值用,学习精度ε=10-4,后10组数据作为检验用。经过5200次的学习,其学习结果见表5-3。

训练结束后,给训练好的BP网络分别输入校验数据,得到综合评价经济效益排序结果,见表5-4。

四、步骤总结

(1)确定评价指标集,指标个数为BP网络中输入节点的个数。

(2)确定BP网络的层数,一般采用具有一个输入层、一个隐含层和一个输出层的三层网络模型结构。

(3)明确评价结果,输出层的节点数为1。

(4)对指标值进行标准化处理。

(5)用随机数(一般为0-1之间的数)初试化网络节点的权值与网络阈值。

(6)将标准化以后的指标样本值输入网络,并给出相应的期望输出。

(7)正向传播,计算各层节点的输出。

(8)计算各层节点的误差。

(9)反向传播,修正权重。

(10)计算误差。当误差小于给定的拟合误差,网络训练结束,否则转到(7),继续训练。(11)训练还的网络权重就可以用于正式的评价。

需要注意的是,在综合评价(决策)中,被评对象各个特征指标之间一般没有统一的度量标准,并且在很多场合下得到的特征指标是定性描述而不是量值,在进行综合评价前,应先对评价

指标特征值进行量化处理,按某种隶属度函数将其归一化到某一无量纲区间。

具体的计算过程,可以采用神经网络的软件包,也可使用MATLAB等工具。

第三节应用案例选粹

一、BP神经网络在城市投资环境评价中的应用

城市投资环境评价对于城市发挥其投资环境优势和制定投资环境改善对策措施是一项极为重要的工作。关于城市投资环境评价,不同专家学者给出了不同的评价方法,这些方法存在一些缺陷:或者缺乏自我学习能力,或者难以摆脱决策过程中的随机性、主观不确定性和认识的模糊性,或者未能充分利用评价指标体系包含的丰富信息等。针对此,这里引入基于BP神经网络的城市投资环境评价方法,通过对已有样本模式的学习,获取评价专家的知识、经验。

1、方法模型(1)BP神经网络模型

(2)评价指标标准化转换器

多目标决策的一个显著特点是目标间的不可公度性,在评价前,应对评价指标通过标准化转换器统一到[0,1]范围内。

城市投资环境评价指标根据其属性一般有以下几种类型:成本型、效益型、适度型和区间型。

成本型标准化函数:

效益型标准化函数:

适度型标准化函数:

对于区间型指标,设[q1,q2]为该指标的最佳区间:

(3)BP神经网络评价城市投资环境的算法实现

在图5-2的BP神经网络中,每个节点的输出与输入之间的非线性关系用sigmoid函数描述,即

隐含层样本模式p的输出按下式计算,式中θk表示隐含层节点k的偏置值。

输出层样本模式p的输出按下式计算,式中θ表示输出层输出节点的偏置值。

BP网络的学习训练是一个误差反向传播与修正的过程,定义h个样本模式的实际输出与期望输出的总误差函数为

那么,神经网络对样本模式p的学习就是为了使(9)式的E极小化。

2、算法实现

下面运用该模型对我国35个主要城市的投资环境进行综合评价。

第一步,分析影响城市投资环境的因素,确定综合评价的BP网络结构参数,即各层神经元节点数。设评价指标论域为X={x1,x2,…,x37},则输入节点可定为37;根据文献得出隐含层节点与输入输出节点数的经验优化关系,确定隐含层节点数为59;这里仅就城市综合投资环境作评价,因此输出节点数为1。

第二步,为神经网络的连接权值wik(0),wk(0)和神经元节点偏置值θk (0)和θ (0)赋初值。

第三步,以中国35个主要城市作为神经网络学习训练的样本模式,其输入指标构成35×37阶矩阵[Upj] 35×37,而期望输出即城市投资环境综合评价结果(考虑到sigmoid函数的值域为(0,1),因此将其规范化值统一除以100使之转化到(0,1)范围内)构成向量B=(bl,b2,…,b35)T。

第四步,按指标的不同属性类型进行标准化转换得到评价矩阵。

第五步,启动BP神经网络进行学习训练。经学习训练后的神经网络输出结果见表1。

第六步,挑选一组人口规模50万人以上的大城市C={淄博,鞍山,唐山,包头,徐州,洛阳,无锡,苏州,株洲}加入到35个城市一并作为城市投资环境评价对象,利用BP网络方法进行评价,结果见表2。

3、结论

基于BP神经网络的评价方法同其他常规方法相比有其突出的优点:

(1)具有较强的自我学习能力。

(2)具有较强的容错能力。

(3)评价速度快。

应该指出,基于神经网络的评价方法并不能取代其他的评价方法如AHP、Fuzzy综合评判等。因为神经网络评价方法的学习训练样本模式需要来自这些方法所得的结果。而且当评价条件变化时(如改变评价指标体系)还必须借助传统方法来得到神经网络方法的训练样本模式。练习案例BP神经网络在企业技术创新能力评价中的应用

企业技术创新是企业获得持续竞争力的源泉。企业要想在市场竞争中争取主动,关键在于企业技术创新能力的准确定位和及时提高。因此,科学.有效、客观地评价企业技术创新能力,对于企业准确定位自身的技术创新能力,获得持续竞争力,具有重要的意义。

企业技术创新能力是企业的核心能力,它是指企业依靠技术获得持续竞争力的能力,具体地说,是指引入或开发新技术,使企业满足或创造市场需求,增强企业竞争力,获得最佳经济效益和社会效益的能力。

1、企业技术创新能力指标体系的构建

根据技术创新能力的定义以及在遵循选择指标的全面性、科学性、客观性、可比性和简便可

行性原则下,结合有关文献,对企业技术创新能力进行分解,建立如图所示的评价指标体系。

2、基于BP神经网络的企业技术创新能力评价模型

(1)人工神经网络方法。

典型的BP网络具有三层结构,即输入层、隐含层和输出层。

(2)评价指标的标准化。

由于评价指标体系中,既有定性指标又有定量指标,为使各指标在整个系统中具有可比性,必须对各指标进行标准化处理。

(3)评价模型结构设计

1)输入层。根据企业技术创新能力评价指标体系,可以将最低层指标数作为输入层神经元数,在这里为13,然后按上述方法将指标标准化处理。将标准化处理后的指标值作为BP网络的学习样本。

2)隐含层。在选取隐含层神经元数的时候,既要考虑到BP网络的精确度,又要兼顾网络的学习效率。一般地,隐含层神经元数为10~15。

3)输出层。将输出层神经元数设置一个。

(4)BP神经网络模型评价程序

1)BP网络学习。按照前述的指标体系,搜集学习样本即不同企业的指标值,进行标准化处理,输入BP神经网络,按照BP算法,确定各层神经元之间的权重Wji。

2)搜集评价企业的指标值{xi};

3)对{xi}进行规范化处理;

4)将处理过的{xi}输入BP神经网络,按照前面确定的权重Wji,计算输出;

5)根据输出按评价标准对企业技术创新能力下评价结论。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

BP神经网络的网络学习评价模型

20 摘 要:研究网络学习评价问题对推动网络教学资源的使用具有十分重要的意义,传统的网络学习评价方法具有很强的主观性,且仅限于线性模型,缺少科学性。为克服传统网络学习评价方法的不足,实现网络学习评价的智能化,提出了一种基于BP 神经网络的的网络学习评价模型,并利用MA TLAB 进行实验仿真,测试结果表明,该评价模型准确率高,能为网络学习评价提供可靠数据。 关键词:神经网络;MATLAB ;网络学习评价 中图分类号:TP183 文献标识码:A 随着教育信息技术的进一步推广和网络教学资源的不断丰富,网络学习作为一种主要学习方式已经被越来越多的人所接受。近几年,各级精品课程、网络课程的建设所取得的成效已是有目共睹,但重建设、轻使用的现象已成为困扰今后精品课程、网络课程建设的主要因素。教学资源之所以建 起来容易用起来难,原因是多方面的,但网络学习评价机制不健全无疑是其中的一个重要方面。[1] 全面地、科学地评价网络学习,对推动网络教学资源的使用具有十分重的意义。 而传统评价法是在评价指标体系中明确各项指标的权重,使用线性模型进行计算,这种方法缺陷是权值的确定具有很强的主观性,且评价只限线性模型。由于影响网络学习质量的因素很多,且各因素影响的程度也不同,很难用一个线性模型来表达他们之间的函数关系,属于复杂的非线性分 类问题。[2] 而人工神经网络作为一种智能计算技术, 以其非线性映射并具有学习能力等基本特性已广泛应用于模式识别和非线性分类问题。 1网络学习评价问题的提出 网络学习评价问题实质上属于模式识别中的一个分类问题,即根据学生网络学习的各种数据,依据网络学习评价指标体系,对数据进行分析、处理,并得出学生网络学习评价等级。设 n x x x ,,,21 为网络学习评价的n 个评价指标,y 为网络学习评价结果等级,网络学习评价结果等级与评价指标的关系可表示为),,,(21n x x x f y ,进行网络学习评价就是找出评价指标n x x x ,,,21 与评价等级y 之间的函数关系。 2网络学习评价指标体系构建 要进行网络学习评价,首先必须确定网络学习评价的内容和评价标准,即评价的指标体系。在 分析已有的网络学习评价体系的基础上,根据学习评价的基本原则与方法,从学习态度、学习过程和学习效果3个方面构建评价指标(如图1所示)。 第11卷第1期 广州职业教育论坛 Vol.11 No.1 2012年2月 GUANGZHOU VOCATIONAL EDUCATION FORUM Feb. 2012

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

实验报告 人工神经网络

实验报告人工神经网络 实验原理:利用线性回归和神经网络建模技术分析预测。 实验题目:利用给出的葡萄酒数据集,解释获得的分析结论。 library(plspm); data(wines); wines 实验要求: 1、探索认识意大利葡萄酒数据集,对葡萄酒数据预处理,将其随机划分为训练集和测试集,然后创建一个线性回归模型; 2、利用neuralnet包拟合神经网络模型; 3、评估两个模型的优劣,如果都不理想,提出你的改进思路。 分析报告: 1、线性回归模型 > rm(list=ls()) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 250340 13.4 608394 32.5 408712 21.9 Vcells 498334 3.9 8388608 64.0 1606736 12.3 >library(plspm) >data(wines) >wines[c(1:5),] class alcohol malic.acid ash alcalinity magnesium phenols flavanoids 1 1 14.23 1.71 2.43 15.6 127 2.80 3.06 2 1 13.20 1.78 2.14 11.2 100 2.65 2.76 3 1 13.16 2.36 2.67 18.6 101 2.80 3.24 4 1 14.37 1.9 5 2.50 16.8 113 3.85 3.49 5 1 13.24 2.59 2.87 21.0 118 2.80 2.69 nofla.phen proantho col.intens hue diluted proline 1 0.28 2.29 5.64 1.04 3.9 2 1065 2 0.26 1.28 4.38 1.05 3.40 1050 3 0.30 2.81 5.68 1.03 3.17 1185 4 0.24 2.18 7.80 0.86 3.4 5 1480 5 0.39 1.82 4.32 1.04 2.93 735 > data <- wines > summary(wines)

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

人工神经网络算法

https://www.doczj.com/doc/ad10141026.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

各种评价方法统计

第一种 模糊评价方法:内燃机性能评价。 第二种 数据包络分析法 人工神经网络评价法 思想与原理 人工神经网络是模仿生物神经网络功能的一种经验模型,输入和输出之间的变换关系一般是非线性的。首先根据输入的信息尽力神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,是输出结果与实际值之间的差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系。由于人工神经网络本身具有非线性的特点,且在应用中只需对神经网络进行专门问题的样本训练,它能够把问题的特征反映在神经元之间相互关系的权中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有自学习、自组织的潜力。他能根据历史数据通过学习和训练能找出输入和输出之间的内在联系,从而能得出问题的解。另外,他有较强的容错能力,能够处理那些有噪声或不完全的数据。部分节点不参与运算,也不会对整个系统的性能造成太大的影响。 反向传播(Back Propagation,BP)神经网络是由Rumelhart等人于1985年提出的一种很有影响的神经元模型,它是一种多层次反馈性模型,使用的石油“导师”的学习算法。有广阔的应用前景。 模型和步骤 处理单元,或称之为神经元,是神经网络的最基本组成部分。一个神经网络系统中有许多处理单元,每个处理单元的具体操作步骤都是从其相邻的其他单元中接受输入,然后产生出输出送到与其相邻的单元中去。神经网络的处理单元可以分为三种类型:输入单元、输出单元和隐含单元。输入单元是从外界环境接受信息,输出单元则给出神经网络系统对外界环境的作用,这两种处理单元与外界都有直接的联系。隐含单元则处于神经网络之中,他不与外界产生直接的联系。它从网络内不接受输入信息,是哟产生的输出则制作能够用于神经网络系统中的其他处理单元。隐含单元在神经网络中起着极为重要的作用。 人工神经网络的工作过程具有循环特征。对事物的哦按段分析必须经过一个学习和训练工程。1949年,Hebb率先提出了改变神经元连接强度的学习规则。其过程是:将样本(训练)数据赋予输入端,并将网络实际输出和期望输出相比较,得到误差信号,以此为依据来调整连接权值。重复此过程,直到收敛于稳态。 BP网络是一种具有三层或者三层以上的层次结构网络,相邻上、下层之间各神经元实现全连接,即下层的每个神经元与上层的每个神经元都实现权连接,而每层各种神经元之间无连接。换个角度看,BP神经网络不仅具有输入层节点,输出层节点,还可以有1个或者多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐含层的输出信号传播到输出节点,最后给出输出结果。在BP算法中,节点的作用的机理函数通常选取S形函数。 对于BP模型的输入层神经元,其输出与输入相同,中间隐含层和输出层的神经元的操 作规则如下:Ykj=f(∑ = -- n 1 1 , 1 i i k kj i k Y W) Y k-1i是k-1层的第i个神经元的输出,也是第k层神经元的输入;

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

人工智能之人工神经网络(PDF 23页)

1 第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐

2 8.1 神经网络的基本概念及组成特性 8.1.1 生物神经元的结构与功能特性 从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。 人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。 生物神经元就通常说的神经细胞,是构成生 物神经系统的最基本单元,简称神经元。 神经元主要由三个部分构成,包括细胞体、 轴突和树突,其基本结构如图所示。 1. 生物神经元的结构 生物神经元结构 吉林大学地面机械仿生技术教育部重点实验室 张锐

3 从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。 2. 神经元的功能特性 (1)时空整合功能 神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。 (2)神经元的动态极化性 尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。 (3)兴奋与抑制状态 神经元具有两种常规工作状态,即兴奋状态与抑制状态。 (4)结构的可塑性 突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。 吉林大学地面机械仿生技术教育部重点实验室 张锐

人工神经网络复习资料题

《神经网络原理》 、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为 离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+ △)=▼(◎,(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改—进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1 )、信息分布存储和容错性。 (2 )、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络 设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1 )、空间相加性;(2 )、时间相加性;(3)、阈值作用;(4 )、不应期;(5 )、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x的关系如下图,试述它们分别有几个平衡状态,是 否为稳定的平衡状态? 答:在图(1、中,有两个平衡状态a、b,其中,在a点曲线斜率|F' (X)|>1 ,为非稳定平稳状态;在b点曲线斜率|F' (X)|<1 ,为稳定平稳状态。 在图(2、中,有一个平稳状态a,且在该点曲线斜率|F' (X)|>1 ,为非稳定平稳状态。

人工神经网络在聚类分析中的运用

摘要:本文采用无导师监督的som网络,对全国31个省市自治区的人民生活质量进行了综合评价,在没有先验信息的条件下,不采用人为主观赋予各指标权重的办法,转而运用自组织神经网络自组织竞争学习的网络方法来进行赋值、计算和评价,消除了主观确定各指标的权重的主观性,得到的结果较为符合各省市自治区的实际结果。 关键词:聚类分析;k-means聚类;系统聚类;自组织神经网络;人民生活质量 一、引言(研究现状) 自改革开放以来,我国生产力极大发展,生活水平总体上得到了提高。但是,地区间的发展不平衡始终存在,而且差距越来越大,不同地区人民的生活水平也存在显著的差异。据此,我们利用自组织人工神经网络方法对全国31个省市自治区的人民生活水平质量进行分析评价。 二、指标选取与预处理 1.指标选取 遵循合理性、全面性、可操作性、可比性的原则,从以下5个层面共11个二级指标构建了人民生活质量综合评价指标体系(如下表所示)。 人民生活质量综合评价指标体系 2.指标预处理 (1)正向指标是指标数据越大,则评价也高,如人均可支配收入,人均公园等。 正向指标的处理规则如下(1): kohonen 自组织神经网络 输入层是一个一维序列,该序列有n个元素,对应于样本向量的维度;竞争层又称为输出层,该层是由m′n=h个神经元组成的二维平面阵列其神经元的个数对应于输出样本空间的维数,可以使一维或者二维点阵。 竞争层之间的神经元与输入层之间的神经元是全连接的,在输入层神经元之间没有权连接,在竞争层的神经元之间有局部的权连接,表明竞争层神经元之间的侧反馈作用。训练之后的竞争层神经元代表者不同的分类样本。 自组织特征映射神经网络的目标:从样本的数据中找出数据所具有的特征,达到能够自动对样本进行分类的目的。 2.网络反馈算法 自组织网络的学习过程可分为以下两步: (1)神经元竞争学习过程 对于每一个样本向量,该向量会与和它相连的竞争层中的神经元的连接权进行竞争比较(相似性的比较),这就是神经元竞争的过程。相似性程度最大的神经元就被称为获胜神经元,将获胜神经元称为该样本在竞争层的像,相同的样本具有相同的像。 (2)侧反馈过程 竞争层中竞争获胜的神经元会对周围的神经元产生侧反馈作用,其侧反馈机制遵循以下原则:以获胜神经元为中心,对临近邻域的神经元表现为兴奋性侧反馈。以获胜神经元为中心,对邻域外的神经元表现为抑制性侧反馈。 对于竞争获胜的那个神经元j,其邻域内的神经元在不同程度程度上得到兴奋的侧反馈,而在nj(t)外的神经元都得到了抑制的侧反馈。nj(t)是时间t的函数,随着时间的增加,nj(t)围城的面积越来越小,最后只剩下一个神经元,而这个神经元,则反映着一个类的特征或者一个类的属性。 3.评价流程 (1)对n个输入层输入神经元到竞争层输出神经元j的连接权值为(6)式:

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

关于人工神经网络的分析

人工神经网络 分析 班级: 学号: 姓名: 指导教师: 时间:

摘要: 人工神经网络也简称为神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 自从认识到人脑的计算与传统的计算机相比是完全不同的方式开始,关于人工神经网络的研究就开始了。半个多世纪以来,神经网络经历了萌芽期、第一次高潮期、反思低潮期、第二次高潮期、再认识与应用研究期五个阶段。而近年来,人工神经网络通过它几个突出的优点更是引起了人们极大的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。目前,神经网络已成为涉及计算机科学、人工智能、脑神经科学、信息科学和智能控制等多种学科和领域的一门新兴的前言交叉学科。 英文摘要: Artificial neural networks are also referred to as the neural network is a neural network model of animal behavior, distributed parallel information processing algorithm mathematical model. This network relies on system complexity, achieved by adjusting the number of nodes connected to the relationship between, so as to achieve the purpose of processing information. Since the understanding of the human brain compared to traditional computer calculation and are completely different way to start on artificial neural network research began. Over half a century, the neural network has experienced infancy, the first high tide, low tide reflections, the second peak period, and again knowledge and applied research on five stages. In recent years, artificial neural networks through which several prominent advantage is attracting a great deal of attention because it is a large complex problem solving provides a relatively simple and effective way. Currently, neural networks have become involved in computer science, artificial intelligence, brain science, information science and intelligent control and many other disciplines and fields of an emerging interdisciplinary foreword. 关键字:

人工神经网络及其应用实例解读

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

人工神经网络评价法.

人工神经网络评价法 第一节思想和原理 在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。 人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是人工神经网络的重要特征。 人工神经网络是模仿生物神经网络功能的一种经验模型,首先根据输入的信息建立神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,使输出结果与实际值之间差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系,它能够把问题的特征反映在神经元之间相互联系的权值中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有

相关主题
文本预览
相关文档 最新文档